Advertisement

Solid-State NMR on Complex Biomolecules: Methods and Applications

Reference work entry

Abstract

Solid-state NMR (ssNMR) can provide structural information at the most detailed level and, at the same time, is applicable in highly heterogeneous and complex molecular environments, largely irrespective of solubility or crystallinity. In the following chapter, we discuss concepts to deal with the spectroscopic challenges of applying ssNMR to complex biomolecular systems and how to place structural information obtained from ssNMR in a (supra)molecular context. Applications range from protein biopolymers and hydrogels to drug delivery systems, biosilica, and other biomaterials.

Keywords

Solid-state NMR Drug delivery systems Cells Amyloids DNP Hydrogels Biosilica MD simulations Coarse-grained simulations Humins Microtubules 

Notes

Acknowledgments

We gratefully acknowledge our collaborators and colleagues for their invaluable contributions to cited publications from our own research group.

These studies were supported through grants from the NWO, the EU, and the NIH, as well as the DFG, the Max Planck Society, and the Volkswagen Foundation.

References

  1. 1.
    Weingarth M, Baldus M. Solid-state NMR-based approaches for supramolecular structure elucidation. Acc Chem Res. 2013;46(9):2037–46.CrossRefGoogle Scholar
  2. 2.
    Kaplan M, Pinto C, Houben K, Baldus M. Nuclear magnetic resonance (NMR) applied to membrane protein complexes. Q Rev Biophys. 2016; 49;e15,  https://doi.org/10.1017/S003358351600010X.
  3. 3.
    Sattler JJHB, Gonzalez-Jimenez ID, Luo L, Stears BA, Malek A, Barton DG, et al. Platinum-promoted Ga/Al2O3 as highly active, selective, and stable catalyst for the dehydrogenation of propane. Angew Chem. 2014;126(35):9405–10. Wiley-VCH Verlag.CrossRefGoogle Scholar
  4. 4.
    van der Stam W, Gradmann S, Altantzis T, Ke X, Baldus M, Bals S, et al. Shape control of colloidal Cu2-xS polyhedral nanocrystals by tuning the nucleation rates. Chem Mater. American Chemical Society; 2016;28(18):6705–6715.Google Scholar
  5. 5.
    Renault M, Tommassen-van Boxtel R, Bos MP, Post JA, Tommassen J, Baldus M. Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci. 2012;109(13):4863–8.CrossRefGoogle Scholar
  6. 6.
    Renault M, Pawsey S, Bos MP, Koers EJ, Nand D, Tommassen-van Boxtel R, et al. Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew Chem Int Ed. 2012;51(12):2998–3001. Wiley-VCH Verlag. Available from http://doi.wiley.com/10.1002/anie.201105984.CrossRefGoogle Scholar
  7. 7.
    Baker LA, Daniëls M, van der Cruijsen EAW, Folkers GE, Baldus M. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling. J Biomol NMR. 2015;62(2):199–208.CrossRefGoogle Scholar
  8. 8.
    Labokha AA, Gradmann S, Frey S, Hülsmann BB, Urlaub H, Baldus M, et al. Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J. 2012;32(2):204–18.CrossRefGoogle Scholar
  9. 9.
    Kaplan M, Narasimhan S, de Heus C, Mance D, Van Doorn S, Houben K, et al. EGFR dynamics change during activation in native membranes as revealed by NMR. Cell. 2016;167(5);1241–1251.e11.  https://doi.org/10.1016/j.cell.2016.10.038.CrossRefGoogle Scholar
  10. 10.
    Barbieri L, Bertini I, Luchinat E, Secci E, Zhao Y, Banci L, et al. Atomic-resolution monitoring of protein maturation in live human cells by nMr. Nat Chem Biol. 2013;9(5):297–9.CrossRefGoogle Scholar
  11. 11.
    Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK, Swager TM, et al. High frequency dynamic nuclear polarization. Acc Chem Res. 2013;46(9):1933–41.CrossRefGoogle Scholar
  12. 12.
    Koers EJ, van der Cruijsen EAW, Rosay M, Weingarth M, Prokofyev A, Sauvee C, et al. NMR-based structural biology enhanced by dynamic nuclear polarization at high magnetic field. J Biomol NMR. 2014;60(2–3):157–68.CrossRefGoogle Scholar
  13. 13.
    Kaplan M, Cukkemane A, van Zundert GCP, Narasimhan S, Daniëls M, Mance D, et al. Probing a cell-embedded megadalton protein complex by DNP-supported solid-state NMR. Nat Methods. 2015;12(7):649–52.CrossRefGoogle Scholar
  14. 14.
    Koers EJ, López-Deber MP, Weingarth M, Nand D, Hickman DT, Mlaki Ndao D, et al. Dynamic nuclear polarization NMR spectroscopy: revealing multiple conformations in lipid-anchored peptide vaccines. Angew Chem Int Ed. 2013;52(41):10905–8.CrossRefGoogle Scholar
  15. 15.
    Jantschke A, Koers E, Mance D, Weingarth M, Brunner E, Baldus M. Insight into the supramolecular architecture of intact diatom biosilica from DNP-supported solid-state NMR spectroscopy. Angew Chem Int Ed. 2015;54(50):15069–73.CrossRefGoogle Scholar
  16. 16.
    Mance D, Gast P, Huber M, Baldus M, Ivanov KL. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning. J Chem Phys. 2015;142(23):234201.CrossRefGoogle Scholar
  17. 17.
    Sauvee C, Rosay M, Casano G, Aussenac F, Weber RT, Ouari O, et al. Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed. 2013;52(41):10858–61.CrossRefGoogle Scholar
  18. 18.
    van der Cruijsen EAW, Koers EJ, Sauvee C, Hulse RE, Weingarth M, Ouari O, et al. Biomolecular DNP-supported NMR spectroscopy using site-directed spin labeling. Chem Eur J. 2015;21(37):12971–7.CrossRefGoogle Scholar
  19. 19.
    Perras FA, Reinig RR, Slowing II, Sadow AD, Pruski M. Effects of biradical deuteration on the performance of DNP: towards better performing polarizing agents. Phys Chem Chem Phys. 2016;18(1):65–9. The Royal Society of Chemistry.CrossRefGoogle Scholar
  20. 20.
    Mathies G, Caporini MA, Michaelis VK, Liu Y, Hu K-N, Mance D, et al. Efficient dynamic nuclear polarization at 800 MHz/527 GHz with trityl-nitroxide biradicals. Angew Chem Int Ed. 2015;54(40):11770–4.CrossRefGoogle Scholar
  21. 21.
    Heise H, Luca S, de Groot BL, Grubmüller H, Baldus M. Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Biophys J. 2005;89(3):2113–20.CrossRefGoogle Scholar
  22. 22.
    Fricke P, Mance D, Chevelkov V, Giller K, Becker S, Baldus M, et al. High resolution observed in 800 MHz DNP spectra of extremely rigid type III secretion needles. J Biomol NMR. 2016;65:121–6.CrossRefGoogle Scholar
  23. 23.
    Chevelkov V, Rehbein K, Diehl A, Reif B. Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed. 2006;45(23):3878–81.CrossRefGoogle Scholar
  24. 24.
    Dannatt HRW, Felletti M, Jehle S, Wang Y, Emsley L, Dixon NE, et al. Weak and transient protein interactions determined by solid-state NMR. Angew Chem. 2016;128(23):6750–3.CrossRefGoogle Scholar
  25. 25.
    Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez del Amo J-M, et al. Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Ed. 2011;50(19):4508–12.CrossRefGoogle Scholar
  26. 26.
    Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS, et al. Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc. 2011;133(43):17434–43.CrossRefGoogle Scholar
  27. 27.
    Sinnige T, Daniëls M, Baldus M, Weingarth M. Proton clouds to measure long-range contacts between nonexchangeable side chain protons in solid-state NMR. J Am Chem Soc. 2014;136(12):4452–5.CrossRefGoogle Scholar
  28. 28.
    Mance D, Sinnige T, Kaplan M, Narasimhan S, Daniëls M, Houben K, et al. An efficient labelling approach to harness backbone and side-chain protons in 1H-detected solid-state NMR spectroscopy. Angew Chem. 2015;127(52):16025–9.CrossRefGoogle Scholar
  29. 29.
    Medeiros-Silva J, Mance D, Daniels M, Houben K, Baldus M, et al. 1H-detected solid-state NMR studies of water-inaccessible proteins in vitro and in situ. Angew Chem Int Ed Engl. 2016;55(43):13606–13610.Google Scholar
  30. 30.
    Weingarth M, van der Cruijsen EAW, Ostmeyer J, Lievestro S, Roux B, Baldus M. Quantitative analysis of the water occupancy around the selectivity filter of a K+ channel in different gating modes. J Am Chem Soc. 2014;136(5):2000–7.CrossRefGoogle Scholar
  31. 31.
    Andreas LB, Jaudzems K, Stanek J, Lalli D, Bertarello A, Le Marchand T, et al. Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci U S A. 2016;113(33):9187–92.CrossRefGoogle Scholar
  32. 32.
    Weingarth M, Ader C, Melquiond ASJ, Nand D, Pongs O, Becker S, et al. Supramolecular structure of membrane-associated polypeptides by combining solid-state NMR and molecular dynamics simulations. Biophys J. 2012;103(1):29–37.CrossRefGoogle Scholar
  33. 33.
    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111(27):7812–24. American Chemical Society.CrossRefGoogle Scholar
  34. 34.
    Rad-Malekshahi M, Visscher KM, Rodrigues JPGLM, de Vries R, Hennink WE, Baldus M, et al. The supramolecular organization of a peptide-based nanocarrier at high molecular detail. Am Chem Soc. 2015;137(24):7775–84. American Chemical Society.CrossRefGoogle Scholar
  35. 35.
    Weingarth M, Prokofyev A, van der Cruijsen EAW, Nand D, Bonvin AMJJ, Pongs O, et al. Structural determinants of specific lipid binding to potassium channels. J Am Chem Soc. 2013;135(10):3983–8.CrossRefGoogle Scholar
  36. 36.
    van der Cruijsen EAW, Nand D, Weingarth M, Prokofyev A, Hornig S, Cukkemane AA, et al. Importance of lipid–pore loop interface for potassium channel structure and function. Proc Natl Acad Sci. 2013;110(32):13008–13.CrossRefGoogle Scholar
  37. 37.
    Gradmann S, Ader C, Heinrich I, Nand D, Dittmann M, Cukkemane A, et al. Rapid prediction of multi-dimensional NMR data sets. J Biomol NMR. 2012;54(4):377–87.CrossRefGoogle Scholar
  38. 38.
    Baker LA, Baldus M. Characterization of membrane protein function by solid-state NMR spectroscopy. Curr Opin Struct Biol. 2014;27:48–55.CrossRefGoogle Scholar
  39. 39.
    Tycko R, Solid-State NMR. Studies of amyloid fibril structure. Annu Rev Phys Chem. 2011;62(1):279–99.CrossRefGoogle Scholar
  40. 40.
    Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M. Molecular-level secondary structure, polymorphism, and dynamics of full-length {alpha}-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci U S A. 2005;102(44):15871–6.CrossRefGoogle Scholar
  41. 41.
    Andronesi OC, von Bergen M, Biernat J, Seidel K, Griesinger C, Mandelkow E, et al. Characterization of Alzheimer’s-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy. J Am Chem Soc. 2008;130(18):5922–8.CrossRefGoogle Scholar
  42. 42.
    Daebel V, Chinnathambi S, Biernat J, Schwalbe M, Habenstein B, Loquet A, et al. β-sheet core of tau paired helical filaments revealed by solid-state NMR. J Am Chem Soc. 2012;134(34):13982–9.CrossRefGoogle Scholar
  43. 43.
    Schneider R, Schumacher MC, Mueller H, Nand D, Klaukien V, Heise H, et al. Structural characterization of polyglutamine fibrils by solid-state NMR spectroscopy. J Mol Biol. 2011;412(1):121–36.CrossRefGoogle Scholar
  44. 44.
    Kim H-Y, Heise H, Fernandez CO, Baldus M, Zweckstetter M. Correlation of amyloid fibril beta-structure with the unfolded state of alpha-synuclein. Chembiochem. 2007;8(14):1671–4.CrossRefGoogle Scholar
  45. 45.
    Poyraz O, Schmidt H, Seidel K, Delissen F, Ader C, Tenenboim H, et al. Protein refolding is required for assembly of the type three secretion needle. Nat Struct Mol Biol. 2010;17(7):788–92.CrossRefGoogle Scholar
  46. 46.
    Kumar A, Heise H, Blommers MJJ, Krastel P, Schmitt E, Petersen F, et al. Interaction of epothilone B (Patupilone) with microtubules as detected by two-dimensional solid-state NMR spectroscopy. Angew Chem Int Ed. 2010;49(41):7504–7.CrossRefGoogle Scholar
  47. 47.
    Yan S, Guo C, Hou G, Zhang H, Lu X, Williams JC, et al. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A. 2015;112(47):14611–6.CrossRefGoogle Scholar
  48. 48.
    Courchaine EM, Lu A, Neugebauer KM. Droplet organelles? EMBO J. 2016;35(15);1603–1612.Google Scholar
  49. 49.
    Ader C, Frey S, Maas W, Schmidt HB, Goerlich D, Baldus M. Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci. 2010;107(14):6281–5.CrossRefGoogle Scholar
  50. 50.
    Shi Y, van Steenbergen MJ, Teunissen EA, Novo L, Gradmann S, Baldus M, et al. Π–Π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs. Biomacromolecules. 2013;14(6):1826–37. American Chemical Society.CrossRefGoogle Scholar
  51. 51.
    de Graaf AJ, Boere KWM, Kemmink J, Fokkink RG, van Nostrum CF, Rijkers DTS, et al. Looped structure of flowerlike micelles revealed by 1H NMR relaxometry and light scattering. Langmuir. 2011;27(16):9843–8.CrossRefGoogle Scholar
  52. 52.
    van Zandvoort I, Koers EJ, Weingarth M, Bruijnincx PCA, Baldus M, Weckhuysen BM. Structural characterization of 13C-enriched humins and alkali-treated 13C humins by 2D solid-state NMR. Green Chem. 2015;17(8):4383–92.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.NMR SpectroscopyBijvoet Center for Biomolecular Research, Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations