Advertisement

Solid-State NMR of Oxide-Based Materials

  • Olga B. Lapina
  • Aleksandr A. Shubin
  • Victor V. Terskikh
Reference work entry

Abstract

Modern solid-state NMR spectroscopy is often regarded as one of the most important research tools in many areas of advanced materials science. It is now virtually indispensable when studying amorphous and disordered solids, solid-state dynamics, or catalytic chemical reactions for example. Broader availability of high and ultrahigh-field NMR spectrometers combined with ongoing fast-pace developments in signal-enhancement techniques and in contemporary DFT computational tools opens up new exciting opportunities when applying solid-state NMR to even the most “difficult” quadrupolar nuclei, the feat almost unimaginable just a few years ago. While it would be impossible in this short chapter to mention every single new paper which has been published in this area in the last several years, we have selected the most representative examples to illustrate the current capabilities of solid-state NMR spectroscopy as applied to oxide-based materials and related systems. This short review aims at being a guidance tool to further reading and research.

Keywords

Challenging nuclei Defective, disordered, and amorphous oxide solids DFT computations NMR crystallography Ordered crystalline oxide systems Oxide based materials Solid-state nuclear magnetic resonance 

References

  1. 1.
    Mafra L, Vidal-Moya JA, Blasco T. Structural characterization of zeolites by advanced solid state NMR spectroscopic methods. Annual reports on NMR spectroscopy [Internet]. 2012;77:259–351. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780123970206000040
  2. 2.
    Li S, Deng F. Chapter one – Recent advances of solid-state NMR studies on zeolites. In: Annual reports on NMR spectroscopy [Internet]. 2013. p. 1–54. Available from: http://www.sciencedirect.com/science/article/pii/B9780124047167000018Google Scholar
  3. 3.
    Li S, Zhou L, Zheng A, Deng F. Recent advances in solid state NMR characterization of zeolites. Chinese J Catal [Internet]. 2015 June;36(6):789–96. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1872206714602904CrossRefGoogle Scholar
  4. 4.
    Koller H, Weiss M. Solid state NMR of porous materials : zeolites and related materials. Top Curr Chem [Internet]. 2012 Jan [cited 2016 Apr 14];306:189–227. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21452082
  5. 5.
    Ashbrook SE, Dawson DM, Seymour VR. Recent developments in solid-state NMR spectroscopy of crystalline microporous materials. Phys Chem Chem Phys [Internet]. 2014;16(18):8223. Available from: http://xlink.rsc.org/?DOI=c4cp00578cCrossRefGoogle Scholar
  6. 6.
    Edén M. Chapter four – 27Al NMR studies of aluminosilicate glasses. In: Annual reports on NMR spectroscopy [Internet]. 2015. p. 237–331. Available from: http://www.sciencedirect.com/science/article/pii/S0066410315000162Google Scholar
  7. 7.
    Lee SK, Deschamps M, Hiet J, Massiot D, Park SY. Connectivity and proximity between quadrupolar nuclides in oxide glasses: insights from through-bond and through-space correlations in solid-state NMR. J Phys Chem B [Internet]. 2009 Apr 16;113(15):5162–7. Available from:  https://doi.org/10.1021/jp810667eCrossRefGoogle Scholar
  8. 8.
    McGregor J. Solid-state NMR of oxidation catalysts. In: Jackson SD, Hargreaves JSJ, editors. Metal oxide catalysis [Internet]. Weinheim: Wiley-VCH; 2008. p. 195–242. Available from:  https://doi.org/10.1002/9783527626113.ch5
  9. 9.
    Lapina OB, Terskikh VV. Quadrupolar metal NMR of oxide materials including catalysts. Encyclopedia of magnetic resonance [Internet]. Chichester: Wiley; 2011. Available from:  https://doi.org/10.1002/9780470034590.emrstm1224
  10. 10.
    Ashbrook SE, Dawson DM. NMR spectroscopy of minerals and allied materials. In: Ramesh V, editor. Nuclear Magnetic Resonance [Internet]. Cambridge: Royal Society of Chemistry; 2016;45:1–52. Available from:  https://doi.org/10.1039/9781782624103-00001
  11. 11.
    Hanna JV, Smith ME. Recent technique developments and applications of solid state NMR in characterising inorganic materials. Solid State Nucl Magn Reson [Internet]. 2010 July;38(1):1–18. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0926204010000299CrossRefGoogle Scholar
  12. 12.
    Ashbrook SE, Sneddon S. New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei. J Am Chem Soc [Internet]. 2014 Nov 5;136(44):15440–56. Available from:  https://doi.org/10.1021/ja504734pCrossRefGoogle Scholar
  13. 13.
    Massiot D, Messinger RJ, Cadars S, Deschamps MM, Montouillout V, Pellerin N, et al. Topological, geometric, and chemical order in materials: insights from solid-state NMR. Acc Chem Res [Internet]. 2013 Sept 17;46(9):1975–84. Available from:  https://doi.org/10.1021/ar3003255CrossRefGoogle Scholar
  14. 14.
    Massiot D, Fayon F, Deschamps M, Cadars S, Florian P, Montouillout V, et al. Detection and use of small J couplings in solid state NMR experiments. Comptes Rendus Chim [Internet]. 2010 Jan;13(1–2):117–29. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1631074809001088CrossRefGoogle Scholar
  15. 15.
    Deschamps M, Massiot D. Correlation experiments involving half-integer quadrupolar nuclei. Encyclopedia of magnetic resonance [Internet]. Chichester: Wiley; 2011. Available from:  https://doi.org/10.1002/9780470034590.emrstm1207
  16. 16.
    Harris RK. In: Robin K, Wasylishen RE, Duer MJ, editors. NMR crystallography. Chichester: Wiley; 2009. 504 p.Google Scholar
  17. 17.
    Martineau C, Senker J, Taulelle F. NMR Crystallography. In: Webb GA, editor. Annual Reports on NMR Spectroscopy [Internet]. Elsevier Inc.; 2014. p. 1–57. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780128001844000011Google Scholar
  18. 18.
    Pickard CJ, Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys Rev B [Internet]. 2001 May [cited 2014 May 29];63(24):245101-1–13. Available from:  https://doi.org/10.1103/PhysRevB.63.245101
  19. 19.
    Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azaïs T, et al. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist’s point of view. Chem Rev [Internet]. 2012 Nov 14 [cited 2014 July 17];112(11):5733–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23113537CrossRefGoogle Scholar
  20. 20.
    Charpentier T. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. Solid State Nucl Magn Reson. 2011;40(1):1–20.CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Ashbrook SE, McKay D. Combining solid-state NMR spectroscopy with first-principles calculations – a guide to NMR crystallography. Chem Commun. 2016;52(45):7186–204.CrossRefGoogle Scholar
  23. 23.
    Perras FA. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei. Pure Appl Chem. 2016;88(1–2):95–111.Google Scholar
  24. 24.
    NMR crystallography. Preface (Ed. by Luis Mafra). Solid State Nucl Magn Reson. 2015;65:1–132. http://www.sciencedirect.com/science/journal/09262040/65/supp/C
  25. 25.
    Martineau C. NMR crystallography: applications to inorganic materials. Solid State Nucl Magn Reson. 2014;63–64:1–12.CrossRefGoogle Scholar
  26. 26.
    Taulelle F, Bouchevreau B, Martineau C. NMR crystallography driven structure determination: nanoporous materials. CrystEngComm. 2013;15(43):8613.CrossRefGoogle Scholar
  27. 27.
    Smith ME. Recent advances in experimental solid state NMR methodology for half-integer spin quadrupolar nuclei. Prog Nucl Magn Reson Spectrosc [Internet]. 1999 Mar 19;34(2):159–201. Available from:  https://doi.org/10.1016/S0079-6565(98)00028-4
  28. 28.
    Man PP. Quadrupole couplings in nuclear magnetic resonance, general. In: Encyclopedia of analytical chemistry [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2006. p. 1–42. Available from: http://doi.wiley.com/10.1002/9780470027318.a6111
  29. 29.
    Larsen FH, Jakobsen HJ, Ellis PD, Nielsen NC. QCPMG-MAS NMR of half-integer quadrupolar nuclei. J Magn Reson [Internet]. 1998 Mar [cited 2016 Apr 14];131(1):144–7. Available from: http://www.sciencedirect.com/science/article/pii/S1090780797913410CrossRefGoogle Scholar
  30. 30.
    Tang JA, O’Dell LA, Aguiar PM, Lucier BEG, Sakellariou D, Schurko RW. Application of static microcoils and WURST pulses for solid-state ultra-wideline NMR spectroscopy of quadrupolar nuclei. Chem Phys Lett [Internet]. 2008 Dec;466(4–6):227–34. Available from: http://www.sciencedirect.com/science/article/B6TFN-4TRK0SF-1/2/4db3bb8003ae3475e63a817889bba378CrossRefGoogle Scholar
  31. 31.
    Dicaire NM, Perras FA, Bryce DL. 23Na magic-angle spinning and double-rotation NMR study of solid forms of sodium valproate. Can J Chem [Internet]. 2014 Jan;92(1):9–15. Available from:  https://doi.org/10.1139/cjc-2013-0442CrossRefGoogle Scholar
  32. 32.
