Advertisement

Ultra-wideline Solid-State NMR: Developments and Applications of the WCPMG Experiment

  • Luke A. O’Dell
Reference work entry

Abstract

Large anisotropic interactions can lead to solid-state NMR powder patterns that exceed the excitation and detection bandwidths of standard NMR techniques and hardware. By combining the advantages of broadband, frequency-swept WURST pulses with CPMG signal enhancement achieved through the continuous refocusing of the transverse magnetization, the WCPMG experiment and its derivatives are the most efficient way to acquire these so-called ultra-wideline NMR spectra. This chapter describes the WCPMG pulse sequence and outlines several related developments including broadband cross polarization, dynamic nuclear polarization, and relaxation-based resolution enhancement methods. A number of example applications of the WCPMG experiment to study spin-half, half-integer quadrupolar, and integer spin quadrupolar nuclei in a variety of materials are then summarized.

Keywords

Solid-state NMR Ultra-wideline WURST pulses Powder patterns Signal enhancement 

References

  1. 1.
    Duer MJ. Introduction to solid-state NMR spectroscopy. Blackwell Science; Oxford, UK. 2004.Google Scholar
  2. 2.
    Ashbrook SE, Duer MJ. Structural information from quadrupolar nuclei in solid state NMR. Concepts Magn Reson A. 2006;28:183–248.CrossRefGoogle Scholar
  3. 3.
    Deschamps M. Ultrafast magic angle spinning nuclear magnetic resonance. Ann Rep NMR Spec. 2014;81:109–44.CrossRefGoogle Scholar
  4. 4.
    Schurko RW. Ultra-Wideline Solid-State NMR Spectroscopy. Acc Chem Res. 2013;46:1985–95.CrossRefGoogle Scholar
  5. 5.
    Yamauchi K, Janssen JWG, Kentgens APM. J Magn Reson. Implementing solenoid microcoils for wide-line solid-state NMR. 2004;167:87–96.CrossRefGoogle Scholar
  6. 6.
    O’Dell LA. The WURST kind of pulses in solid-state NMR. Solid State Nucl Magn Reson. 2013;55–56:28–41.CrossRefGoogle Scholar
  7. 7.
    Siegel R, Nakashima TT, Wasylishen RE. Sensitivity enhancement of NMR spectra of half-integer quadrupolar nuclei in the solid state via population transfer. Concepts Magn Reson A. 2005;26:47–61.CrossRefGoogle Scholar
  8. 8.
    Siegel R, Nakashima TT, Wasylishen RE. Signal-to-noise enhancement of NMR spectra of solids using multiple-pulse spin-echo experiments. Concepts Magn Reson A. 2005;26:62–77.CrossRefGoogle Scholar
  9. 9.
    Rossini AJ, Hanrahan MP, Thuo M. Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences. Phys Chem Chem Phys. 2016;18:25284–95.CrossRefGoogle Scholar
  10. 10.
    O’Dell LA, Schurko RW. QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra. Chem Phys Lett. 2008;464:97–102.CrossRefGoogle Scholar
  11. 11.
    Kupče Ē, Freeman R. J Magn Reson A. Adiabatic Pulses for Wideband Inversion and Broadband Decoupling. 1995;115:273–6.CrossRefGoogle Scholar
  12. 12.
    Larsen FH, Jakobsen HJ, Ellis PD, Nielsen NC. Sensitivity-Enhanced Quadrupolar-Echo NMR of Half-Integer Quadrupolar Nuclei. Magnitudes and Relative Orientation of Chemical Shielding and Quadrupolar Coupling Tensors. J Phys Chem A. 1997;101:8597–606.CrossRefGoogle Scholar
  13. 13.
    O’Dell LA, Rossini AJ, Schurko RW. Acquisition of ultra-wideline NMR spectra from quadrupolar nuclei by frequency stepped WURST–QCPMG. Chem Phys Lett. 2009;468:330–5.CrossRefGoogle Scholar
  14. 14.
