Pure-Shift NMR

  • Walter Becker
  • Nina Gubensäk
  • Klaus Zangger
Reference work entry


The signal dispersion in one- and multidimensional NMR spectra of organic and biomolecules is limited by the low resolution in the proton dimension. This results from both the limited proton chemical shift range but also signal splitting by scalar coupling. Pure-shift NMR by homonuclear broadband decoupling has been introduced as a way of simplifying spectra in the proton dimension by collapsing all signals into singlets. Although the acquisition of pure shift spectra has been attempted since the early days of solution NMR, the recent progress in pulse-sequence design finally enabled their straightforward acquisition in routine NMR labs. Interrupted-acquisition experiments allow the recording of quantitative real-time pure-shift spectra without sophisticated data processing. Pure-shift spectra are especially useful for highly overlapped proton spectra, as found for example in natural products, reaction mixtures, and biomacromolecules. The increase in resolution comes however at the prize of a significant reduction in sensitivity, since actual broadband homonuclear decoupling can only be achieved for a subset of spins.


NMR spectroscopy Pure-shift NMR Structure analysis Proton NMR Scalar coupling Homonuclear broadband decoupling 


  1. 1.
    Grimes JH, O’Connell TM. The application of micro-coil NMR probe technology to metabolomics of urine and serum. J Biomol NMR. 2011;49:297–305.CrossRefGoogle Scholar
  2. 2.
    Molinski TF. NMR of natural products at the ‘nanomole-scale’. Nat Prod Rep. 2010;27:321–9.CrossRefGoogle Scholar
  3. 3.
    Kovacs H, Moskau D, Spraul M. Cryogenically cooled probes—a leap in NMR technology. Prog Nucl Magn Reson Spectrosc. 2005;46:131–55.CrossRefGoogle Scholar
  4. 4.
    Ernst RR, Primas H. Nuclear magnetic resonance with stochastic high-frequency fields. Helv Phys Acta. 1963;36:583–600.Google Scholar
  5. 5.
    Shaka AJ, Keeler J. Broadband spin decoupling in isotropic-liquids. Prog Nucl Magn Reson Spectrosc. 1987;19:47–129.CrossRefGoogle Scholar
  6. 6.
    Bloom A, Shoolery J. Effects of Perturbing Radiofrequency Fields on Nuclear Spin Coupling. Phys Rev. 1955;97:1261–5.CrossRefGoogle Scholar
  7. 7.
    Aue WP, Karhan J, Ernst RR. Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy. J Chem Phys. 1976;64:4226–7.CrossRefGoogle Scholar
  8. 8.
    Hahn E. Spin Echoes. Phys Rev. 1950;80:580–94.CrossRefGoogle Scholar
  9. 9.
    Hahn E, Maxwell D. Chemical Shift and Field Independent Frequency Modulation of the Spin Echo Envelope. Phys Rev. 1951;84:1246–7.CrossRefGoogle Scholar
  10. 10.
    Carr H, Purcell E. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys Rev. 1954;94:630–8.CrossRefGoogle Scholar
  11. 11.
    Morris GA. In: Harris RK, editor. Encyclopedia of Magnetic Resonance. Chichester: Wiley; 2007.Google Scholar
  12. 12.
    Nagayama K, Bachmann P, Wuthrich K, Ernst R. The use of cross-sections and of projections in two-dimensional NMR spectroscopy. J Mag Reson. 1978;31:133–48.Google Scholar
  13. 13.
    Bax A, Freeman R, Morris GA. A simple method for suppressing dispersion-mode contributions in NMR spectra. J Magn Reson. 1981;43:333–8.Google Scholar
  14. 14.
    Shaka AJ, Keeler J, Freeman R. Separation of chemical shifts and spin coupling in proton NMR. Elimination of dispersion signals from two-dimensional spectra. J Magn Reson. 1984;56:294–313.Google Scholar
  15. 15.
    Xu P, Wu XL, Freeman R. Proton NMR spectra without spin-spin splittings. J Am Chem Soc. 1991;113:3596–7.CrossRefGoogle Scholar
  16. 16.
    Woodley M, Freeman R. “Decoupled” Proton NMR Spectra. J Magn Reson Ser A. 1994;109:103–12.CrossRefGoogle Scholar
  17. 17.
    Simova S, Sengstschmid H, Freeman R. Proton Chemical-Shift Spectra. J Magn Reson. 1997;124:104–21.CrossRefGoogle Scholar
  18. 18.
    Brennan L. NMR-based metabolomics: from sample preparation to applications in nutrition research. Prog Nucl Magn Reson Spectrosc. 2014;83:42–9.CrossRefGoogle Scholar
  19. 19.
    Fonville JM, Maher AD, Coen M, Holmes E, Lindon JC, Nicholson JK. Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification. Anal Chem. 2010;82:1811–21.CrossRefGoogle Scholar
  20. 20.
    Foxall P, Parkinson JA, Sadler IH, Lindon JC, Nicholson JK. Analysis of biological fluids using 600 MHz proton NMR spectroscopy: application of homonuclear two-dimensional J-resolved spectroscopy to urine and blood plasma for spectral simplification and assignment. J Pharm Biomed Anal. 1993;11:21–31.CrossRefGoogle Scholar
  21. 21.
    Viant MR. Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun. 2003;310:943–8.CrossRefGoogle Scholar
  22. 22.
    Lendel C, Damberg P. 3D J-resolved NMR spectroscopy for unstructured polypeptides: fast measurement of 3J HNH alpha coupling constants with outstanding spectral resolution. J Biomol NMR. 2009;44:35–42.CrossRefGoogle Scholar
  23. 23.
    Nilsson M, Gil AM, Delgadillo I, Morris GA. Improving pulse sequences for 3D diffusion-ordered NMR spectroscopy: 2DJ-IDOSY. Anal Chem. 2004;76:5418–22.CrossRefGoogle Scholar
  24. 24.
    Lucas LH, Otto WH, Larive CK. The 2D-J-DOSY Experiment: Resolving Diffusion Coefficients in Mixtures. J Magn Reson. 2002;156:138–45.CrossRefGoogle Scholar
  25. 25.
    Cobas JC, Martin-Pastor M. A homodecoupled diffusion experiment for the analysis of complex mixtures by NMR. J Magn Reson. 2004;171:20–4.CrossRefGoogle Scholar
  26. 26.
    Jerschow A, Müller N. 3D Diffusion-Ordered TOCSY for Slowly Diffusing Molecules. J Magn Reson Ser A. 1996;123:222–5.CrossRefGoogle Scholar
  27. 27.
    Lin M, Shapiro MJ. Mixture Analysis in Combinatorial Chemistry. Application of Diffusion-Resolved NMR Spectroscopy. J Org Chem. 1996;61:7617–9.CrossRefGoogle Scholar
  28. 28.
    Barjat M. Swanson, A three-dimensional DOSY-HMQC experiment for the high-resolution analysis of complex mixtures. J Mag Reson. 1998;131:131–8.CrossRefGoogle Scholar
  29. 29.
    Wu D, Chen A, Johnson Jr CS. Three-Dimensional Diffusion-Ordered NMR Spectroscopy: The Homonuclear COSY–DOSY Experiment. J Magn Reson Ser A. 1996;121:88–91.CrossRefGoogle Scholar
  30. 30.
    Dixon AM, Larive CK. Modified Pulsed-Field Gradient NMR Experiments for Improved Selectivity in the Measurement of Diffusion Coefficients in Complex Mixtures: Application to the Analysis of the Suwannee River Fulvic Acid. Anal Chem. 1997;69:2122–8.CrossRefGoogle Scholar
  31. 31.
    Otto WH, Larive CK. Improved spin-echo-edited NMR diffusion measurements. J Mag Reson. 2001;153:273–6.CrossRefGoogle Scholar
  32. 32.
    Sakhaii P, Haase B, Bermel W. Broadband homodecoupled heteronuclear multiple bond correlation spectroscopy. J Magn Reson. 2013;228:125–9.CrossRefGoogle Scholar
  33. 33.
    Bax A, Mehlkopf AF, Smidt J. Homonuclear broadband-decoupled absorption spectra, with linewidths which are independent of the transverse relaxation rate. J Magn Reson. 1979;35:167–9.Google Scholar
  34. 34.
