Solid-State Deuterium NMR Spectroscopy of Rhodopsin

  • Suchithranga M. D. C. Perera
  • Xiaolin Xu
  • Trivikram R. Molugu
  • Andrey V. Struts
  • Michael F. Brown
Reference work entry

Abstract

Rhodopsin is a prototype for the large Family A of G-protein–coupled receptors (GPCRs). These proteins regulate many signaling processes, and more than 35% of human pharmaceuticals are targeted against diseases related to dysfunctions of GPCR pathways. Membrane proteins such as GPCRs are challenging to crystallize for X-ray studies. In addition, their effective molar masses in detergent solutions push the limits for solution NMR spectroscopy. By contrast, solid-state NMR allows both the structure and dynamics of membrane proteins to be investigated in a natural lipid bilayer environment. Here, we describe solid-state 2H NMR methods for investigating structural and dynamical changes of the retinylidene cofactor of the GPCR rhodopsin upon photoillumination. Rhodopsin was regenerated with retinal containing 2H-labeled C5-, C9-, or C13-methyl groups. The receptor was recombined with phospholipid membranes, which were aligned on planar glass slides. The angular dependences of the 2H NMR spectra and the corresponding relaxation rates were measured for rhodopsin in the dark and in the cryo-trapped, preactive Meta-I and active Meta-II states. Analysis of the 2H NMR lineshapes using a static uniaxial distribution yields orientational restraints for the retinylidene conformation when bound to the protein. Solid-state 2H NMR relaxation data provide additional information on the motion of the bound cofactor. The structural and dynamical changes of retinal reveal how its functional groups (methyl groups and the β-ionone ring) affect rhodopsin light activation, and illustrate the opportunities of solid-state 2H NMR spectroscopy in studying membrane proteins.

Keywords

GPCRs Lipids Membrane proteins Membranes Molecular dynamics NMR relaxation NMR spectroscopy Rhodopsin activation 

References

  1. 1.
    Perera SMDC, Chawla U, Brown MF. Powdered G-protein-coupled receptors. J Phys Chem Lett. 2016;7:4230–5.CrossRefGoogle Scholar
  2. 2.
    Mertz B, Struts AV, Feller SE, Brown MF. Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. Biochim Biophys Acta. 2012;1818:241–51.Google Scholar
  3. 3.
    Jäger S, Szundi I, Lewis JW, Mah TL, Kliger DS. Effects of pH on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II. Biochemistry. 1998;37:6998–7005.CrossRefGoogle Scholar
  4. 4.
    Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc Natl Acad Sci USA. 2008;105:7439–44.CrossRefGoogle Scholar
  5. 5.
    Ahuja S, Eilers M, Hirshfeld A, Yan ECY, Ziliox M, Sakmar TP, Sheves M, Smith SO. 6-s-cis conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin. J Am Chem Soc. 2009;131:15160–9.CrossRefGoogle Scholar
  6. 6.
    Ahuja S, Hornak V, Yan ECY, Syrett N, Goncalves JA, Hirshfeld A, Ziliox M, Sakmar TP, Sheves M, Reeves PJ, Smith SO, Eilers M. Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol. 2009;16:168–75.CrossRefGoogle Scholar
  7. 7.
    Ahuja S, Crocker E, Eilers M, Hornak V, Hirshfeld A, Ziliox M, Syrett N, Reeves PJ, Khorana HG, Sheves M, Smith SO. Location of the retinal chromophore in the activated state of rhodopsin. J Biol Chem. 2009;284:10190–201.CrossRefGoogle Scholar
  8. 8.
    Crocker E, Eilers M, Ahuja S, Hornak V, Hirshfeld A, Sheves M, Smith SO. Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin. J Mol Biol. 2006;357:163–72.CrossRefGoogle Scholar
  9. 9.
    Eilers M, Reeves PJ, Ying W, Khorana HG, Smith SO. Magic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodopsin: expression of 15N-lysine- and 13C-glycine-labeled opsin in a stable cell line. Proc Natl Acad Sci USA. 1999;96:487–92.CrossRefGoogle Scholar
  10. 10.
    Creemers AFL, Kiihne S, Bovee-Geurts PHM, DeGrip WJ, Lugtenburg J, de Groot HJM. 1H and 13C MAS NMR evidence for pronounced ligand-protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin. Proc Natl Acad Sci USA. 2002;99:9101–6.CrossRefGoogle Scholar
  11. 11.
    Feng X, Verdegem PJE, Edén M, Sandström D, Lee YK, Bovee-Geurts PHM, de Grip WJ, Lugtenburg J, de Groot HJM, Levitt MH. Determination of a molecular torsional angle in the metarhodopsin-I photointermediate of rhodopsin by double-quantum solid-state NMR. J Biomol NMR. 2000;16:1–8.CrossRefGoogle Scholar
  12. 12.
    Verdegem PJE, Bovee-Geurts PHM, de Grip WJ, Lugtenburg J, de Groot HJM. Retinylidene ligand structure in bovine rhodopsin, metarhodopsin-I, and 10-methylrhodopsin from internuclear distance measurements using 13C-labeling and 1-D rotational resonance MAS NMR. Biochemistry. 1999;38:11316–24.CrossRefGoogle Scholar
  13. 13.
    Struts AV, Salgado GFJ, Martínez-Mayorga K, Brown MF. Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nat Struct Mol Biol. 2011;18:392–4.CrossRefGoogle Scholar
  14. 14.
    Smith SO. Structure and activation of the visual pigment rhodopsin. Annu Rev Biophys. 2010;39:309–28.CrossRefGoogle Scholar
  15. 15.
    Brown MF, Salgado GFJ, Struts AV. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. Biochim Biophys Acta. 2010;1798:177–93.CrossRefGoogle Scholar
  16. 16.
    Struts AV, Salgado GFJ, Tanaka K, Krane S, Nakanishi K, Brown MF. Structural analysis and dynamics of retinal chromophore in dark and Meta I states of rhodopsin from 2H NMR of aligned membranes. J Mol Biol. 2007;372:50–66.CrossRefGoogle Scholar
  17. 17.
    Salgado GFJ, Struts AV, Tanaka K, Krane S, Nakanishi K, Brown MF. Solid-state 2H NMR structure of retinal in metarhodopsin I. J Am Chem Soc. 2006;128:11067–71.CrossRefGoogle Scholar
  18. 18.
    Salgado GFJ, Struts AV, Tanaka K, Fujioka N, Nakanishi K, Brown MF. Deuterium NMR structure of retinal in the ground state of rhodopsin. Biochemistry. 2004;43:12819–28.CrossRefGoogle Scholar
  19. 19.
    Standfuss J, Edwards PC, D'Antona A, Fransen M, Xie G, Oprian DD, Schertler GFX. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature. 2011;471:656–60.CrossRefGoogle Scholar
  20. 20.
    Malmerberg E, Bovee-Geurts PHM, Katona G, Deupi X, Arnlund D, Wickstrand C, Johansson LC, Westenhoff S, Nazarenko E, Schertler GFX, Menzel A, de Grip WJ, Neutze R. Conformational activation of visual rhodopsin in native disc membranes. Sci Signal. 2015;8:ra26.CrossRefGoogle Scholar
  21. 21.
    Nevzorov AA, Moltke S, Heyn MP, Brown MF. Solid-state NMR line shapes of uniaxially oriented immobile systems. J Am Chem Soc. 1999;121:7636–43.CrossRefGoogle Scholar
  22. 22.
    Moltke S, Nevzorov AA, Sakai N, Wallat I, Job C, Nakanishi K, Heyn MP, Brown MF. Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium NMR spectra of oriented purple membranes. Biochemistry. 1998;37:11821–35.CrossRefGoogle Scholar
  23. 23.
    Huber T, Botelho AV, Beyer K, Brown MF. Membrane model for the GPCR prototype rhodopsin: hydrophobic interface and dynamical structure. Biophys J. 2004;86:2078–100.CrossRefGoogle Scholar
  24. 24.
    Gröbner G, Choi G, Burnett IJ, Glaubitz C, Verdegem PJE, Lugtenberg J, Watts A. Photoreceptor rhodopsin: structural and conformational study of its chromophore 11-cis retinal in oriented membranes by deuterium solid state NMR. FEBS Lett. 1998;422:201–4.CrossRefGoogle Scholar
  25. 25.
    Gröbner G, Burnett IJ, Glaubitz C, Choi G, Mason AJ, Watts A. Observations of light-induced structural changes of retinal within rhodopsin. Nature. 2000;405:810–3.CrossRefGoogle Scholar
  26. 26.
    Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE. Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry. 2001;40:7761–72.CrossRefGoogle Scholar
  27. 27.
    Okada T, Sugihara M, Bondar A-N, Elstner M, Entel P, Buss V. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J Mol Biol. 2004;342:571–83.CrossRefGoogle Scholar
  28. 28.
    Nakanishi K, Crouch R. Application of artificial pigments to structure determination and study of photoinduced transformations of retinal proteins. Isr J Chem. 1995;35:253–72.CrossRefGoogle Scholar
  29. 29.
    Fujimoto Y, Fishkin N, Pescitelli G, Decatur J, Berova N, Nakanishi K. Solution and biologically relevant conformations of enantiomeric 11-cis-locked cyclopropyl retinals. J Am Chem Soc. 2002;124:7294–302.CrossRefGoogle Scholar
  30. 30.
    Fishkin N, Berova N, Nakanishi K. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin. Chem Rec. 2004;4:120–35.CrossRefGoogle Scholar
  31. 31.
    Chabre M, Breton J. The orientation of the chromophore of vertebrate rhodopsin in the “meta” intermediate states and the reversibility of the meta II-meta III transition. Vis Res. 1979;19:1005–18.CrossRefGoogle Scholar
  32. 32.
    Michel-Villaz M, Roche C, Chabre M. Orientational changes of the absorbing dipole of retinal upon the conversion of rhodopsin to bathorhodopsin, lumirhodopsin, and isorhodopsin. Biophys J. 1982;37:603–16.Google Scholar
  33. 33.
    Lewis JW, Einterz CM, Hug SJ, Kliger DS. Transition dipole orientations in the early photolysis intermediates of rhodopsin. Biophys J. 1989;56:1101–11.CrossRefGoogle Scholar
  34. 34.
    Jäger S, Lewis JW, Zvyaga TA, Szundi I, Sakmar TP, Kliger DS. Chromophore structural changes in rhodopsin from nanoseconds to microseconds following pigment photolysis. Proc Natl Acad Sci USA. 1997;94:8557–62.CrossRefGoogle Scholar
  35. 35.
    Fujimoto Y, Ishihara J, Maki S, Fujioka N, Wang T, Furuta T, Fishkin N, Borhan B, Berova N, Nakanishi K. On the bioactive conformation of the rhodopsin chromophore: absolute sense of twist around the 6-s-cis bond. Chem Eur J. 2001;7:4198–204.CrossRefGoogle Scholar
  36. 36.
    Spooner PJR, Sharples JM, Verhoeven MA, Lugtenberg J, Glaubitz C, Watts A. Relative orientation between the β-ionone ring and the polyene chain for the chromophore of rhodopsin in native membranes. Biochemistry. 2002;41:7549–55.CrossRefGoogle Scholar
  37. 37.
    Struts AV, Salgado GFJ, Brown MF. Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Proc Natl Acad Sci USA. 2011;108;8263–8.CrossRefGoogle Scholar
  38. 38.
    Yoshizawa T, Shichida Y. Low-temperature circular dichroism of intermediates of rhodopsin. Methods Enzymol. 1982;81:634–41.CrossRefGoogle Scholar
  39. 39.
    Smith SO, Palings I, Copié V, Raleigh DP, Courtin J, Pardoen JA, Lugtenberg J, Mathies RA, Griffin RG. Low-temperature solid-state 13C NMR studies of the retinal chromophore in rhodopsin. Biochemistry. 1987;26:1606–11.CrossRefGoogle Scholar
  40. 40.
    Siebert F. Application of FTIR spectroscopy to the investigation of dark structures and photoreactions of visual pigments. Isr J Chem. 1995;35:309–23.CrossRefGoogle Scholar
  41. 41.
    Imamoto Y, Sakai M, Katsuta Y, Wada A, Ito M, Shichida Y. Structure around C6–C7 bond of the chromphore in bathorhodopsin: low-temperature spectroscopy of 6s-cis-locked bicyclic rhodopsin analogs. Biochemistry. 1996;35:6257–62.CrossRefGoogle Scholar
  42. 42.
    Kochendoerfer GG, Verdegem PJE, van der Hoef I, Lugtenburg J, Mathies RA. Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin. Biochemistry. 1996;35:16230–40.CrossRefGoogle Scholar
  43. 43.
    DeLange F, Bovee-Geurts PHM, VanOostrum J, Portier MD, Verdegem PJE, Lugtenburg J, DeGrip WJ. An additional methyl group at the 10-position of retinal dramatically slows down the kinetics of the rhodopsin photocascade. Biochemistry. 1998;37:1411–20.CrossRefGoogle Scholar
  44. 44.
    Gascon JA, Batista VS. QM/MM study of energy storage and molecular rearrangments due to the primary event in vision. Biophys J. 2004;87:2931–41.CrossRefGoogle Scholar
  45. 45.
    Sugihara M, Hufen J, Buss V. Origin and consequences of steric strain in the rhodopsin binding pocket. Biochemistry. 2006;45:801–10.CrossRefGoogle Scholar
  46. 46.
    Wang Q, Schoenlein RW, Peteanu LA, Mathies RA, Shank CV. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science. 1994;266:422–4.CrossRefGoogle Scholar
  47. 47.
    Lin SW, Groesbeek M, van der Hoef I, Verdegem P, Lugtenburg J, Mathies RA. Vibrational assignment of torsional normal modes of rhodopsin: probing excited-state isomerization dynamics along the reactive C11=C12 torsion coordinate. J Phys Chem B. 1998;102:2787–806.CrossRefGoogle Scholar
  48. 48.
    Andruniów T, Ferré N, Olivucci M. Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Proc Natl Acad Sci USA. 2004;101:17908–13.CrossRefGoogle Scholar
  49. 49.
    Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science. 2005;310:1006–9.CrossRefGoogle Scholar
  50. 50.
    Pan D, Mathies RA. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy. Biochemistry. 2001;40:7929–36.CrossRefGoogle Scholar
  51. 51.
    Yan ECY, Kazmi MA, Ganim Z, Hou J-M, Pan D, Chang BSW, Sakmar TP, Mathies RA. Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Proc Natl Acad Sci USA. 2003;100:9262–7.CrossRefGoogle Scholar
  52. 52.
    Brown MF, Struts AV. Structural dynamics of retinal in rhodopsin activation viewed by solid-state 2H NMR spectroscopy. In: Separovic F, Naito A (eds) Advances in Biological Solid-State NMR: Proteins and Membrane-Active Peptides. Cambridge, R Soc Chem. 2014;320–52.Google Scholar
  53. 53.
    Brown MF. Theory of spin-lattice relaxation in lipid bilayers and biological membranes. 2H and 14N quadrupolar relaxation. J Chem Phys. 1982;77:1576–99.CrossRefGoogle Scholar
  54. 54.
    Nevzorov AA, Trouard TP, Brown MF. Lipid bilayer dynamics from simultaneous analysis of orientation and frequency dependence of deuterium spin-lattice and quadrupolar order relaxation. Phys Rev E. 1998;58:2259–81.CrossRefGoogle Scholar
  55. 55.
    McDermott A. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys. 2009;38:385–403.CrossRefGoogle Scholar
  56. 56.
    Torchia DA, Szabo A. Spin-lattice relaxation in solids. J Magn Reson. 1982;49:107–21.Google Scholar
  57. 57.
    Trouard TP, Alam TM, Brown MF. Angular dependence of deuterium spin-lattice relaxation rates of macroscopically oriented dilaurylphosphatidylcholine in the liquid-crystalline state. J Chem Phys. 1994;101:5229–61.CrossRefGoogle Scholar
  58. 58.
    Copié V, McDermott AE, Beshah K, Williams JC, Spyker-Assink M, Gebhard RT, Lugtenberg J, Herzfeld J, Griffin RG. Deuterium solid-state NMR studies of methyl group dynamics in bacteriorhodopsin and retinal model compounds: evidence for a 6-s-trans chromophore in the protein. Biochemistry. 1994;33:3280–6.CrossRefGoogle Scholar
  59. 59.
    Borhan B, Souto ML, Imai H, Shichida Y, Nakanishi K. Movement of retinal along the visual transduction path. Science. 2000;288:2209–12.CrossRefGoogle Scholar
  60. 60.
    Vogel R, Lüdeke S, Siebert F, Sakmar TP, Hirshfeld A, Sheves M. Agonists and partial agonists of rhodopsin: retinal polyene methylation affects receptor activation. Biochemistry. 2006;45:1640–52.CrossRefGoogle Scholar
  61. 61.
    Mertz B, Lu M, Brown MF, Feller SE. Steric and electronic influences on the torsional energy landscape of retinal. Biophys J. 2011;101:L17–9.CrossRefGoogle Scholar
  62. 62.
    Zhu S, Brown MF, Feller SE. Retinal conformation governs pKa of protonated Schiff base in rhodopsin activation. J Am Chem Soc. 2013;135:9391–8.CrossRefGoogle Scholar
  63. 63.
    Struts AV, Xu X, Molugu TR, Pitman MC, Faylough S, Guruge C, Nascimento CL, Nesnas N, Brown MF. Activation of GPCR rhodopsin investigated by solid-state NMR spectroscopy. Biophys J. 2017;112:508a.CrossRefGoogle Scholar
  64. 64.
    Kimata N, Pope A, Eilers M, Opefi CA, Ziliox M, Hirshfeld A, Zaitseva E, Vogel R, Sheves M, Reeves PJ, Smith SO. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Nat Commun. 2016;7:12683.CrossRefGoogle Scholar
  65. 65.
    Knierim B, Hofmann KP, Ernst OP, Hubbell WL. Sequence of late molecular events in the activation of rhodopsin. Proc Natl Acad Sci USA. 2007;104:20290–5.CrossRefGoogle Scholar
  66. 66.
    Park JH, Scheerer P, Hofmann KP, Choe H-W, Ernst OP. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature. 2008;454:183–8.CrossRefGoogle Scholar
  67. 67.
    Mahalingam M, Martínez-Mayorga K, Brown MF, Vogel R. Two protonation switches control rhodopsin activation in membranes. Proc Natl Acad Sci USA. 2008;105:17795–800.CrossRefGoogle Scholar
  68. 68.
    Ernst OP, Gramse V, Kolbe M, Hofmann KP, Heck M. Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc Natl Acad Sci USA. 2007;104:10859–64.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Suchithranga M. D. C. Perera
    • 1
  • Xiaolin Xu
    • 2
  • Trivikram R. Molugu
    • 1
  • Andrey V. Struts
    • 1
    • 3
  • Michael F. Brown
    • 4
  1. 1.Department of Chemistry and BiochemistryUniversity of ArizonaTucsonUSA
  2. 2.Department of PhysicsUniversity of ArizonaTucsonUSA
  3. 3.Laboratory of Biomolecular NMRSt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Department of Chemistry and Biochemistry, and Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations