Advertisement

2D TD-NMR Analysis of Complex Food Products

  • Corinne Rondeau-Mouro
Reference work entry

Abstract

This chapter deals with the principles and the applications in food science of 2D T1-T2 and D-T2 correlation techniques in time domain NMR (TD-NMR) spectroscopy. These approaches have demonstrated their potential for the structural and dynamic characterization of foodstuffs. Because relaxation or diffusion measurements result in time-decaying signals, the data analysis involves Laplace inversion, known to be an ill-conditioned and ill-posed problem but coupled with efficient iterative algorithms still allowing for 2D reconstructions. As the food matrices are heterogeneous, multiphase, and rather unstable over time, 2D methods were first applied to help assign multicomponent relaxation times to specific molecules (mainly fat and water) in specific chemical environments, as well as for real-time monitoring of the changes they undergo during storage or particular types of processing such as cooking or freezing.

Keywords

2D NMR Bidimensional NMR Time domain proton nuclear magnetic resonance Relaxation times Diffusion coefficient Food Laplace inversion ILT Chemical exchange Cross-relaxation 

References

  1. 1.
    Venkataramanan L, Song YQ, Hurlimann MD. Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions. IEEE Trans Signal Process. 2002;50(5):1017–26.CrossRefGoogle Scholar
  2. 2.
    Hurlimann M, Venkataramanan L, Flaum C. The diffusion–spin relaxation time distribution function as an experimental probe to characterize fluid mixtures in porous media. J Chem Phys. 2002;117:10223–32.CrossRefGoogle Scholar
  3. 3.
    Godefroy S, Callaghan P. 2D relaxation/diffusion correlations in porous media. Magn Reson Imaging. 2003;21(3):381–3.CrossRefGoogle Scholar
  4. 4.
    Song Y. Novel two-dimensional NMR of diffusion and relaxation for material characterization. In: Stapf S, Han S, editors. NMR in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 163–83.CrossRefGoogle Scholar
  5. 5.
    Hurlimann MD, Burcaw L, Song YQ. Quantitative characterization of food products by two-dimensional D-T-2 and T-1-T-2 distribution functions in a static gradient. J Colloid Interface Sci. 2006;297(1):303–11.CrossRefGoogle Scholar
  6. 6.
    Hurlimann MD, Venkataramanan L. Quantitative measurement of two-dimensional distribution functions of diffusion and relaxation in grossly inhomogeneous fields. J Magn Reson. 2002;157(1):31–42.CrossRefGoogle Scholar
  7. 7.
    Peemoeller H, Pintar MM. Two-dimensional time- evolution approach for resolving a composite free-induction decay. J Magn Reson. 1980;41:358–60.Google Scholar
  8. 8.
    English AE, Whitthall KP, Joy MLG, Henkelman RM. Quantitative two-dimensional time correlation relaxometry. Magn Reson Med. 1991;22:425–34.CrossRefGoogle Scholar
  9. 9.
    Rondeau-Mouro C, Kovrlija R, Van Steenberge E, Moussaoui S. Two dimensional IR-FID-CPMG acquisition and adaptation of a maximum entropy reconstruction. J Magn Reson. 2016;265:16–24.CrossRefGoogle Scholar
  10. 10.
    Santamarina JC, Fratta D. Front Matter. Discrete signals and inverse problems: an introduction for engineers and scientists. Wiley: Chichester, UK; 2005.CrossRefGoogle Scholar
  11. 11.
    Tikhonov AN, Arsenin VY. Solutions of ill-posed problems. New York: Wiley; 1977.Google Scholar
  12. 12.
    Song YQ, Venkataramanan L, Hurlimann MD, Flaum M, Frulla P, Straley C. T-1-T-2 correlation spectra obtained using a fast two-dimensional laplace inversion. J Magn Reson. 2002;154(2):261–8.CrossRefGoogle Scholar
  13. 13.
    Kleinberg R, Straley C, Kenyon W, Akkurt R, Farooqui S, editors. Nuclear magnetic resonance of rocks: T1 vs. T2. SPE Annual Technical Conference and Exhibition; 1993.Google Scholar
  14. 14.
    Peled S, Cory DG, Raymond SA, Kirschner DA, Jolesz FA. Water diffusion, T2, and compartmentation in frog sciatic nerve. Magn Reson Med. 1999;42(5):911.CrossRefGoogle Scholar
  15. 15.
    Kausik R, Hurlimann MD. Sensitivity and resolution of two-dimensional NMR diffusion-relaxation measurements. J Magn Reson. 2016;270:12–23.CrossRefGoogle Scholar
  16. 16.
    Galvosas P, Callaghan PT. Multi-dimensional inverse laplace spectroscopy in the NMR of porous media. C R Phys. 2010;11(2):172–80.CrossRefGoogle Scholar
  17. 17.
    Tønning E, Polders D, Callaghan PT, Engelsen SB. A novel improved method for analysis of 2D diffusion-relaxation data-2D PARAFAC-Laplace decomposition. J Magn Reson. 2007;188(1):10–23.CrossRefGoogle Scholar
  18. 18.
    Mitchell J, Chandrasekera TC, Gladden LF. Obtaining true transverse relaxation time distributions in high-field NMR measurements of saturated porous media: Removing the influence of internal gradients. J Chem Phys. 2010;132(24):244705.CrossRefGoogle Scholar
  19. 19.
    Seland JG, Washburn KE, Anthonsen HW, Krane J. Correlations between diffusion, internal magnetic field gradients, and transverse relaxation in porous systems containing oil and water. Phys Rev E. 2004;70(5):051305.CrossRefGoogle Scholar
  20. 20.
    Washburn KE, Eccles CD, Callaghan PT. The dependence on magnetic field strength of correlated internal gradient relaxation time distributions in heterogeneous materials. J Magn Reson. 2008;194(1):33–40.CrossRefGoogle Scholar
  21. 21.
    Hills BP. Relaxometry : two-dimensional methods. In: Harris R, Wasylishen RE, editors. Electronic encyclopedia of magnetic resonance. Chichester: John Wiley; 2009.Google Scholar
  22. 22.
    McDonald PJ, Korb JP, Mitchell J, Monteilhet L. Surface relaxation and chemical exchange in hydrating cement pastes: A two-dimensional NMR relaxation study. Phys Rev E. 2005;72(1):011409.CrossRefGoogle Scholar
  23. 23.
    Monteilhet L, Korb JP, Mitchell J, McDonald PJ. Observation of exchange of micropore water in cement pastes by two-dimensional T-2-T-2 nuclear magnetic resonance relaxometry. Phys Rev E. 2006;74(6):061404.CrossRefGoogle Scholar
  24. 24.
    Van Landeghem M, Haber A, de Lacaillerie JBD, Blumich B. Analysis of multisite 2D relaxation exchange NMR. Concepts Magn Reson Part A. 2010;36A(3):153–69.CrossRefGoogle Scholar
  25. 25.
    Chandraselera TC, Mitchell J, Fordham EJ, Gladden LF, Johns ML. Rapid encoding of T-1 with spectral resolution in n-dimensional relaxation correlations. J Magn Reson. 2008;194(1):156–61.CrossRefGoogle Scholar
  26. 26.
    Venturi L, Warner J, Hills B. Multisliced ultrafast 2D relaxometry. Magn Reson Imaging. 2010;28(7):964–70.CrossRefGoogle Scholar
  27. 27.
    Moraes TB, Monaretto T, Colnago LA. Rapid and simple determination of T-1 relaxation times in time-domain NMR by continuous wave free precession sequence. J Magn Reson. 2016;270:1–6.CrossRefGoogle Scholar
  28. 28.
    Franck JM, Kausik R, Han S. Overhauser dynamic nuclear polarization-enhanced NMR relaxometry. Microporous Mesoporous Mater. 2013;178:113–8.CrossRefGoogle Scholar
  29. 29.
    Sternin E. Use of inverse theory algorithms in the analysis of biomembrane NMR data. Methods Membr Lipids. 2007;400:103–25.Google Scholar
  30. 30.
    Lawson CL, Hanson RJ. Solving least squares problems. Englewood Cliffs: Prentice Hall; 1974. p. 61.Google Scholar
  31. 31.
    Whittall KP, MacKay AL. Quantitative interpretation of NMR relaxation data. J Magn Reson (1969). 1989;84(1):134–52.CrossRefGoogle Scholar
  32. 32.
    Provencher SW. CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun. 1982;27(3):229–42.CrossRefGoogle Scholar
  33. 33.
    Whittall KP. Analysis of large one-dimensional and two-dimensional relaxation data sets. J Magn Reson Ser A. 1994;110(2):214–8.CrossRefGoogle Scholar
  34. 34.
    Skilling J. In: Skilling J, editor. Maximum entropy and Bayesian methods. Dordrecht: Kluwer; 1989. p. 45–52.CrossRefGoogle Scholar
  35. 35.
    Chouzenoux E, Moussaoui S, Idier J, Mariette F. Efficient maximum entropy reconstruction of nuclear magnetic resonance T1-T2 spectra. IEEE Trans Signal Process. 2010;58(12):6040–51.CrossRefGoogle Scholar
  36. 36.
    Chouzenoux E, Moussaoui S, Idier J, Mariette F, Ieee. Optimization of a maximum entropy criterion for 2D nuclear magnetic resonance reconstruction. 2010 Ieee international conference on acoustics, speech, and signal processing. International conference on acoustics speech and signal processing ICASSP. New York: Ieee; 2010. p. 4154–7.Google Scholar
  37. 37.
    Bernin D, Topgaard D. NMR diffusion and relaxation correlation methods: new insights in heterogeneous materials. Curr Opin Colloid Interface Sci. 2013;18(3):166–72.CrossRefGoogle Scholar
  38. 38.
    Marigheto N, Venturi L, Hibberd D, Wright K, Ferrante G, Hills B. Methods for peak assignment in low-resolution multidimensional NMR cross-correlation relaxometry. J Magn Reson. 2007;187(2):327–42.CrossRefGoogle Scholar
  39. 39.
    Venturi L, Woodward N, Hibberd D, Marigheto N, Gravelle A, Ferrante G, et al. Multidimensional cross-correlation relaxometry of aqueous protein systems. Appl Magn Reson. 2008;33(3):213–34.CrossRefGoogle Scholar
  40. 40.
    Hills B, Costa A, Marigheto N, Wright K. T 1 − T 2 NMR correlation studies of high-pressure-processed starch and potato tissue. Appl Magn Reson. 2005;28(1–2):13–27.CrossRefGoogle Scholar
  41. 41.
    Witek M, Peemoeller H, Szymonska J, Blicharska B. Investigation of starch hydration by 2D time domain NMR. Acta Phys Pol A. 2006;109(3):359–64.CrossRefGoogle Scholar
  42. 42.
    Luyts A, Wilderjans E, Waterschoot J, Van Haesendonck I, Brijs K, Courtin CM, et al. Low resolution H-1 NMR assignment of proton populations in pound cake and its polymeric ingredients. Food Chem. 2013;139(1–4):120–8.CrossRefGoogle Scholar
  43. 43.
    Kovrlija R, Rondeau-Mouro C. Hydrothermal changes in wheat starch monitored by two-dimensional NMR. Food Chem. 2017;214:412–22.CrossRefGoogle Scholar
  44. 44.
    Kovrlija R, Rondeau-Mouro C. Multi-scale NMR and MRI approaches to characterize starchy products. Food Chem. 2017; submitted. in press.Google Scholar
  45. 45.
    Venturi L, Hills B. Spatially resolved multidimensional cross-correlation relaxometry. Magn Reson Imaging. 2010;28(2):171–7.CrossRefGoogle Scholar
  46. 46.
    Hills B, Benamira S, Marigheto N, Wright K. T-1-T-2 correlation analysis of complex foods. Appl Magn Reson. 2004;26(4):543–60.CrossRefGoogle Scholar
  47. 47.
    Serial MR, Blanco Canalis MS, Carpinella M, Valentinuzzi MC, León AE, Ribotta PD, et al. Influence of the incorporation of fibers in biscuit dough on proton mobility characterized by time domain NMR. Food Chem. 2015;192:950–7.CrossRefGoogle Scholar
  48. 48.
    Rondeau-Mouro C, Kovrlija R. A new 2D T1-T2 (IR-FID-CPMG) method for the characterization of food and their transformation. Personal communication, XIII International conference on the applications of magnetic resonance in food science, Karlsruhe; 2016. Annual Reports on Nmr Spectroscopy.Google Scholar
  49. 49.
    Rondeau-Mouro C, Cambert M, Kovrlija R, Musse M, Lucas T, Mariette F. Temperature-associated proton dynamics in wheat starch-based model systems and wheat flour dough evaluated by NMR. Food Bioprocess Technol. 2015;8(4):777–90.CrossRefGoogle Scholar
  50. 50.
    Métais A, Mariette F. Determination of water self-diffusion coefficient in complex food products by low-field 1H PFG-NMR: comparison between the standard spin-echo sequence and the t1-weighted spin echo sequence. J Magn Reson. 2003;165(2):265–75.CrossRefGoogle Scholar
  51. 51.
    Mariette F, Lucas T. NMR signal analysis to attribute the components to the solid/liquid phases present in mixes and ice creams. J Agric Food Chem. 2005;53(5):1317–27.CrossRefGoogle Scholar