    O’Dell LA, Schurko RW. J Fast and Simple Acquisition of Solid-State 14N NMR Spectra with Signal Enhancement via Population Transfer. J Am Chem Soc. 2009;131:6658–9.CrossRefGoogle Scholar
  15. 15.
    Lucier BEG, Reidel AR, Schurko RW. Multinuclear solid-state NMR of square-planar platinum complexes — Cisplatin and related systems. Can J Chem. 2011;89:919–37.CrossRefGoogle Scholar
  16. 16.
    Lucier BEG, Johnston KE, Xu W, Hanson JC, Senanayake SD, Yao S, Bourassa MW, Srebro M, Autschbach J, Schurko RW. Unravelling the Structure of Magnus’ Pink Salt. J Am Chem Soc. 2014;136:1333–51.CrossRefGoogle Scholar
  17. 17.
    O’Dell LA, Schurko RW. Static solid-state 14N NMR and computational studies of nitrogen EFG tensors in some crystalline amino acids. Phys Chem Chem Phys. 2009;11:7069–77.CrossRefGoogle Scholar
  18. 18.
    Veinberg SL, Friedl ZW, Lindquist AW, Kispal B, Harris KJ, O’Dell LA, Schurko RW. 14N Solid-State NMR Spectroscopy of Amino Acids. Chem Phys Chem. 2016;17:4011–27.CrossRefGoogle Scholar
  19. 19.
    Veinberg SL, Johnston KE, Jaroszewicz MJ, Kispal BM, Mireault CR, Kobayashi T, Pruski M, Schurko RW. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs. Phys Chem Chem Phys. 2016;18:17713–30.CrossRefGoogle Scholar
  20. 20.
    Veinberg SL, Lindquist AW, Jaroszewicz MJ, Schurko RW. Practical Considerations for the Acquisition of Ultra-Wideline 14N NMR Spectra. Solid State Nucl Magn Reson. 2017.  https://doi.org/10.1016/j.ssnmr.2016.12.008.CrossRefGoogle Scholar
  21. 21.
    O’Dell LA, Schurko RW, Harris KJ, Autschbach J, Ratcliffe CI. Interaction Tensors and Local Dynamics in Common Structural Motifs of Nitrogen: A Solid-State 14N NMR and DFT Study. J Am Chem Soc. 2011;133:527–46.CrossRefGoogle Scholar
  22. 22.
    Harris KJ, Veinberg SL, Mireault CR, Lupulescu A, Frydman L, Schurko RW. Rapid Acquisition of 14N Solid-State NMR Spectra with Broadband Cross Polarization. Chem A Eur J. 2013;19:16469–75.CrossRefGoogle Scholar
  23. 23.
    O’Dell LA, Moudrakovski IL. J Magn Reson. Testing the sensitivity limits of 33S NMR: An ultra-wideline study of elemental sulfur. 2010;207:345–7.Google Scholar
  24. 24.
    Hirsh DA, Rossini AJ, Emlsey L, Schurko RW. 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients. Phys Chem Chem Phys. 2016;19:25893–904.CrossRefGoogle Scholar
  25. 25.
    Perras FA, Bryce DL. Direct Investigation of Covalently Bound Chlorine in Organic Compounds by Solid-State 35Cl NMR Spectroscopy and Exact Spectral Line-Shape Simulations. Angew Chem Int Ed. 2012;51:4227–30.CrossRefGoogle Scholar
  26. 26.
    Xu J, Lucier BEG, Lin Z, Sutrisno A, Terskikh VV, Huang Y. J Phys Chem C. New Insights into the Short-Range Structures of Microporous Titanosilicates As Revealed by 47/49Ti, 23Na, 39K, and 29Si Solid-State NMR Spectroscopy. 2014;118:27353–65.Google Scholar
  27. 27.
    Mroué KH, Power WP. High-Field Solid-State 67Zn NMR Spectroscopy of Several Zinc-Amino Acid Complexes. J Phys Chem. 2010;114:324–35.CrossRefGoogle Scholar
  28. 28.
    Jaroszewicz MJ, Frydman L, Schurko RW. Relaxation-Assisted Separation of Overlapping Patterns in Ultra- Wideline NMR Spectra. J Phys Chem A. 2017.  https://doi.org/10.1021/acs.jpca.6b10007.CrossRefGoogle Scholar
  29. 29.
    Greer BJ, Michaelis VK, Terskikh VV, Kroeker S. Reconnaissance of diverse structural and electronic environments in germanium halides by solid-state 73Ge NMR and quantum chemical calculations. Can J Chem. 2011;89:1118–29.CrossRefGoogle Scholar
  30. 30.
    Martineau C, Loiseau T, Beitone L, Férey G, Bouchevreau B, Taulelle F. Single‐crystal XRD and solid‐state NMR structural resolution of a layered fluorinated gallium phosphate: RbGa3(PO4)2(HPO4)F4⋅C5N2H16⋅2H2O (MIL-145). Dalton Trans. 2013;42:422–31.CrossRefGoogle Scholar
  31. 31.
    Bonhomme C, Gervais C, Folliet N, Pourpoint F, Diogo CC, Lao J, Jallot E, Lacroix J, Nedelec J-M, Iuga D, Hanna JV, Smith ME, Xiang Y, Du J, Laurencin D. 87Sr Solid‐State NMR as a Structurally Sensitive Tool for the Investigation of Materials: Antiosteoporotic Pharmaceuticals and Bioactive Glasses. J Am Chem Soc. 2012;134:12611–28.CrossRefGoogle Scholar
  32. 32.
    He P, Lucier BEG, Terskikh VV, Shi Q, Dong J, Chu Y, Zheng A, Sutrisno A, Huang Y. Spies Within Metal‐Organic Frameworks: Investigating Metal Centers Using Solid-State NMR. J Phys Chem C. 2014;118:23728–44.CrossRefGoogle Scholar
  33. 33.
    Kobera L, Southern SA, Frost JM, Bryce DL. Multinuclear Solid‐State Magnetic Resonance Study of Oxo‐Bridged Diniobium and Quadruply‐Bonded Dimolybdenum Carboxylate Clusters. Solid State Nucl Magn Reson. 2017.  https://doi.org/10.1016/j.ssnmr.2016.12.001.CrossRefGoogle Scholar
  34. 34.
    Hamaed H, Johnston KE, Cooper BFT, Terskikh VV, Ye E, Macdonald CLB, Arnold DC, Schurko RW. A 115In solid-state NMR study of low oxidation-state indium complexes. Chem Sci. 2014;5:982–95.CrossRefGoogle Scholar
  35. 35.
    MacGregor AW, O’Dell LA, Schurko RW. New methods for the acquisition of ultra-wideline solid-state NMR spectra of spin-1/2 nuclides. J Magn Reson. 2011;208:103–13.CrossRefGoogle Scholar
  36. 36.
    Faucher A, Terskikh VV, Wasylishen RE. Feasibility of arsenic and antimony NMR spectroscopy in solids: An investigation of some group 15 compounds. Solid State Nucl Magn Reson. 2014;61–62:54–61.CrossRefGoogle Scholar
  37. 37.
    Widdifield CM, Bryce DL. Solid‐State 127I NMR and GIPAW DFT Study of Metal Iodides and Their Hydrates: Structure, Symmetry, and Higher‐Order Quadrupole‐Induced Effects. J Phys Chem A. 2010;114:10810–23.CrossRefGoogle Scholar
  38. 38.
    Pecher O, Halat DM, Lee J, Liu Z, Griffith KJ, Braun M, Grey CP. Enhanced efficiency of solid‐state NMR investigations of energy materials using an external Automatic Tuning/Matching (eATM) robot. J Magn Reson. 2017.  https://doi.org/10.1016/j.jmr.2016.12.008.CrossRefGoogle Scholar
  39. 39.
    Hamaed H, Ye E, Udachin K, Schurko RW. Solid-State 137Ba NMR Spectroscopy: An Experimental and Theoretical Investigation of 137Ba Electric Field Gradient Tensors and Their Relation to Structure and Symmetry. J Phys Chem B. 2010;114:6014–22.CrossRefGoogle Scholar
  40. 40.
    O’Dell LA, Moudrakovski IL. A combined ultra-wideline solid-state NMR and DFT study of 137Ba electric field gradient tensors in barium compounds. Chem Phys Lett. 2013;565:56–60.CrossRefGoogle Scholar
  41. 41.
    Spencer L, Coomes E, Ye E, Terskikh V, Ramzy A, Thangadurai V, Goward GR. Structural analysis of lanthanum‐containing battery materials using 139La solid‐state NMR. Can J Chem. 2011;89:1105–17.CrossRefGoogle Scholar
  42. 42.
    Spencer TL, Ramzy A, Thangadurai V, Goward GR. Chem Mater. Structural Complexity and Electrical Properties of the Garnet‐Type Structure LaLi0.5Fe0.2O2.09 Studied by 7Li and 139La Solid State NMR Spectroscopy and Impedance Spectroscopy. 2011;23:3105–13.CrossRefGoogle Scholar
  43. 43.
    Harris KJ, Lupulescu A, Lucier BEG, Frydman L, Schurko RW. Broadband adiabatic inversion pulses for cross polarization in wideline solid‐state NMR spectroscopy. J Magn Reson. 2012;24:38–47.CrossRefGoogle Scholar
  44. 44.
    Kobayashi T, Perras FA, Goh TW, Metz TL, Huang W, Pruski M. DNP‐Enhanced Ultrawideline Solid‐State NMR Spectroscopy: Studies of Platinum in Metal–Organic Frameworks. J Phys Chem Lett. 2016;7:2322–7.CrossRefGoogle Scholar
  45. 45.
    Catalano J, Murphy A, Yao Y, Alkan F, Zumbulyadis N, Centeno SA, Dybowski C. 207Pb and 119Sn Solid‐State NMR and Relativistic Density Functional Theory Studies of the Historic Pigment Lead–Tin Yellow Type I and Its Reactivity in Oil Paintings. J Phys Chem A. 2014;118:7952–8.CrossRefGoogle Scholar
  46. 46.
    Hamaed H, Laschuk MW, Terskikh VV, Schurko RW. Application of Solid-State 209Bi NMR to the Structural Characterization of Bismuth-Containing Materials. J Am Chem Soc. 2009;131:8271–9.CrossRefGoogle Scholar
  47. 47.
    Bhattacharyya R, Frydman L. J Chem Phys. Quadrupolar nuclear magnetic resonance spectroscopy in solids using frequency‐swept echoing pulses. 2007;127:194503.CrossRefGoogle Scholar
  48. 48.
    Hung I, Gan Z. On the practical aspects of recording wideline QCPMG NMR spectra. J Magn Reson. 2010;204:256–65.CrossRefGoogle Scholar
  49. 49.
    Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G. Modelling one-and two-dimensional solid-state NMR spectra. Magn Reson Chem. 2002;40:70–6.CrossRefGoogle Scholar
  50. 50.
    Dey KK, Ash JT, Trease NM, Grandinetti PJ. Trading sensitivity for information: Carr–Purcell–Meiboom–Gill acquisition in solid-state NMR. J Chem Phys. 2010;133:054501.CrossRefGoogle Scholar
  51. 51.
    Kentgens APM, Verhagen R. Chem Phys Lett. Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin /=3/2 nuclei. 1999;300:435–43.CrossRefGoogle Scholar
  52. 52.
    Griffin RG, Prisner TF. High field dynamic nuclear polarization–the renaissance. Phys Chem Chem Phys. 2010;12:5737–40.CrossRefGoogle Scholar
  53. 53.
    Rossini AJ, Zagdoun A, Lelli M, Lesage A, Copéret C, Emsley L. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res. 2013;46:1942–51.CrossRefGoogle Scholar
  54. 54.
    Kobayashi T, Perras FA, Slowing II, Sadow AD, Pruski M. ACS Catal. Dynamic nuclear polarization solid‐state NMR in heterogeneous catalysis research. 2015;5:7055–62.CrossRefGoogle Scholar
  55. 55.
    Akbey Ü, Oschkinat H. J Magn Reson. Structural biology applications of solid state MAS DNP NMR. 2016;269:213–44.CrossRefGoogle Scholar
  56. 56.
    Lupulescu A, Kotecha M, Frydman L. Relaxation‐assisted separation of chemical sites in NMR spectroscopy of static solids. J Am Chem Soc. 2003;125:3376–83.CrossRefGoogle Scholar
  57. 57.
    Szell PMJ, Bryce DL. Recent Advances in Chlorine, Bromine, and Iodine Solid‐State NMR Spectroscopy. Ann Rep NMR Spec. 2015;84:115–62.CrossRefGoogle Scholar
  58. 58.
    Perras FA, Widdifield CM, Bryce DL. QUEST–QUadrupolar Exact SofTware: A fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei. Solid State Nucl Magn Reson. 2012;45–46:36–44.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Frontier MaterialsDeakin UniversityGeelongAustralia

Personalised recommendations