    Rance M, Wagner G, Sorensen OW, Wuthrich K, Ernst RR. Application of Omega-1-Decoupled 2d Correlation Spectra to the Study of Proteins. J Magn Reson. 1984;59:250–61.Google Scholar
  35. 35.
    Bax A, Freeman R. Investigation of Complex Networks of Spin-Spin Coupling by Two-Dimensional Nmr. J Magn Reson. 1981;44:542–61.Google Scholar
  36. 36.
    Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K. [13c]-Constant-Time [15n,1h]-Trosy-Hnca for Sequential Assignments of Large Proteins. J Biomol NMR. 1999;14:85–8.CrossRefGoogle Scholar
  37. 37.
    Ven v d, Frank JM, Philippens vE. Optimization of constant-time evolution in multidimensional NMR experiments. J Mag Reson. 1992;97:637–44.Google Scholar
  38. 38.
    Powers R, Gronenborn AM, Marius Clore G, Bax A. Three-dimensional triple-resonance NMR of 13C/15N-enriched proteins using constant-time evolution. J Mag Reson. 1991;94:209–13.Google Scholar
  39. 39.
    Sorensen OW, Griesinger C, Ernst RR. Time reversal of the evolution under scalar spin-spin interactions in NMR. Application for omega1 decoupling in two-dimensional NOE spectroscopy. J Am Chem Soc. 1985;107:7778–9.CrossRefGoogle Scholar
  40. 40.
    Oschkinat H, Pastore A, Pfändler P, Bodenhausen G. Two-dimensional correlation of directly and remotely connected transitions by z-filtered COSY. J Mag Res. 1986;69:559–66.Google Scholar
  41. 41.
    Pell AJ, Edden RA, Keeler J. Broadband proton-decoupled proton spectra. Magn Reson Chem. 2007;45:296–316.CrossRefGoogle Scholar
  42. 42.
    Zangger K, Sterk H. Homonuclear broadband-decoupled NMR spectra. J Magn Reson. 1997;124:486–9.CrossRefGoogle Scholar
  43. 43.
    Aguilar JA, Faulkner S, Nilsson M, Morris GA. Pure shift 1H NMR. Angew Chem Int Ed. 2010;49:3901–3.CrossRefGoogle Scholar
  44. 44.
    Aguilar JA, Nilsson M, Morris GA. Simple proton spectra from complex spin systems. Angew Chem Int Ed. 2011;50:9716–7.CrossRefGoogle Scholar
  45. 45.
    Foroozandeh M, Adams RW, Meharry NJ, Jeannerat D, Nilsson M, Morris GA. Ultrahigh-resolution NMR spectroscopy. Angew Chem Int Ed. 2014;53:6990–2.CrossRefGoogle Scholar
  46. 46.
    Meyer NH, Zangger K. Viva la Resolucion. Enhancing the Resolution of H-1 NMR Spectra by Broadband Homonuclear Decoupling. Synlett. 2014;25:920–7.CrossRefGoogle Scholar
  47. 47.
    Meyer NH, Zangger K. Boosting the resolution of 1H NMR spectra by homonuclear broadband decoupling. ChemPhysChem. 2013;15:49–55.CrossRefGoogle Scholar
  48. 48.
    Koivisto JJ. Zero-quantum filtered pure shift TOCSY. Chem Commun (Camb). 2013;49:96–8.CrossRefGoogle Scholar
  49. 49.
    Morris GA, Aguilar JA, Evans R, Haiber S, Nilsson M. True chemical shift correlation maps. J Am Chem Soc. 2010;132:12770–2.CrossRefGoogle Scholar
  50. 50.
    Aguilar JA, Colbourne AA, Cassani J, Nilsson M, Morris GA. Decoupling two-dimensional NMR spectroscopy in both dimensions. Angew Chem Int Ed. 2012;51:6460–3.CrossRefGoogle Scholar
  51. 51.
    Sakhaii P, Haase B, Bermel W, Kerssebaum R, Wagner GE, Zangger K. Broadband homodecoupled NMR spectroscopy with enhanced sensitivity. J Magn Reson. 2013;233:92–5.CrossRefGoogle Scholar
  52. 52.
    Schulze-Sünninghausen D, Becker J, Luy B. Rapid heteronuclear single quantum correlation NMR spectra at natural abundance. J Am Chem Soc. 2014;136:1242–5.CrossRefGoogle Scholar
  53. 53.
    Kupce E, Freeman R. Fast multidimensional NMR by polarization sharing. Mag Reson Chem. 2007;45:2–4.CrossRefGoogle Scholar
  54. 54.
    Lokesh NS. Sensitivity enhancement in slice-selective NMR experiments through polarization sharing. Chem Commun. 2014;50:8550.CrossRefGoogle Scholar
  55. 55.
    Cotte A, Jeannerat D. 1D NMR Homodecoupled (1) H Spectra with Scalar Coupling Constants from 2D NemoZS-DIAG Experiments. Angew Chem Int Ed Engl. 2015;54:6016–8.CrossRefGoogle Scholar
  56. 56.
    Garbow JR, Weitekamp DP, Pines A. Bilinear rotation decoupling of homonuclear scalar interactions. Chem Phys Lett. 1982;93:504–9.CrossRefGoogle Scholar
  57. 57.
    Bax A. Broadband homonuclear decoupling in heteronuclear shift correlation NMR spectroscopy. J Magn Reson. 1969;53(1983):517–20.Google Scholar
  58. 58.
    Otting G, Wüthrich K. Extended heteronuclear editing of 2D 1H NMR spectra of isotope-labeled proteins, using the X(ω1, ω2) double half filter. J Mag Reson. 1989;85:586–94.Google Scholar
  59. 59.
    Zwahlen C, Legault P, Vincent SJF, Greenblatt J, Konrat R, Kay LE. Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: application to a Bacteriophage λ N-Peptide/ boxB RNA Complex. J Am Chem Soc. 1997;119:6711–21.CrossRefGoogle Scholar
  60. 60.
    Bohlen J-M, Rey M, Bodenhausen G. Refocusing with chirped pulses for broadband excitation without phase dispersion. J Mag Reson. 1989;84:191–7.Google Scholar
  61. 61.
    Lupulescu A, Olsen GL, Frydman L. Toward single-shot pure-shift solution 1H NMR by trains of BIRD-based homonuclear decoupling. J Magn Reson. 2012;218:141–6.CrossRefGoogle Scholar
  62. 62.
    Paudel L, Adams RW, Kiraly P, Aguilar JA, Foroozandeh M, Cliff MJ, Nilsson M, Sandor P, Waltho JP, Morris GA. Simultaneously Enhancing Spectral Resolution and Sensitivity in Heteronuclear Correlation NMR Spectroscopy. Angew Chem Int Ed. 2013.
  63. 63.
    Meyer NH, Zangger K, Simplifying proton NMR. spectra by instant homonuclear broadband decoupling. Angew Chem Int Ed. 2013;52:7143–6.CrossRefGoogle Scholar
  64. 64.
    Glanzer S, Zangger K. Directly decoupled diffusion-ordered NMR spectroscopy for the analysis of compound mixtures. Chemistry. 2014;20:11171–5.CrossRefGoogle Scholar
  65. 65.
    Kosol S, Contreras-Martos S, Cedeño C, Tompa P. Structural characterization of intrinsically disordered proteins by NMR spectroscopy. Molecules. 2013;18:10802–28.CrossRefGoogle Scholar
  66. 66.
    Felli IC, Pierattelli R. Recent progress in NMR spectroscopy. IUBMB Life. 2012;64:473–81.CrossRefGoogle Scholar
  67. 67.
    Meyer NH, Zangger K. Enhancing the resolution of multi-dimensional heteronuclear NMR spectra of intrinsically disordered proteins by homonuclear broadband decoupling. Chem Commun (Camb). 2014;50:1488–90.CrossRefGoogle Scholar
  68. 68.
    Xu P, Wu X-L, Freeman R. Broadband-decoupled proton spectroscopy. J Mag Reson. 1991;95:132–48.Google Scholar
  69. 69.
    Zangger K. Pure shift NMR. Prog Nucl Magn Reson Spectrosc. 2015;86–87C:1–20.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of GrazGrazAustria

Personalised recommendations