  52. 52.
    Rutledge DN, Barros AS. Method for detecting information in signals: application to two-dimensional time domain NMR data. Analyst. 1998;123(4):551–9.CrossRefGoogle Scholar
  53. 53.
    Hubbard PL, Watkinson PJ, Creamer LK, Gottwald A, Callaghan PT. In: Engelsen SB, Belton PS, Jakobsen HJ, editors. Two-dimensional laplace inversion NMR technique applied to the molecular properties of water in dry-salted Mozzarella-type cheeses with various salt concentrations. Cambridge: Royal Soc Chemistry; 2005. p. 225–32.Google Scholar
  54. 54.
    Vandusschoten D, Dejager P, Vanas H. Extracting diffusion constants from echo-time-dependent PFG NMR data using relaxation-time information. J Magn Reson Ser A. 1995;116(1):22–8.CrossRefGoogle Scholar
  55. 55.
    Duval F, Cambert M, Mariette F. NMR study of tomato pericarp tissue by spin-spin relaxation and water self-diffusion. Appl Magn Reson. 2005;28(1–2):29–40.CrossRefGoogle Scholar
  56. 56.
    Raffo A, Gianferri R, Barbieri R, Brosio E. Ripening of banana fruit monitored by water relaxation and diffusion H-1-NMR measurements. Food Chem. 2005;89(1):149–58.CrossRefGoogle Scholar
  57. 57.
    Hills BP, Wright KM. Motional relativity and industrial NMR sensors. J Magn Reson. 2006;178:193–205.CrossRefGoogle Scholar
  58. 58.
    Marigheto N, Venturi L, Hills B. Two-dimensional NMR relaxation studies of apple quality. Postharvest Biol Technol. 2008;48(3):331–40.CrossRefGoogle Scholar
  59. 59.
    Hernandez-Sanchez N, Hills BP, Barreiro P, Marigheto N. An NMR study on internal browning in pears. Postharvest Biol Technol. 2007;44(3):260–70.CrossRefGoogle Scholar
  60. 60.
    Marigheto N, Duarte S, Hills B. NMR relaxation study of avocado quality. Appl Magn Reson. 2005;29(4):687–701.CrossRefGoogle Scholar
  61. 61.
    Hills BP. Applications of low-field NMR to food science. In: Webb GA, editor. Annual reports on NMR spectroscopy, vol. 58. 2006. p. 177–230.Google Scholar
  62. 62.
    Marigheto NA, Moates GK, Furfaro ME, Waldron KW, Hills BP. Characterisation of ripening and pressure-induced changes in tomato pericarp using NMR relaxometry. Appl Magn Reson. 2009;36(1):35–47.CrossRefGoogle Scholar
  63. 63.
    Furfaro M, Marigheto N, Moates G, Cross K, Parker M, Waldron K, et al. Multidimensional NMR cross-correlation relaxation study of carrot phloem and xylem. Part I: peak assignment. Appl Magn Reson. 2009;35(4):521–35.CrossRefGoogle Scholar
  64. 64.
    Furfaro M, Marigheto N, Moates G, Cross K, Parker M, Waldron K, et al. Multidimensional NMR cross-correlation relaxation study of carrot phloem and xylem. Part II: thermal and high-pressure processing. Appl Magn Reson. 2009;35(4):537–47.CrossRefGoogle Scholar
  65. 65.
    Melado-Herreros A, Encarnacion Fernandez-Valle M, Barreiro P. Non-destructive global and localized 2D T-1/T-2 NMR relaxometry to resolve microstructure in apples affected by watercore. Food Bioprocess Technol. 2015;8(1):88–99.CrossRefGoogle Scholar
  66. 66.
    Veliyulin E, Aursand IG, Erikson U. Study of fat and water in Atlantic Salmon muscle (Salmo Salar) by low-field NMR and MRI. In: Engelsen SB, Belton PS, Jakobsen SJ, editors. Magnetic resonance in food science the multivariate challenge. Cambridge: The Royal Society of Chemistry; 2005. p. 148.CrossRefGoogle Scholar
  67. 67.
    Warner J, Donell S, Wright K, Venturi L, Hills B. The characterisation of mammalian tissue with 2D relaxation methods. Magn Reson Imaging. 2010;28(7):971–81.CrossRefGoogle Scholar
  68. 68.
    Wright KM, Warner J, Venturi L, Piggott RB, Donell S, Hills BP. MRICOM-MRI COntrast Modelling using 2D T1-T2 correlation spectra and relaxation signatures. Magn Reson Imaging. 2010;28(5):661–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UR OPAALEIRSTEARennesFrance

Personalised recommendations