Advertisement

Chemometric Analysis of NMR Spectra

  • Parvaneh Ebrahimi
  • Nanna Viereck
  • Rasmus Bro
  • Søren B. Engelsen
Reference work entry

Abstract

NMR is one of the most powerful analytical techniques of our time. It allows detailed investigation of qualitative and quantitative characteristics of complex chemical and biological samples. The resulting NMR data provides a wealth of information about the samples, but the NMR data analysis has been and still is suffering from oversimplified approaches making it difficult to extract all the information efficiently. For instance, univariate methods that just use one or a few selected variables for the analysis from a whole spectrum lead to a huge loss of information. Such a simplifying approach reduces the chance of discovering new findings and truly learning about complex aspects of the samples investigated. Multivariate data analysis techniques allows for truly exploratory and comprehensive analysis of NMR data. This is particularly advantageous in the investigation of complex biological samples. Chemometrics can be helpful here by providing tools for unsupervised and supervised data exploration, multivariate calibration, classification and discrimination.

This chapter presents some important steps in the pre-processing of NMR data as well as some of the most common chemometric techniques for data exploration and analysis. An example of NMR spectra of apple juice samples is given, to illustrate the power of the combination of NMR data and chemometrics.

Keywords

NMR Chemometrics PCA PLS MCR 

References

  1. 1.
    Günther H. NMR spectroscopy: basic principles, concepts and applications in chemistry. Weinheim: Germany: Wiley-VCH; 2013.Google Scholar
  2. 2.
    Johnels D, Edlund U, Grahn H, Hellberg S, Sjöström M, Wold S, Clementi S, Dunn WJ. Clustering of aryl carbon-13 nuclear magnetic resonance substituent chemical shifts. A multivariate data analysis using principal components. J Chem Soc Perkin Trans 2. 1983;863–871.Google Scholar
  3. 3.
    Grahn H, Delaglio F, Delsuc MA, Levy GC. Multivariate data analysis for pattern recognition in two-dimensional NMR. J Magn Reson. 1988;77:294–307.Google Scholar
  4. 4.
    Hoffman RE, Levy GC. Modern methods of NMR data processing and data evaluation. Prog Nucl Magn Reson Spectrosc. 1991;23:211–58.CrossRefGoogle Scholar
  5. 5.
    Lindon JC, Nicholson JK, Holmes E, Everett JR. Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn Reson. 2000;12:289–320.CrossRefGoogle Scholar
  6. 6.
    Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. Essex: England: Pearson Education; 2005.Google Scholar
  7. 7.
    Brereton RG. Chemometrics: data analysis for the laboratory and chemical plant. Chichester: England: Wiley; 2003.CrossRefGoogle Scholar
  8. 8.
    Otto M. Chemometrics: statistics and computer application in analytical chemistry. Weinheim: Germany: Wiley-VCH; 2016.CrossRefGoogle Scholar
  9. 9.
    Claridge TD. High-resolution NMR techniques in organic chemistry. Oxford: UK: Elsevier; 2008.CrossRefGoogle Scholar
  10. 10.
    Spyros A, Dais P, Belton P. NMR spectroscopy in food analysis. Cambridge: Royal Society of Chemistry; 2013.Google Scholar
  11. 11.
    Ebrahimi P. Metabolic profiling of food protective cultures by in vitro NMR spectroscopy. Ph.d. thesis: Department of Food and Science, Faculty of Science, University of Copenhagen; Frederiksberg: Denmark. 2015.Google Scholar
  12. 12.
    Morris GA. Reference deconvolution. eMagRes: Wiley; 2007.Google Scholar
  13. 13.
    Morris GA, Barjat H, Home TJ. Reference deconvolution methods. Prog Nucl Magn Reson Spectrosc. 1997;31:197–257.CrossRefGoogle Scholar
  14. 14.
    Ebrahimi P, Nilsson M, Morris GA, Jensen HM, Engelsen SB. Cleaning up NMR spectra with reference deconvolution for improving multivariate analysis of complex mixture spectra. J Chemometr. 2014;28:656–662.CrossRefGoogle Scholar
  15. 15.
    Ebrahimi P, Larsen FH, Jensen HM, Vogensen FK, Engelsen SB. Real-time metabolomic analysis of lactic acid bacteria as monitored by in vitro NMR and chemometrics. Metabolomics. 2016;12:77.CrossRefGoogle Scholar
  16. 16.
    Savorani F, Tomasi G, Engelsen SB. Alignment of 1D NMR data using the icoshift tool: a tutorial. Magn Reson Food Sci. 2013;14–24.Google Scholar
  17. 17.
    Savorani F, Tomasi G, Engelsen SB. icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson. 2010;202:190–202.CrossRefGoogle Scholar
  18. 18.
    Giskeødegård GF, Bloemberg TG, Postma G, Sitter B, Tessem MB, Gribbestad IS, Bathen TF, Buydens LMC. Alignment of high resolution magic angle spinning magnetic resonance spectra using warping methods. Anal Chim Acta. 2010;683:1–11.CrossRefGoogle Scholar
  19. 19.
    Vu TN, Laukens K. Getting your peaks in line: a review of alignment methods for NMR spectral data. Metabolites. 2013;3:259–76.CrossRefGoogle Scholar
  20. 20.
    Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006;78:4281–90.CrossRefGoogle Scholar
  21. 21.
    Savorani F, Rasmussen MA, Mikkelsen MS, Engelsen SB. A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Res Int. 2013;54:1131–45.CrossRefGoogle Scholar
  22. 22.
    Dona AC, Jiménez B, Schäfer H, Humpfer E, Spraul M, Lewis MR, et al. Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal Chem. 2014;86:9887–94.CrossRefGoogle Scholar
  23. 23.
    Dreier L, Wider G. Concentration measurements by PULCON using X-filtered or 2D NMR spectra. Magn Reson Chem. 2006;44:S206–S212.CrossRefGoogle Scholar
  24. 24.
    Wider G, Dreier L. Measuring protein concentrations by NMR spectroscopy. J Am Chem Soc. 2006;128:2571–6.CrossRefGoogle Scholar
  25. 25.
    Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:1.CrossRefGoogle Scholar
  26. 26.
    Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933;24:417.CrossRefGoogle Scholar
  27. 27.
    Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom Intel Lab Syst. 1987;2:37–52.CrossRefGoogle Scholar
  28. 28.
    Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6:2812–31.CrossRefGoogle Scholar
  29. 29.
    Jackson JE. Principal components and factor analysis: part I-principal components. J Qual Technol. 1980;12:201–13.CrossRefGoogle Scholar
  30. 30.
    Trygg J, Gullberg J, Johansson A, Jonsson P, Moritz T. Chemometrics in metabolomics – an introduction. Plant Metabolomics: Springer. 2006;57:117–28.CrossRefGoogle Scholar
  31. 31.
    Winning H, Larsen FH, Bro R, Engelsen SB. Quantitative analysis of NMR spectra with chemometrics. J Magn Reson. 2008;190:26–32.CrossRefGoogle Scholar
  32. 32.
    Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intel Lab Syst. 2001;58:109–30.CrossRefGoogle Scholar
  33. 33.
    Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics. 1978;20:397–405.CrossRefGoogle Scholar
  34. 34.
    Stone M. An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J R Stat Soc B Methodol. 1977;39:44–7.Google Scholar
  35. 35.
    Næs T, Isaksson T. How can outliers be detected in NIR spectroscopy? NIR News. 1992;3:8–9.CrossRefGoogle Scholar
  36. 36.
    Nørgaard L, Saudland A, Wagner J, Nielsen JP, Munck L, Engelsen SB. Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl Spectrosc. 2000;54:413–9.CrossRefGoogle Scholar
  37. 37.
    de Juan A, Jaumot J, Tauler R. Multivariate curve resolution (MCR). Solving the mixture analysis problem. Anal Methods. 2014;6:4964–76.CrossRefGoogle Scholar
  38. 38.
    Lawton WH, Sylvestre EA. Self modeling curve resolution. Technometrics. 1971;13:617–33.CrossRefGoogle Scholar
  39. 39.
    Tauler R. Multivariate curve resolution applied to second order data. Chemom Intel Lab Syst. 1995;30:133–46.CrossRefGoogle Scholar
  40. 40.
    Engelsen SB, Savorani F, Rasmussen MA. Chemometric exploration of quantitative NMR data. eMagRes. 2013;2:267–278.Google Scholar
  41. 41.
    Huo R, Geurts C, Brands J, Wehrens R, Buydens LMC. Real-life applications of the MULVADO software package for processing DOSY NMR data. Magn Reson Chem. 2006;44:110–7.CrossRefGoogle Scholar
  42. 42.
    Salomonsen T, Jensen HM, Larsen FH, Steuernagel S, Engelsen SB. Direct quantification of M/G ratio from 13 C CP-MAS NMR spectra of alginate powders by multivariate curve resolution. Carbohydr Res. 2009;344:2014–22.CrossRefGoogle Scholar
  43. 43.
    Nielsen MM, Viereck N, Engelsen SB. Phytic acid degradation by phytase–as viewed by 31P NMR and multivariate curve resolution. Magn Reson Food Sci. 2007;214–22.Google Scholar
  44. 44.
    Belton PS, Colquhoun IJ, Kemsley EK, Delgadillo I, Roma P, Dennis MJ, et al. Application of chemometrics to the 1 H NMR spectra of apple juices: discrimination between apple varieties. Food Chem. 1998;61:207–13.CrossRefGoogle Scholar
  45. 45.
    Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692–703.CrossRefGoogle Scholar
  46. 46.
    Khakimov B, Gürdeniz G, Engelsen SB. Trends in the application of chemometrics to foodomics studies. Acta Alimentaria. 2015;44:4–31.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Parvaneh Ebrahimi
    • 1
  • Nanna Viereck
    • 1
  • Rasmus Bro
    • 1
  • Søren B. Engelsen
    • 2
  1. 1.Department of Food ScienceUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Chemometrics and Analytical Technology, Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations