Advertisement

Solid-State Deuterium NMR Spectroscopy of Membranes

  • Trivikram R. Molugu
  • Xiaolin Xu
  • Avigdor Leftin
  • Silvia Lope-Piedrafita
  • Gary V. Martinez
  • Horia I. Petrache
  • Michael F. Brown
Reference work entry

Abstract

Solid-state deuterium (2H) NMR spectroscopy provides a unique tool for lipid membrane investigations. Knowledge of the average structure is obtained from solid-state 2H NMR lineshapes through principal values of the static or motionally averaged coupling tensors due to quadrupolar interactions. For randomly oriented multilamellar lipids or aligned membranes, this technique provides residual quadrupolar couplings (RQC) of the individual C–2H labeled segments. The RQC values are used to calculate the segmental order parameters S CD (i) for each segment position (i), which are related to the average membrane properties. The corresponding dynamical information is acquired from the tensor fluctuations, which depend on the mean-squared amplitudes and rates of the motions. Fluctuations of the coupling Hamiltonian due to the various membrane dynamics cause the relaxation. The 2H solid-state NMR relaxation methods facilitate studying the hierarchical dynamics of liquid-crystalline membranes over wide length and timescales. Model-free interpretation of spin–lattice relaxation rates as a function of segmental order parameters enables understanding the complex lipid dynamics. Notably, the square-law functional dependence of R1Z rates and order parameters indicates the collective segmental dynamics, which in turn explain the liquid-crystalline material properties of lipid bilayer. Using solid-state 2H NMR relaxation, the influences of the acyl length, polyunsaturation, lipid polar head groups, cosurfactants, water, and incorporation of sterols are accessible in terms of the bilayer viscoelastic properties. These methods have been extensively applied to characterize model membranes and membrane-bound peptides as well as proteins for obtaining unique information on their conformations, orientation, and interactions.

Keywords

Cholesterol Liquid crystals Lipids Membranes Molecular dynamics Membrane elasticity NMR relaxation NMR spectroscopy Order-director fluctuations 

References

  1. 1.
    Häberlen U. High resolution NMR in solids. Selective averaging. New York: Academic; 1976.Google Scholar
  2. 2.
    Spiess HW. Rotation of molecules and nuclear spin relaxation. In: Diehl P, Fluck E, Kosfeld R, editors. NMR basic principles and progress. Heidelberg: Springer; 1978. p. 55–214.Google Scholar
  3. 3.
    Leftin A, Xu X, Brown MF. Phospholipid bilayer membranes: deuterium and carbon-13 NMR spectroscopy. eMagRes. 2014;3:199–214.CrossRefGoogle Scholar
  4. 4.
    Xu X, Struts AV, Brown MF. Generalized model-free analysis of nuclear spin relaxation experiments. eMagRes. 2014;3:275–86.CrossRefGoogle Scholar
  5. 5.
    Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977;10:353–418.CrossRefGoogle Scholar
  6. 6.
    Davis JH. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta. 1983;737:117–71.CrossRefGoogle Scholar
  7. 7.
    Bloom M, Evans E, Mouritsen OG. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991;24:293–397.CrossRefGoogle Scholar
  8. 8.
    Brown MF. Membrane structure and dynamics studied with NMR spectroscopy. In: Merz KM, Roux B, editors. Biological membranes: a molecular perspective from computation and experiment. Basel: Birkhäuser; 1996. p. 175–252.CrossRefGoogle Scholar
  9. 9.
    Leftin A, Brown MF. An NMR database for simulations of membrane dynamics. Biochim Biophys Acta. 2011;1808:818–39.CrossRefGoogle Scholar
  10. 10.
    Kinnun JJ, Mallikarjunaiah KJ, Petrache HI, Brown MF. Elastic deformation and area per lipid of membranes: atomistic view from solid-state deuterium NMR spectroscopy. Biochim Biophys Acta. 2015;1848:246–59.CrossRefGoogle Scholar
  11. 11.
    Ollila OHS, Pabst G. Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments. Biochim Biophys Acta. 2016;1858:2512–28.CrossRefGoogle Scholar
  12. 12.
    Vist MR, Davis JH. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990;29:451–64.CrossRefGoogle Scholar
  13. 13.
    Wassall SR, Brzustowicz MR, Shaikh SR, Cherezov V, Caffrey M, Stillwell W. Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation. Chem Phys Lipids. 2004;132:79–88.Google Scholar
  14. 14.
    Veatch SL, Soubias O, Keller SL, Gawrisch K. Critical fluctuations in domain-forming lipid mixtures. Proc Natl Acad Sci U S A. 2007;104:17650–5.CrossRefGoogle Scholar
  15. 15.
    Davis JH, Clair JJ, Juhasz J. Phase equilibria in DOPC/DPPC-d62/cholesterol mixtures. Biophys J. 2009;96:521–39.CrossRefGoogle Scholar
  16. 16.
    Yasuda T, Tsuchikawa H, Murata M, Matsumori N. Deuterium NMR of raft model membranes reveals domain-specific order profiles and compositional distribution. Biophys J. 2015;108:2502–6.CrossRefGoogle Scholar
  17. 17.
    Bera I, Klauda JB. Molecular simulations of mixed lipid bilayers with sphingomyelin, glycerophospholipids, and cholesterol. J Phys Chem B. 2017;121:5197–208.CrossRefGoogle Scholar
  18. 18.
    Copié V, McDermott AE, Beshah K, Williams JC, Spyker-Assink M, Gebhard RT, Lugtenberg J, Herzfeld J, Griffin RG. Deuterium solid-state NMR studies of methyl group dynamics in bacteriorhodopsin and retinal model compounds: evidence for a 6-s-trans chromophore in the protein. Biochemistry. 1994;33:3280–6.CrossRefGoogle Scholar
  19. 19.
    Moltke S, Nevzorov AA, Sakai N, Wallat I, Job C, Nakanishi K, Heyn MP, Brown MF. Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium nuclear magnetic resonance spectra of oriented purple membranes. Biochemistry. 1998;37:11821–35.CrossRefGoogle Scholar
  20. 20.
    Salgado GFJ, Struts AV, Tanaka K, Fujioka N, Nakanishi K, Brown MF. Deuterium NMR structure of retinal in the ground state of rhodopsin. Biochemistry. 2004;43:12819–28.CrossRefGoogle Scholar
  21. 21.
    Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature. 2010;463:689–92.CrossRefGoogle Scholar
  22. 22.
    Struts AV, Salgado GFJ, Martínez-Mayorga K, Brown MF. Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nat Struct Mol Biol. 2011;18:392–4.CrossRefGoogle Scholar
  23. 23.
    Struts AV, Salgado GFJ, Brown MF. Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Proc Natl Acad Sci U S A. 2011;108:8263–8.CrossRefGoogle Scholar
  24. 24.
    Mertz B, Struts AV, Feller SE, Brown MF. Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. Biochim Biophys Acta. 2012;1818:241–51.CrossRefGoogle Scholar
  25. 25.
    Brown MF, Struts AV. Structural dynamics of retinal in rhodopsin activation viewed by solid-state 2H NMR spectroscopy. In: Separovic F, Naito A, editors. Advances in biological solid-state NMR: proteins and membrane-active peptides. Cambridge: The Royal Society of Chemistry; 2014. p. 320–52.CrossRefGoogle Scholar
  26. 26.
    Brown MF, Struts AV. Rhodopsin activation based on solid-state 2H NMR spectroscopy. In: Roberts GCK, editor. Encyclopedia of biophysics. Berlin/Heidelberg: Springer; 2014. p. 2231–43.Google Scholar
  27. 27.
    Hansen SK, Bertelsen K, Paaske B, Nielsen NC, Vosegaard T. Solid-state NMR methods for oriented membrane proteins. Prog Nucl Magn Reson Spectrosc. 2015;88–89:48–85.CrossRefGoogle Scholar
  28. 28.
    Struts AV, Barmasov AV, Brown MF. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods. Opt Spectrosc. 2016;120:286–93.CrossRefGoogle Scholar
  29. 29.
    Rajagopalan V, Greathouse DV, Koeppe II RE. Influence of glutamic acid residues and pH on the properties of transmembrane helices. Biochim Biophys Acta. 2017;1859:484–92.CrossRefGoogle Scholar
  30. 30.
    Nevzorov AA, Moltke S, Brown MF. Structure of the A-form and B-form of DNA from deuterium NMR line shape simulation. J Am Chem Soc. 1998;120:4798–805.CrossRefGoogle Scholar
  31. 31.
    Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E. The molecular structure of the liquid-ordered phase of lipid bilayers. J Am Chem Soc. 2014;136:725–32.CrossRefGoogle Scholar
  32. 32.
    Rajamoorthi K, Petrache HI, McIntosh TJ, Brown MF. Packing and viscoelasticity of polyunsaturated ω-3 and ω-6 lipid bilayers as seen by 2H NMR and X-ray diffraction. J Am Chem Soc. 2005;127:1576–88.CrossRefGoogle Scholar
  33. 33.
    Mallikarjunaiah KJ, Leftin A, Kinnun JJ, Justice MJ, Rogozea AL, Petrache HI, Brown MF. Solid-state 2H NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation. Biophys J. 2011;100:98–107.CrossRefGoogle Scholar
  34. 34.
    Petrache HI, Dodd SW, Brown MF. Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectrscopy. Biophys J. 2000;79:3172–92.CrossRefGoogle Scholar
  35. 35.
    Bartels T, Lankalapally RS, Bittman R, Beyer K, Brown MF. Raft-like mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy. J Am Chem Soc. 2008;130:14521–32.CrossRefGoogle Scholar
  36. 36.
    Brownholland DP, Longo GS, Struts AV, Justice MJ, Szleifer I, Petrache HI, Brown MF, Thompson DH. Phase separation in binary mixtures of bipolar and monopolar lipid dispersions revealed by 2H NMR spectroscopy, small angle X-ray scattering, and molecular theory. Biophys J. 2009;97:2700–9.CrossRefGoogle Scholar
  37. 37.
    Leftin A, Molugu TR, Job C, Beyer K, Brown MF. Area per lipid and cholesterol interactions in membranes by separated local-field 13C NMR spectroscopy. Biophys J. 2014;107:2274–86.CrossRefGoogle Scholar
  38. 38.
    Molugu TR, Brown MF. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level. Chem Phys Lipids. 2016;199:39–51.CrossRefGoogle Scholar
  39. 39.
    Brown MF, Chan SI. Bilayer membranes: deuterium & carbon-13 NMR. In: Harris RK, Grant DM, editors. Encyclopedia of magnetic resonance. New York: Wiley; 1996. p. 871–85.Google Scholar
  40. 40.
    Kinnun JJ, Leftin A, Brown MF. Solid-state NMR spectroscopy for the physical chemistry laboratory. J Chem Educ. 2013;90:123–8.CrossRefGoogle Scholar
  41. 41.
    Nevzorov AA, Moltke S, Heyn MP, Brown MF. Solid-state NMR line shapes of uniaxially oriented immobile systems. J Am Chem Soc. 1999;121:7636–43.CrossRefGoogle Scholar
  42. 42.
    Koenig BW, Strey HH, Gawrisch K. Membrane lateral compressibility determined by NMR and X-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997;73:1954–66.CrossRefGoogle Scholar
  43. 43.
    Sternin E, Schäfer H, Polozov IV, Gawrisch K. Simultaneous determination of orientational and order parameter distributions from NMR spectra of partially oriented model membranes. J Magn Reson. 2001;149:110–3.CrossRefGoogle Scholar
  44. 44.
    Brown MF, Seelig J. Ion-induced changes in head group conformation of lecithin bilayers. Nature. 1977;269:721–3.CrossRefGoogle Scholar
  45. 45.
    Seelig J, MacDonald PM, Scherer PG. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987;26:7535–41.CrossRefGoogle Scholar
  46. 46.
    Brown MF, Seelig J, Häberlen U. Structural dynamics in phospholipid bilayers from deuterium spin–lattice relaxation time measurements. J Chem Phys. 1979;70:5045–53.CrossRefGoogle Scholar
  47. 47.
    McCabe MA, Griffith GL, Ehringer WD, Stillwell W, Wassall SR. 2H NMR studies of isomeric ω3 and ω6 polyunsaturated phospholipid membranes. Biochemistry. 1994;33:7203–10.CrossRefGoogle Scholar
  48. 48.
    Barry JA, Gawrisch K. Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Biochemistry. 1994;33:8082–8.CrossRefGoogle Scholar
  49. 49.
    Huster D, Arnold K, Gawrisch K. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry. 1998;37:17299–308.CrossRefGoogle Scholar
  50. 50.
    Petrache HI, Salmon A, Brown MF. Structural properties of docosahexaenoyl phospholipid bilayers investigated by solid-state 2H NMR spectroscopy. J Am Chem Soc. 2001;123:12611–22.CrossRefGoogle Scholar
  51. 51.
    Sternin E, Bloom M, MacKay AL. De-Pake-ing of NMR spectra. J Magn Reson. 1983;55:274–82.Google Scholar
  52. 52.
    McCabe MA, Wassall SR. Rapid deconvolution of NMR powder spectra by weighted fast Fourier transformation. Solid State Nucl Magn Reson. 1997;10:53–61.CrossRefGoogle Scholar
  53. 53.
    Oldfield E, Meadows M, Rice D, Jacobs R. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of effects of cholesterol in model systems. Biochemistry. 1978;17:2727–40.CrossRefGoogle Scholar
  54. 54.
    Jansson M, Thurmond RL, Barry JA, Brown MF. Deuterium NMR study of intermolecular interactions in lamellar phases containing palmitoyllysophosphatidylcholine. J Phys Chem. 1992;96:9532–44.CrossRefGoogle Scholar
  55. 55.
    Klauda JB, Eldho NV, Gawrisch K, Brooks BR, Pastor RW. Collective and noncollective models of NMR relaxation in lipid vesicles and multilayers. J Phys Chem B. 2008;112:5924–9.CrossRefGoogle Scholar
  56. 56.
    Huber T, Rajamoorthi K, Kurze VF, Beyer K, Brown MF. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by 2H NMR and molecular dynamics simulations. J Am Chem Soc. 2002;124:298–309.CrossRefGoogle Scholar
  57. 57.
    Salmon A, Dodd SW, Williams GD, Beach JM, Brown MF. Configurational statistics of acyl chains in polyunsaturated lipid bilayers from 2H NMR. J Am Chem Soc. 1987;109:2600–9.CrossRefGoogle Scholar
  58. 58.
    Thurmond RL, Lindblom G, Brown MF. Curvature, order, and dynamics of lipid hexagonal phases studied by deuterium NMR spectroscopy. Biochemistry. 1993;32:5394–410.CrossRefGoogle Scholar
  59. 59.
    Brown MF. Theory of spin–lattice relaxation in lipid bilayers and biological membranes. 2H and 14N quadrupolar relaxation. J Chem Phys. 1982;77:1576–99.CrossRefGoogle Scholar
  60. 60.
    Rommel E, Noack F, Meier P, Kothe G. Proton spin relaxation dispersion studies of phospholipid membranes. J Phys Chem. 1988;92:2981–7.CrossRefGoogle Scholar
  61. 61.
    Speyer JB, Weber RT, Das Gupta SK, Griffin RG. Anisotropic 2H NMR spin–lattice relaxation in Lα-phase cerebroside bilayers. Biochemistry. 1989;28:9569–74.CrossRefGoogle Scholar
  62. 62.
    Ferrarini A, Nordio PL, Moro GJ, Crepeau RH, Freed JH. A theoretical model of phospholipid dynamics in membranes. J Chem Phys. 1989;91:5707–21.CrossRefGoogle Scholar
  63. 63.
    Stohrer J, Gröbner G, Reimer D, Weisz K, Mayer C, Kothe G. Collective lipid motions in bilayer membranes studied by transverse deuteron spin relaxation. J Chem Phys. 1991;95:672–8.CrossRefGoogle Scholar
  64. 64.
    Lindahl E, Edholm O. Molecular dynamics simulation of NMR relaxation rates and slow dynamics in lipid bilayers. J Chem Phys. 2001;115:4938–50.CrossRefGoogle Scholar
  65. 65.
    Pastor RW, Venable RM, Feller SE. Lipid bilayers, NMR relaxation, and computer simulations. Acc Chem Res. 2002;35:438–46.CrossRefGoogle Scholar
  66. 66.
    Brown MF. Deuterium relaxation and molecular dynamics in lipid bilayers. J Magn Reson. 1979;35:203–15.Google Scholar
  67. 67.
    Martinez GV, Dykstra EM, Lope-Piedrafita S, Brown MF. Lanosterol and cholesterol-induced variations in bilayer elasticity probed by 2H NMR relaxation. Langmuir. 2004;20:1043–6.CrossRefGoogle Scholar
  68. 68.
    Orädd G, Shahedi V, Lindblom G. Effect of sterol structure on the bending rigidity of lipid membranes: a 2H NMR transverse relaxation study. Biochim Biophys Acta. 1788;2009:1762–71.CrossRefGoogle Scholar
  69. 69.
    Shahedi V, Orädd G, Lindblom G. Domain-formation in DOPC/SM bilayers studied by pfg-NMR: effect of sterol structure. Biophys J. 2006;91:2501–7.CrossRefGoogle Scholar
  70. 70.
    Filippov A, Orädd G, Lindblom G. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. Biophys J. 2003;84:3079–86.CrossRefGoogle Scholar
  71. 71.
    Lai AL, Freed JH. HIV gp41 fusion peptide increases membrane ordering in a cholesterol-dependent fashion. Biophys J. 2014;106:172–81.CrossRefGoogle Scholar
  72. 72.
    Brief E, Kwak S, Cheng JTJ, Kitson N, Thewalt J, Lafleur M. Phase behavior of an equimolar mixture of N-palmitoyl-D-erythro-sphingosine, cholesterol, and palmitic acid, a mixture with optimized hydrophobic matching. Langmuir. 2009;25:7523–32.CrossRefGoogle Scholar
  73. 73.
    Henriksen J, Rowat AC, Brief E, Hsueh YW, Thewalt JL, Zuckermann MJ, Ipsen JH. Universal behavior of membranes with sterols. Biophys J. 2006;90:1639–49.CrossRefGoogle Scholar
  74. 74.
    Hsueh YW, Gilbert K, Trandum C, Zuckermann M, Thewalt J. The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: a deuterium NMR and calorimetric study. Biophys J. 2005;88:1799–808.CrossRefGoogle Scholar
  75. 75.
    Miao L, Nielsen M, Thewalt J, Ipsen JH, Bloom M, Zuckermann MJ, Mouritsen OG. From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. Biophys J. 2002;82:1429–44.CrossRefGoogle Scholar
  76. 76.
    Althoff G, Heaton NJ, Gröbner G, Prosser RS, Kothe G. NMR relaxation study of collective motions and viscoelastic properties in biomembranes. Colloids Surf A. 1996;115:31–7.CrossRefGoogle Scholar
  77. 77.
    Halle B. 2H NMR relaxation in phospholipid bilayers. Toward a consistent molecular interpretation. J Phys Chem. 1991;95:6724–33.CrossRefGoogle Scholar
  78. 78.
    Trouard TP, Alam TM, Brown MF. Angular dependence of deuterium spin–lattice relaxation rates of macroscopically oriented dilaurylphosphatidylcholine in the liquid-crystalline state. J Chem Phys. 1994;101:5229–61.CrossRefGoogle Scholar
  79. 79.
    Nevzorov AA, Brown MF. Dynamics of lipid bilayers from comparative analysis of 2H and 13C nuclear magnetic resonance relaxation data as a function of frequency and temperature. J Chem Phys. 1997;107:10288–310.CrossRefGoogle Scholar
  80. 80.
    Marqusee JA, Warner M, Dill KA. Frequency dependence of NMR spin lattice relaxation in bilayer membranes. J Chem Phys. 1984;81:6404–5.CrossRefGoogle Scholar
  81. 81.
    Vold RR. Deuterium NMR studies of dynamics in solids and liquid crystals. In: Tycko R, editor. Nuclear magnetic resonance probes of molecular dynamics. Dordrecht: Kluwer; 1994. p. 27–112.CrossRefGoogle Scholar
  82. 82.
    Dong RY. Nuclear magnetic resonance of liquid crystals. New York: Springer; 1997. p. 117–40.Google Scholar
  83. 83.
    Rajeswari M, Molugu TR, Dhara S, Venu K, Sastry VSS, Dabrowski R. Multinuclear NMR relaxometry studies in singly fluorinated liquid crystal. Chem Phys Lett. 2012;531:80–5.CrossRefGoogle Scholar
  84. 84.
    Rajeswari M, Molugu TR, Dhara S, Sastry VSS, Venu K, Dabrowski R. Slow dynamics in a liquid crystal: 1H and 19F NMR relaxometry. J Chem Phys. 2011;135:244507-1–9.Google Scholar
  85. 85.
    Brown MF, Ribeiro AA, Williams GD. New view of lipid bilayer dynamics from 2H and 13C NMR relaxation time measurements. Proc Natl Acad Sci U S A. 1983;80:4325–9.CrossRefGoogle Scholar
  86. 86.
    Brown MF, Thurmond RL, Dodd SW, Otten D, Beyer K. Elastic deformation of membrane bilayers probed by deuterium NMR relaxation. J Am Chem Soc. 2002;124:8471–84.CrossRefGoogle Scholar
  87. 87.
    Brown MF, Salmon A, Henriksson U, Söderman O. Frequency dependent 2H N.M.R. relaxation rates of small unilamellar phospholipid vesicles. Mol Phys. 1990;69:379–83.CrossRefGoogle Scholar
  88. 88.
    Jarrell HC, Smith ICP, Jovall PA, Mantsch HH, Siminovitch DJ. Angular dependence of 2H NMR relaxation rates in lipid bilayers. J Chem Phys. 1987;88:1260–3.CrossRefGoogle Scholar
  89. 89.
    Nevzorov AA, Trouard TP, Brown MF. Lipid bilayer dynamics from simultaneous analysis of orientation and frequency dependence of deuterium spin–lattice and quadrupolar order relaxation. Phys Rev E. 1998;58:2259–81.CrossRefGoogle Scholar
  90. 90.
    Trouard TP, Nevzorov AA, Alam TM, Job C, Zajicek J, Brown MF. Influence of cholesterol on dynamics of dimyristoylphosphatidylcholine as studied by deuterium NMR relaxation. J Chem Phys. 1999;110:8802–18.CrossRefGoogle Scholar
  91. 91.
    Brown MF. Unified picture for spin–lattice relaxation of lipid bilayers and biomembranes. J Chem Phys. 1984;80:2832–6.CrossRefGoogle Scholar
  92. 92.
    Otten D, Brown MF, Beyer K. Softening of membrane bilayers by detergents elucidated by deuterium NMR spectroscopy. J Phys Chem B. 2000;104:12119–29.CrossRefGoogle Scholar
  93. 93.
    Brown MF, Thurmond RL, Dodd SW, Otten D, Beyer K. Composite membrane deformation on the mesoscopic length scale. Phys Rev E. 2001;64:010901-1–4.Google Scholar
  94. 94.
    Martinez GV, Dykstra EM, Lope-Piedrafita S, Job C, Brown MF. NMR elastometry of fluid membranes in the mesoscopic regime. Phys Rev E. 2002;66:050902-1–4.Google Scholar
  95. 95.
    Bonmatin J-M, Smith ICP, Jarrell HC, Siminovitch DJ. Use of a comprehensive approach to molecular dynamics in ordered lipid systems: cholesterol reorientation in oriented lipid bilayers. A 2H NMR relaxation case study. J Am Chem Soc. 1990;112:1697–704.CrossRefGoogle Scholar
  96. 96.
    Brown MF. Anisotropic nuclear spin relaxation of cholesterol in phospholipid bilayers. Mol Phys. 1990;71:903–8.CrossRefGoogle Scholar
  97. 97.
    Weisz K, Gröbner G, Mayer C, Stohrer J, Kothe G. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior. Biochemistry. 1992;31:1100–12.CrossRefGoogle Scholar
  98. 98.
    Morrison C, Bloom M. Orientation dependence of 2H nuclear magnetic resonance spin–lattice relaxation in phospholipid and phospholipid:cholesterol systems. J Chem Phys. 1994;101:749–63.CrossRefGoogle Scholar
  99. 99.
    Brown MF, Lope-Piedrafita S, Martinez GV, Petrache HI. Solid-state deuterium NMR spectroscopy of membranes. In: Webb GA, editor. Modern magnetic resonance. Heidelberg: Springer; 2006. p. 245–56.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Trivikram R. Molugu
    • 1
  • Xiaolin Xu
    • 2
  • Avigdor Leftin
    • 3
  • Silvia Lope-Piedrafita
    • 4
  • Gary V. Martinez
    • 5
  • Horia I. Petrache
    • 6
  • Michael F. Brown
    • 7
  1. 1.Department of Chemistry and BiochemistryUniversity of ArizonaTucsonUSA
  2. 2.Department of PhysicsUniversity of ArizonaTucsonUSA
  3. 3.Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkUSA
  4. 4.Servei de Ressonància Magnètica Nuclear and Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  5. 5.Department of Cancer Imaging and MetabolismH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  6. 6.Department of PhysicsIndiana University-Purdue UniversityIndianapolisUSA
  7. 7.Department of Chemistry and Biochemistry, and Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations