Isotope Ratio Monitoring by NMR: Part 3 – New Applications for Traceability of Active Pharmaceutical Ingredients

  • Gérald S. Remaud
  • Serge Akoka
Reference work entry


Isotopic ratio measurement by nuclear magnetic resonance (irm-NMR) is recognized as a powerful technique for assessing the traceability of active pharmaceutical ingredients (APIs). The results obtained with this method are extremely valuable for the detection of a number of different types of counterfeiting: (i) the use of synthetic ingredients when a natural origin is labeled, (ii) a deliberately copied process, (iii) patent infringement of current patents for generic medicines, (iv) products that are not made in the specified country of origin, and (v) diversion. It has been further improved by the use of irm-13C NMR, which provides major advantages such as (i) an increase in the number of parameters allowing the determination of the molecular fingerprint and (ii) the possibility of analyzing molecules for which 2H-NMR is particularly difficult or even impossible. 13C also enables the use of multi-pulse sequences to increase the sensitivity such as INEPT. The results obtained show that this strategy can be used effectively to determine the 13C distribution within a given molecule and to compare accurately the differences in the isotopic distribution between different samples of the given molecule, in a very short analytical time, even though absolute values of specific isotopic deviations cannot be provided. The aim of this chapter is to describe the general principles of isotopic analysis by NMR and applications for API traceability. Perspectives are also presented, based on some of the most recent methodological developments.


Irm-NMR Isotope ratio Isotopic abundance Isotopic composition Isotopic fractionation 2D NMR INEPT Traceability Active pharmaceutical ingredients (APIs) 


  1. 1.
    Kelesidis T, Kelesidis I, Rafailidis PI, Falagas ME. Counterfeit or substandard antimicrobial drugs: a review of the scientific evidence. J Antimicrob Chemother. 2007;60:214–36.CrossRefGoogle Scholar
  2. 2.
    Fernandez FM, Green MD, Newton PN. Prevalence and detection of counterfeit pharmaceuticals: a mini review. Ind Eng Chem Res. 2008;47:585–90.CrossRefGoogle Scholar
  3. 3.
    Sacré P-Y, Deconinck E, De Beer T, Courselle P, Vancauwenberghe R, Chiap P, Cromme J, De Beer JO. Comparison and combination of spectroscopic techniques for the detection of counterfeit medicines. J Pharm Biomed Anal. 2010;53:445–53.CrossRefGoogle Scholar
  4. 4.
    Holzgrabe U, Malet-Martino M. NMR techniques in biomedical and pharmaceutical analysis. J Pharm Biomed Anal. 2011;55:1–15.CrossRefGoogle Scholar
  5. 5.
    Gaudiano MC, Antoniella E, Bertocchi P, Valvo L. Development and validation of a reversed-phase LC method for analysing potentially counterfeit antimalarial medicines. J Pharm Biomed Anal. 2006;42:132–5.CrossRefGoogle Scholar
  6. 6.
    GMP: Good Manufacturing Practices regulations, Food and Drug Administration of USA, 21 CFR Part 210 – current good manufacturing practice in manufacturing, processing, packing, or holding of drugs. 2009, Part 211, US Food and Drug Administration, Washington DC.Google Scholar
  7. 7.
    Brown F, Tai JT. Introduction: an overview of intellectual property. Biopharm Int. 2005; 18(8 Supp): 4–9.Google Scholar
  8. 8.
    Sharer P, Simpkins M. International patents and international harmonization. Biopharm Int. 2005 ; 18(9): 58–63.Google Scholar
  9. 9.
    Jasper JP, Weaner LE, Duffy BJ. A preliminary multi-stable-isotopic evaluation of three synthetic pathways of Topiramate. J Pharm Biomed Anal. 2005;39:66–75.CrossRefGoogle Scholar
  10. 10.
    Santamaria-Fernandez R, Hearn R, Wolff J-C. Detection of counterfeit antiviral drug Heptodin™ and classification of counterfeits using isotope amount ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) and isotope ratio mass spectrometry (IRMS). Sci Justice. 2009;49:102–6.CrossRefGoogle Scholar
  11. 11.
    Kurashima N, Makino Y, Urano Y, Sanuki K, Ikehara Y, Nagano T. Use of stable isotope ratios for profiling of industrial ephedrine samples: application of hydrogen isotope ratios in combination with carbon and nitrogen. Forensic Sci Int. 2009;189:14–8.CrossRefGoogle Scholar
  12. 12.
    Silvestre V, Maroga Mboula V, Jouitteau C, Akoka S, Robins RJ, Remaud GS. Isotopic 13C-NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol. J Pharm Biomed Anal. 2009;50:336–41.CrossRefGoogle Scholar
  13. 13.
    Deconinck E, Van Nederkassel AM, Stanimirova I, Daszykowski M, Bensaid F, Lees M, Martin GJ, Desmurs JR, Smeyers-Verbeke J, Vander Heyden Y. Isotopic ratios to detect infringements of patents or proprietary processes of pharmaceuticals: two case studies. J Pharm Biomed Anal. 2008;48:27–41.CrossRefGoogle Scholar
  14. 14.
    Brenna E, Fronza G, Fuganti C. Traceability of synthetic drugs by position-specific deuterium isotope ratio analysis: the case of Prozac and the fluoxetine generics. Anal Chim Acta. 2007;601:234–9.CrossRefGoogle Scholar
  15. 15.
    Muccio Z, Jackson GP. Isotope ratio mass spectrometry. Analyst. 2009;134:213–22.CrossRefGoogle Scholar
  16. 16.
    Martin GJ, Martin ML. Deuterium labelling at the natural abundance level as studied by high field quantitative 2H NMR. Tetrahedron Lett. 1981;22:3525–8.CrossRefGoogle Scholar
  17. 17.
    Council regulation EEC N° 2676/90. Off J Eur Commun. 1990;L272:64–73.Google Scholar
  18. 18.
    Jamin E, Martin GJ. SNIF-NMR 4- applications in an economic context: the example of wines, spirits and juices. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2006. p. 1659–64.Google Scholar
  19. 19.
    Remaud GS, Giraudeau P, Lesot P, Akoka S. Isotope ratio monitoring by NMR. Part 1: recent advances. In: Webb GA, editor. Modern magnetic resonance. 2nd ed. Switzerland: Springer; in press.Google Scholar
  20. 20.
    Martin GJ, Martin ML. Stable isotope analysis of food and beverages by nuclear magnetic resonance. Annu Rep NMR Spectrosc. 1995;31:81–104.CrossRefGoogle Scholar
  21. 21.
    Thibaudeau C, Remaud G, Silvestre V, Akoka S. Performance evaluation of quantitative adiabatic 13C NMR pulse sequences for site-specific isotopic measurements. Anal Chem. 2010;82(13):5582–90.CrossRefGoogle Scholar
  22. 22.
    Tenailleau E, Lancelin P, Robins RJ, Akoka S. NMR approach to the quantification of nonstatistical 13C distribution in natural products: vanillin. Anal Chem. 2004;76:3818–25.CrossRefGoogle Scholar
  23. 23.
    Tenailleau E, Remaud G, Akoka S. Quantification of the 1H-decoupling effects on the accuracy of 13C-NMR measurements. Instrum Sci Technol. 2005;33:391–9.CrossRefGoogle Scholar
  24. 24.
    Caytan E, Botosoa EP, Silvestre V, Robins RJ, Akoka S, Remaud GS. Accurate quantitative 13C NMR spectroscopy: repeatability over time of site-specific 13C isotope ratio determination. Anal Chem. 2007;79:8266–9.CrossRefGoogle Scholar
  25. 25.
    Botosoa EP, Caytan E, Silvestre V, Robins RJ, Akoka S, Remaud GS. Unexpected fractionation in site-specific 13C isotopic distribution detected by quantitative 13C-NMR at natural abundance. J Am Chem Soc. 2008;130:414–5.CrossRefGoogle Scholar
  26. 26.
    Thomas F, Randet C, Gilbert A, Silvestre V, Jamin E, Akoka S, Remaud G, Segebarth N, Guillou C. Improved characterization of the botanical origin of sugar by carbon-13 SNIF-NMR applied to ethanol. J Agric Food Chem. 2010;58:11580–5.CrossRefGoogle Scholar
  27. 27.
    Robins R, Remaud GS, Billault I, Lesot P. Isotope ratio monitoring by NMR. Part 2: new applications in the field of defining biosynthesis. In: Webb GA, editor. Modern magnetic resonance. 2nd ed. Switzerland: Springer; in press.Google Scholar
  28. 28.
    Bussy U, Thibaudeau C, Thomas F, Desmurs J-R, Jamin E, Remaud G, et al. Isotopic finger-printing of active pharmaceutical ingredients by 13C NMR and polarization transfer techniques as a tool to fight against counterfeiting. Talanta. 2011;85:1909–14.CrossRefGoogle Scholar
  29. 29.
    Remaud GS, Bussy U, Lees M, Thomas F, Desmurs JR, Jamin E, Silvestre V, Akoka S. NMR spectrometry isotopic fingerprinting: a tool for the manufacturer for tracking Active Pharmaceutical Ingredients from starting materials to final medicines. Eur J Pharm Sci. 2013;48:464.CrossRefGoogle Scholar
  30. 30.
    Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom. 2011;25:2538–60.CrossRefGoogle Scholar
  31. 31.
    Gillet S, Delpuech JJ. Optimum conditions for nondestructive quantitative analysis by carbon-13 NMR. J Magn Reson. 1980;38:433–45.Google Scholar
  32. 32.
    Bayle K, Grand M, Chaintreau A, Robins RJ, Fieber W, Sommer H, Akoka S, Remaud GS. Internal referencing for 13C position-specific isotope analysis measured by NMR spectrometry. Anal Chem. 2015;87:7550–4.CrossRefGoogle Scholar
  33. 33.
    Guillou C, Remaud GS, Lees M. BCR-656, BCR-660 BCR information EUR 20064 EN. 2001. Office of official publications of the european community, Luxembourg.Google Scholar
  34. 34.
    Acetti D, Brenna E, Fronza G, Fuganti C. Monitoring the synthetic procedures of commercial drugs by 2H NMR spectroscopy: the case of ibuprofen and naproxen. Talanta. 2008;76(3):651–5.CrossRefGoogle Scholar
  35. 35.
    Matsumoto T, Urano Y, Makino Y, Kikura-Hanajiri R, Kawahara N, Goda Y, Nagano T. Evaluation of characteristic deuterium distributions of ephedrines and methamphetamines by NMR spectroscopy for drug profiling. Anal Chem. 2008;80:1176–81.CrossRefGoogle Scholar
  36. 36.
    Ehlers I, Augusti A, Betson TR, Nilsson MB, Marshall JD, Schleucher J. Detecting long-term metabolic shifts using isotopomers: CO2-driven suppression of photorespiration in C3 plants over the 20th century. Proc Natl Acad Sci U S A. 2015;112:15585–90.Google Scholar
  37. 37.
    Tenailleau E, Akoka S. Adiabatic 1H decoupling scheme for very accurate intensity measurements in 13C NMR. J Magn Reson. 2007;185:50–8.CrossRefGoogle Scholar
  38. 38.
    Gilbert A, Silvestre V, Segebarth N, Tcherkez G, Guillou C, Robins RJ, Akoka S, Remaud GS. The intramolecular 13C-distribution in ethanol reveals the influence of the CO2-fixation pathway and environmental conditions on the site-specific 13C variation in glucose. Plant Cell Environ. 2011;34:1104–12.CrossRefGoogle Scholar
  39. 39.
    Gilbert A, Silvestre V, Robins RJ, Tcherkez G, Remaud GS. A 13C NMR spectrometric method for the determination of intramolecular δ13C values in fructose from plant sucrose samples. New Phytol. 2011;191:579–88.CrossRefGoogle Scholar
  40. 40.
    Gilbert A, Silvestre V, Robins RJ, Remaud GS. Impact of the deuterium isotope effect on the accuracy of C-13 NMR measurements of site-specific isotope ratios at natural abundance in glucose. Anal Bioanal Chem. 2010;398:1979–84.CrossRefGoogle Scholar
  41. 41.
    Gilbert A, Silvestre V, Robins RJ, Remaud GS. Accurate quantitative isotopic 13C NMR spectroscopy for the determination of the intramolecular distribution of 13C in glucose at natural abundance. Anal Chem. 2009;81:8978–85.CrossRefGoogle Scholar
  42. 42.
    Jasper JP, Weaner LE, Hayes JM. Process patent protection: characterizing synthetic pathways by stable-isotopic measurements. Pharm Technol. 2007;31:68–73.Google Scholar
  43. 43.
    Karabulut N, Baguet E, Trierweiler M, Akoka S. Optimization of experimental conditions for quantitative analysis using DEPT sequence. Anal Lett. 2002;35:2549–63.CrossRefGoogle Scholar
  44. 44.
    Martineau E, Giraudeau P, Tea I, Akoka S. Fast and precise quantitative analysis of metabolic mixtures by 2D 1H inadequate NMR. J Pharm Biomed Anal. 2011;54(1):252–7.CrossRefGoogle Scholar
  45. 45.
    Frydman L, Scherf T, Lupulescu A. The acquisition of multidimensional NMR spectra within a single scan. Proc Natl Acad Sci U S A. 2002;99:15858–62.CrossRefGoogle Scholar
  46. 46.
    Giraudeau P, Remaud GS, Akoka S. Evaluation of ultrafast 2D NMR for quantitative analysis. Anal Chem. 2008;81:479–84.CrossRefGoogle Scholar
  47. 47.
    Pathan M, Akoka S, Tea I, Charrier B, Giraudeau P. “Multi-scan single shot” quantitative 2D NMR: a valuable alternative to fast conventional quantitative 2D NMR. Analyst. 2011;136:3157–63.CrossRefGoogle Scholar
  48. 48.
    Lesot P, Courtieu J. Natural abundance deuterium NMR spectroscopy: developments and analytical applications in liquids, liquid crystals and solid phases. Prog Nucl Magn Reson Spectrosc. 2009;55:128–59.CrossRefGoogle Scholar
  49. 49.
    Kuster SK, Danieli E, Blumich B, Casanova F. High-resolution NMR spectroscopy under the fume hood. Phys Chem Chem Phys. 2011;13:13172–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM UMR CNRS 6230)Université de NantesNantesFrance

Personalised recommendations