    Zhou B, Michaelis VK, Pan Y, Yao Y, Tait KT, Hyde BC, et al. Crystal structure refinements of borate dimorphs inderite and kurnakovite using 11B and 25Mg nuclear magnetic resonance and DFT calculations. Am Mineral. 2012;97(11–12):1858–65.CrossRefGoogle Scholar
  33. 33.
    Zhou B, Sun W, Zhao B-C, Mi J-X, Laskowski R, Terskikh V, et al. 11B MAS NMR and first-principles study of the [OBO3] pyramids in borates. Inorg Chem [Internet]. 2016 Mar 7;55(5):1970–7. Available from:  https://doi.org/10.1021/acs.inorgchem.5b02071CrossRefGoogle Scholar
  34. 34.
    Klein P, Dedecek J, Thomas HM, Whittleton SR, Pashkova V, Brus J, et al. NMR crystallography of monovalent cations in inorganic matrixes: Li+ siting and the local structure of Li+ sites in ferrierites. Chem Commun [Internet]. 2015;51(43):8962–5. Available from: http://xlink.rsc.org/?DOI=C5CC01830GCrossRefGoogle Scholar
  35. 35.
    Laurencin D, Gervais C, Stork H, Krämer S, Massiot D, Fayon F. 25Mg solid-state NMR of magnesium phosphates: high magnetic field experiments and density functional theory calculations. J Phys Chem C [Internet]. 2012 Sept 20;116(37):19984–95. Available from:  https://doi.org/10.1021/jp307456mCrossRefGoogle Scholar
  36. 36.
    Roehrich A, Drobny G. Solid-state NMR studies of biomineralization peptides and proteins. Acc Chem Res. 2013;46(9):2136–44.CrossRefGoogle Scholar
  37. 37.
    Can TV, Ni QZ, Griffin RG. Mechanisms of dynamic nuclear polarization in insulating solids. J Magn Reson. 2015;253:23–35.CrossRefGoogle Scholar
  38. 38.
    Maly T, Debelouchina GT, Bajaj VS, Hu K-N, Joo C-G, Mak–Jurkauskas ML, et al. Dynamic nuclear polarization at high magnetic fields. J Chem Phys. 2008;128(5):052211.CrossRefGoogle Scholar
  39. 39.
    Barnes AB, De Paëpe G, van der Wel PCA, Hu K-N, Joo C-G, Bajaj VS, et al. High-field dynamic nuclear polarization for solid and solution biological NMR. Appl Magn Reson. 2008;34(3–4):237–63.CrossRefGoogle Scholar
  40. 40.
    Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK, Swager TM, et al. High frequency dynamic nuclear polarization. Acc Chem Res. 2013;46(9):1933–41.CrossRefGoogle Scholar
  41. 41.
    Smith AN, Long JR. Dynamic nuclear polarization as an enabling technology for solid state nuclear magnetic resonance spectroscopy. Anal Chem. 2016;88(1):122–32.CrossRefGoogle Scholar
  42. 42.
    Themed issue: dynamic nuclear polarization. Phys Chem Chem Phys. 2010;12(22):5725–928. http://pubs.rsc.org/en/journals/journal/cp?issueid=cp012022&type=current
  43. 43.
    The different magnetic resonance communities join forces for progress in DNP. Appl Magn Reson. 2012;43(1–2):1–310. http://link.springer.com/journal/723/43/1/page/1CrossRefGoogle Scholar
  44. 44.
    Vitzthum V, Miéville P, Carnevale D, Caporini MA, Gajan D, Copéret C, et al. Dynamic nuclear polarization of quadrupolar nuclei using cross polarization from protons: surface-enhanced aluminium-27 NMR. Chem Commun [Internet]. 2012;48(14):1988–90. Available from: http://xlink.rsc.org/?DOI=c2cc15905hCrossRefGoogle Scholar
  45. 45.
    Lee D, Takahashi H, Thankamony ASL, Dacquin J-P, Bardet M, Lafon O, et al. Enhanced solid-state NMR correlation spectroscopy of quadrupolar nuclei using dynamic nuclear polarization. J Am Chem Soc. 2012;134(45):18491–4.CrossRefGoogle Scholar
  46. 46.
    Blanc F, Sperrin L, Jefferson DA, Pawsey S, Rosay M, Grey CP. Dynamic nuclear polarization enhanced natural abundance 17O spectroscopy. J Am Chem Soc. 2013;135(8):2975–8.CrossRefGoogle Scholar
  47. 47.
    Blanc F, Sperrin L, Lee D, Dervişoğlu R, Yamazaki Y, Haile SM, et al. Dynamic nuclear polarization NMR of low-γ nuclei: structural insights into hydrated yttrium-doped BaZrO3. J Phys Chem Lett. 2014;5(14):2431–6.CrossRefGoogle Scholar
  48. 48.
    Protesescu L, Rossini AJ, Kriegner D, Valla M, de Kergommeaux A, Walter M, et al. Unraveling the core–shell structure of ligand-capped Sn/SnOx nanoparticles by surface-enhanced nuclear magnetic resonance, Mössbauer, and X-ray absorption spectroscopies. ACS Nano. 2014;8(3):2639–48.CrossRefGoogle Scholar
  49. 49.
    Riikonen J, Rigolet S, Marichal C, Aussenac F, Lalevée J, Morlet-Savary F, et al. Endogenous stable radicals for characterization of thermally carbonized porous silicon by solid-state dynamic nuclear polarization 13C NMR. J Phys Chem C [Internet]. 2015 Aug 20;119(33):19272–8. Available from:  https://doi.org/10.1021/acs.jpcc.5b05970CrossRefGoogle Scholar
  50. 50.
    Yucelen GI, Choudhury RP, Leisen J, Nair S, Beckham HW. Defect structures in aluminosilicate single-walled nanotubes: a solid-state nuclear magnetic resonance investigation. J Phys Chem C [Internet]. 2012 Aug 16;116(32):17149–57. Available from:  https://doi.org/10.1021/jp3059728CrossRefGoogle Scholar
  51. 51.
    Ashbrook SE, Dawson DM. Exploiting periodic first-principles calculations in NMR spectroscopy of disordered solids. Acc Chem Res. 2013;46:1964–74.CrossRefGoogle Scholar
  52. 52.
    Mitchell MR, Carnevale D, Orr R, Whittle KR, Ashbrook SE. Exploiting the hemical shielding anisotropy to probe structure and disorder in ceramics: 89Y MAS NMR and first-principles calculations. J Phys Chem C [Internet]. 2012 Feb 16;116(6):4273–86. Available from:  https://doi.org/10.1021/jp2105133CrossRefGoogle Scholar
  53. 53.
    Johnston KE, Mitchell MR, Blanc F, Lightfoot P, Ashbrook SE. Structural study of La1–xYxScO3, combining neutron diffraction, solid-state NMR, and first-principles DFT calculations. J Phys Chem C [Internet]. 2013 Feb 7;117(5):2252–65. Available from:  https://doi.org/10.1021/jp310878b
  54. 54.
    Ashbrook SE, Mitchell MR, Sneddon S, Moran RF, de los Reyes M, Lumpkin GR, et al. New insights into phase distribution, phase composition and disorder in Y2(Zr,Sn)2O7 ceramics from NMR spectroscopy. Phys Chem Chem Phys [Internet]. 2015;17:9049–59. Available from: http://pubs.rsc.org/en/content/articlehtml/2015/cp/c4cp05827e
  55. 55.
    de los Reyes M, Whittle KR, Zhang Z, Ashbrook SE, Mitchell MR, Jang L-Y, et al. The pyrochlore to defect fluorite phase transition in Y2Sn2 − xZrxO7. RSC Adv [Internet]. 2013;3(15):5090–9. Available from: http://xlink.rsc.org/?DOI=c3ra22704a
  56. 56.
    d’Espinose de Lacaillerie J-B, Fretigny C, Massiot D. MAS NMR spectra of quadrupolar nuclei in disordered solids: the Czjzek model. J Magn Reson [Internet]. 2008 June [cited 2014 Mar 30];192(2):244–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18362082
  57. 57.
    Caër G Le, Bureau B, Massiot D. An extension of the Czjzek model for the distributions of electric field gradients in disordered solids and an application to NMR spectra of 71Ga in chalcogenide glasses. J Phys Condens Matter [Internet]. 2010 Feb 17 [cited 2014 Mar 30];22(6):065402. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21389367Google Scholar
  58. 58.
    Michaelis VK, Kachhadia P, Kroeker S. Clustering in borate-rich alkali borophosphate glasses: a 11B and 31P MAS NMR study. Phys Chem Glas Eur J Glas Sci Technol B Soc Glas Technol. 2013;54(1):20–6.Google Scholar
  59. 59.
    Zhou B, Sun Z, Yao Y, Pan Y. Correlations between 11B NMR parameters and structural characters in borate and borosilicate minerals investigated by high-resolution MAS NMR and ab initio calculations. Phys Chem Miner. 2012;39(5):363–72.CrossRefGoogle Scholar
  60. 60.
    Zhou B, Michaelis VK, Giesbrecht SR, Kroeker S, Sherriff BL, Sun Z, et al. Erratum to: correlations between 11B NMR parameters and structural characters in borate and borosilicate minerals investigated by high-resolution MAS NMR and ab initio calculations. Phys Chem Miner. 2012;39(5):373.CrossRefGoogle Scholar
  61. 61.
    Cadars S, Allix M, Brouwer DH, Shayib R, Suchomel M, Garaga MN, et al. Long- and short-range constraints for the structure determination of layered silicates with stacking disorder. Chem Mater [Internet]. 2014 Dec 23;26(24):6994–7008. Available from:  https://doi.org/10.1021/cm503190uCrossRefGoogle Scholar
  62. 62.
    Ashbrook SE, Smith ME. Oxygen-17 NMR of inorganic materials. Encyclopedia of magnetic resonance [Internet]. Chichester: Wiley; 2011. Available from:  https://doi.org/10.1002/9780470034590.emrstm1213
  63. 63.
    Ashbrook SE, Smith ME. Solid state 17O NMR—an introduction to the background principles and applications to inorganic materials. Chem Soc Rev. 2006;35(8):718–35.CrossRefGoogle Scholar
  64. 64.
    Yamada K, Oki S, Deguchi K, Shimizu T. Understanding the symmetric line shape in the 17O MAS spectra for hexagonal ice. J Mol Struct [Internet]. 2016 Jun;1113:108–11. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022286016301302CrossRefGoogle Scholar
  65. 65.
    Nour S, Widdifield CM, Kobera L, Burgess KMN, Errulat D, Terskikh VV, et al. Oxygen-17 NMR spectroscopy of water molecules in solid hydrates. Can J Chem [Internet]. 2016 Mar;94(3):189–97. Available from:  https://doi.org/10.1139/cjc-2015-0547CrossRefGoogle Scholar
  66. 66.
    Lu J, Kong X, Terskikh V, Wu G. Solid-state 17O NMR of cxygen–nitrogen singly bonded compounds: hydroxylammonium chloride and sodium trioxodinitrate (Angeli’s Salt). J Phys Chem A [Internet]. 2015 July 23;119(29):8133–8. Available from:  https://doi.org/10.1021/acs.jpca.5b05466CrossRefGoogle Scholar
  67. 67.
    Jakobsen HJ, Bildsøe H, Brorson M, Gan Z, Hung I. Direct observation of 17O–185/187Re 1J-coupling in perrhenates by solid-state 17O VT MAS NMR: temperature and self-decoupling effects. J Magn Reson [Internet]. 2013 May;230:98–110. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1090780713000268
  68. 68.
    Jakobsen HJ, Bildsøe H, Brorson M, Wu G, Gor’kov PL, Gan Z, et al. High-field 17O MAS NMR reveals 1J(17O-127I) with its sign and the NMR crystallography of the scheelite structures for NaIO4 and KIO4. J Phys Chem C. 2015;119:14434–42.Google Scholar
  69. 69.
    Kong X, Terskikh VV, Khade RL, Yang L, Rorick A, Zhang Y, et al. Solid-state 17O NMR spectroscopy of paramagnetic coordination compounds. Angew Chemie Int Ed [Internet]. 2015 Apr 13;54(16):4753–7. Available from:  https://doi.org/10.1002/anie.201409888CrossRefGoogle Scholar
  70. 70.
    Leskes M, Moore AJ, Goward GR, Grey CP. Monitoring the electrochemical processes in the lithium–air battery by solid state NMR spectroscopy. J Phys Chem C [Internet]. 2013 Dec 27;117(51):26929–39. Available from:  https://doi.org/10.1021/jp410429kCrossRefGoogle Scholar
  71. 71.
    Aguiar PM, Michaelis VK, McKinley CM, Kroeker S. Network connectivity in cesium borosilicate glasses: 17O multiple-quantum MAS and double-resonance NMR. J Non Cryst Solids [Internet]. 2013 Mar;363:50–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022309312007259CrossRefGoogle Scholar
  72. 72.
    Angeli F, Villain O, Schuller S, Ispas S, Charpentier T. Insight into sodium silicate glass structural organization by multinuclear NMR combined with first-principles calculations. Geochim Cosmochim Acta [Internet]. 2011 May;75(9):2453–69. Available from: http://linkinghub.elsevier.com/retrieve/pii/S001670371100072XCrossRefGoogle Scholar
  73. 73.
    Lee SK. Structure of silicate glasses and melts at high pressure: quantum chemical calculations and solid-state NMR. J Phys Chem B [Internet]. 2004 May;108(19):5889–900. Available from:  https://doi.org/10.1021/jp037575dCrossRefGoogle Scholar
  74. 74.
    Lee SK. Effect of pressure on structure of oxide glasses at high pressure: insights from solid-state NMR of quadrupolar nuclides. Solid State Nucl Magn Reson [Internet]. 2010 Sept;38(2–3):45–57. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0926204010000597CrossRefGoogle Scholar
  75. 75.
    Huo H, Peng L, Grey CP. Measuring brønsted acid site O−H distances in zeolites HY and HZSM-5 with low-temperature 17O−1H double resonance MAS NMR spectroscopy. J Phys Chem C [Internet]. 2011 Feb 10;115(5):2030–7. Available from:  https://doi.org/10.1021/jp109201tCrossRefGoogle Scholar
  76. 76.
    Huo H, Peng L, Gan Z, Grey CP. Solid-state MAS NMR studies of brønsted acid sites in zeolite H-mordenite. J Am Chem Soc [Internet]. 2012 June 13;134(23):9708–20. Available from:  https://doi.org/10.1021/ja301963eCrossRefGoogle Scholar
  77. 77.
    Wang X, Han X, Huang Y, Sun J, Xu S, Bao X. 17O solid-state NMR study on the size dependence of oxygen activation over silver catalysts. J Phys Chem C [Internet]. 2012 Dec 13;116(49):25846–51. Available from:  https://doi.org/10.1021/jp308637zCrossRefGoogle Scholar
  78. 78.
    He P, Xu J, Terskikh VV, Sutrisno A, Nie HY, Huang Y. Identification of nonequivalent framework oxygen species in metal-organic frameworks by 17O solid-state NMR. J Phys Chem C [Internet]. 2013 Aug 22;117(33):16953–60. Available from: http://pubs.acs.org/doi/abs/10.1021/jp403512mCrossRefGoogle Scholar
  79. 79.
    Wang WD, Lucier BEG, Terskikh VV, Wang W, Huang Y. Wobbling and hopping: studying dynamics of CO2 adsorbed in metal–organic frameworks via 17O solid-state NMR. J Phys Chem Lett [Internet]. 2014 Oct 2;5(19):3360–5. Available from:  https://doi.org/10.1021/jz501729dCrossRefGoogle Scholar
  80. 80.
    Ashbrook SE, Smith ME. Solid state 17O NMR—an introduction to the background principles and applications to inorganic materials. Chem Soc Rev [Internet]. 2006;35(8):718–35. Available from: http://xlink.rsc.org/?DOI=B514051JCrossRefGoogle Scholar
  81. 81.
    Dervişoğlu R, Middlemiss DS, Blanc F, Lee Y-L, Morgan D, Grey CP. Joint experimental and computational 17O and 1H solid state NMR study of Ba2In2O4(OH)2 structure and dynamics. Chem Mater [Internet]. 2015 June 9;27(11):3861–73. Available from:  https://doi.org/10.1021/acs.chemmater.5b00328
  82. 82.
    Wang M, Wu X-P, Zheng S, Zhao L, Li L, Shen L, et al. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy. Sci Adv [Internet]. 2015 Feb 1;1(1):e1400133. Available from:  https://doi.org/10.1126/sciadv.1400133
  83. 83.
    Griffin JM, Clark L, Seymour VR, Aldous DW, Dawson DM, Iuga D, et al. Ionothermal 17O enrichment of oxides using microlitre quantities of labelled water. Chem Sci [Internet]. 2012;3(7):2293–300. Available from:  https://doi.org/10.1039/C2SC20155K http://pubs.rsc.org/en/content/articlepdf/2012/sc/c2sc20155kCrossRefGoogle Scholar
  84. 84.
    Kong X, O’Dell LA, Terskikh V, Ye E, Wang R, Wu G. Variable-temperature 17O NMR studies allow quantitative evaluation of molecular dynamics in organic solids. J Am Chem Soc [Internet]. 2012 Sept 5;134(35):14609–17. Available from:  https://doi.org/10.1021/ja306227pCrossRefGoogle Scholar
  85. 85.
    Kim G, Griffin JM, Blanc F, Haile SM, Grey CP. Characterization of the dynamics in the protonic conductor CsH2PO4 by 17O solid-state NMR spectroscopy and first-principles calculations: correlating phosphate and protonic motion. J Am Chem Soc [Internet]. 2015 Mar 25;137(11):3867–76. Available from:  https://doi.org/10.1021/jacs.5b00280CrossRefGoogle Scholar
  86. 86.
    Moudrakovski IL. Chapter four – Recent advances in solid-state NMR of alkaline earth elements. In: Annual reports on NMR spectroscopy [Internet]. 2013. p. 129–240. Available from: http://www.sciencedirect.com/science/article/pii/B9780124080980000045Google Scholar
  87. 87.
    Xu J, Lucier BEG, Sinelnikov R, Terskikh VV, Staroverov VN, Huang Y. Monitoring and understanding the paraelectric-ferroelectric phase transition in the metal-organic framework [NH4][M(HCOO)3] by solid-state NMR spectroscopy. Chem Eur J [Internet]. 2015 Oct 5;21(41):14348–61. Available from:  https://doi.org/10.1002/chem.201501954
  88. 88.
    Xu J, Terskikh VV, Huang Y. Resolving multiple non-equivalent metal sites in magnesium-containing metal-organic frameworks by natural abundance 25Mg solid-state NMR spectroscopy. Chem Eur J [Internet]. 2013 Apr 2;19(14):4432–6. Available from:  https://doi.org/10.1002/chem.201300113CrossRefGoogle Scholar
  89. 89.
    Xu J, Terskikh VV, Huang Y. 25Mg Solid-state NMR: a sensitive probe of adsorbing guest molecules on a metal center in metal–organic framework CPO-27-Mg. J Phys Chem Lett [Internet]. 2013 Jan 3;4(1):7–11. Available from:  https://doi.org/10.1021/jz301954tCrossRefGoogle Scholar
  90. 90.
    Moudrakovski IL, Ripmeester JA. 39K NMR of solid potassium salts at 21T: effect of quadrupolar and chemical shift tensors. J Phys Chem B [Internet]. 2007 Jan;111(3):491–5. Available from:  https://doi.org/10.1021/jp0667994CrossRefGoogle Scholar
  91. 91.
    Zhang L, Huang Y. An investigation into the crystallization of low-silica X zeolite. J Porous Mater [Internet]. 2015 Aug 3;22(4):843–50. Available from:  https://doi.org/10.1007/s10934-015-9957-1CrossRefGoogle Scholar
  92. 92.
    Xu J, Lucier BEG, Lin Z, Sutrisno A, Terskikh VV., Huang Y. New insights into the short-range structures of microporous titanosilicates as revealed by 47/49Ti, 23Na, 39K, and 29Si solid-state NMR spectroscopy. J Phys Chem C [Internet]. 2014 Nov 26;118(47):27353–65. Available from:  https://doi.org/10.1021/jp5077966CrossRefGoogle Scholar
  93. 93.
    Laurencin D, Smith ME. Development of 43Ca solid state NMR spectroscopy as a probe of local structure in inorganic and molecular materials. Prog Nucl Magn Reson Spectrosc [Internet]. 2013 Jan;68:1–40. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0079656512000684CrossRefGoogle Scholar
  94. 94.
    Gervais C, Laurencin D, Wong A, Pourpoint F, Labram J, Woodward B, et al. New perspectives on calcium environments in inorganic materials containing calcium–oxygen bonds: a combined computational–experimental 43Ca NMR approach. Chem Phys Lett [Internet]. 2008 Oct;464(1–3):42–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0009261408012372CrossRefGoogle Scholar
  95. 95.
    Gras P, Baker A, Combes C, Rey C, Sarda S, Wright AJ, et al. From crystalline to amorphous calcium pyrophosphates: a solid state nuclear magnetic resonance perspective. Acta Biomater [Internet]. 2016 Feb;31:348–57. Available from: http://linkinghub.elsevier.com/retrieve/pii/S174270611530146XCrossRefGoogle Scholar
  96. 96.
    Burgess KMN, Perras FA, Moudrakovski IL, Xu Y, Bryce DL. High sensitivity and resolution in 43Ca solid-state NMR experiments. Can J Chem [Internet]. 2015 Aug;93(8):799–807. Available from:  https://doi.org/10.1139/cjc-2014-0528CrossRefGoogle Scholar
  97. 97.
    Burgess KMN, Bryce DL. On the crystal structure of the vaterite polymorph of CaCO3: a calcium-43 solid-state NMR and computational assessment. Solid State Nucl Magn Reson [Internet]. 2015 Feb;65:75–83. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0926204014000526CrossRefGoogle Scholar
  98. 98.
    Widdifield CM, Moudrakovski I, Bryce DL. Calcium-43 chemical shift and electric field gradient tensor interplay: a sensitive probe of structure, polymorphism, and hydration. Phys Chem Chem Phys [Internet]. 2014 May 15;16(26):13340–59. Available from: http://xlink.rsc.org/?DOI=C4CP01180ECrossRefGoogle Scholar
  99. 99.
    Wagner GW, Itin B. Comment on “27Al, 47,49Ti, 31P, and 13C MAS NMR study of VX, GD, and HD reactions with nanosize Al2O3, conventional Al2O3 and TiO2, and aluminum and titanium metal.” J Phys Chem C [Internet]. 2008 July;112(26):9962. Available from:  https://doi.org/10.1021/jp802847m
  100. 100.
    Zhu J, Trefiak N, Woo TK, Huang Y. A 47/49Ti solid-state NMR study of layered titanium phosphates at ultrahigh magnetic field. J Phys Chem C [Internet]. 2009 June 11;113(23):10029–37. Available from:  https://doi.org/10.1021/jp901235wCrossRefGoogle Scholar
  101. 101.
    He P, Lucier BEG, Terskikh V V., Shi Q, Dong J, Chu Y, et al. Spies within metal-organic frameworks: investigating metal centers using solid-state NMR. J Phys Chem C [Internet]. 2014 Oct 16;118(41):23728–44. Available from:  https://doi.org/10.1021/jp5063868CrossRefGoogle Scholar
  102. 102.
    Huang Y, Sutrisno A. Recent advances in solid-state 67Zn NMR studies: from nanoparticles to biological systems. In: Webb GA, editor. Annual Reports on NMR Spectroscopy [Internet]. Elsevier Inc.; 2014;81:1–46. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780128001851000012Google Scholar
  103. 103.
    Sutrisno A, Terskikh VV., Shi Q, Song Z, Dong J, Ding SY, et al. Characterization of Zn-containing metal-organic frameworks by solid-state 67Zn NMR spectroscopy and computational modeling. Chem Eur J [Internet]. 2012 Sept 24;18(39):12251–9. Available from:  https://doi.org/10.1002/chem.201201563CrossRefGoogle Scholar
  104. 104.
    Kanwal N, Toms H, Hannon AC, Perras FA, Bryce DL, Karpukhina N, et al. Structure and solubility behaviour of zinc containing phosphate glasses. J Mater Chem B [Internet]. 2015;3(45):8842–55. Available from: http://xlink.rsc.org/?DOI=C4TB01504ECrossRefGoogle Scholar
  105. 105.
    Sutrisno A, Liu L, Xu J, Huang Y. Natural abundance solid-state 67Zn NMR characterization of microporous zinc phosphites and zinc phosphates at ultrahigh magnetic field. Phys Chem Chem Phys [Internet]. 2011;13(37):16606. Available from: http://xlink.rsc.org/?DOI=c1cp20947gCrossRefGoogle Scholar
  106. 106.
    Michaelis VK, Aguiar PM, Terskikh V V., Kroeker S. Germanium-73 NMR of amorphous and crystalline GeO2. Chem Commun [Internet]. 2009;(31):4660–2. Available from: http://xlink.rsc.org/?DOI=b906642j
  107. 107.
    Michaelis VK, Kroeker S. 73Ge solid-state NMR of germanium oxide materials: experimental and theoretical studies. J Phys Chem C [Internet]. 2010 Dec 16;114(49):21736–44. Available from:  https://doi.org/10.1021/jp1071082CrossRefGoogle Scholar
  108. 108.
    Bowers GM, Kirkpatrick RJ. High-field 75As NMR study of arsenic oxysalts. J Magn Reson [Internet]. 2007 Oct;188(2):311–21. Available from: http://www.sciencedirect.com/science/article/B6WJX-4PB6W8F-2/2/8179706c51a24c86106783e39c5ba2f3CrossRefGoogle Scholar
  109. 109.
    Moudrakovski IL. Recent advances in solid-state NMR of alkaline earth elements. In: Webb GA, editor. Annual Reports on NMR Spectroscopy [Internet]. Elsevier Inc.; 2013;79:129–240. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780124080980000045
  110. 110.
    Faucher A, Terskikh VV, Ye E, Bernard GM, Wasylishen RE. Solid-state 87Sr NMR spectroscopy at natural abundance and high magnetic field strength. J Phys Chem A [Internet]. 2015 Dec 10;119(49):11847–61. Available from:  https://doi.org/10.1021/acs.jpca.5b09392CrossRefGoogle Scholar
  111. 111.
    Bonhomme C, Gervais C, Folliet N, Pourpoint F, Coelho Diogo C, Lao J, et al. 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses. J Am Chem Soc [Internet]. 2012 Aug;134(30):12611–28. Available from:  https://doi.org/10.1021/ja303505gCrossRefGoogle Scholar
  112. 112.
    Lucier BEG, Huang Y. Chapter five – A review of 91Zr solid-state nuclear magnetic resonance spectroscopy. In: Annual reports on NMR spectroscopy [Internet]. 2015. p. 233–89. Available from: http://www.sciencedirect.com/science/article/pii/S0066410314000064Google Scholar
  113. 113.
    Sutrisno A, Liu L, Dong J, Huang Y. Solid-state 91Zr NMR characterization of layered and three-dimensional framework zirconium phosphates. J Phys Chem C [Internet]. 2012 Aug 16;116(32):17070–81. Available from:  https://doi.org/10.1021/jp304729sCrossRefGoogle Scholar
  114. 114.
    Romao CP, Perras FA, Werner-Zwanziger U, Lussier JA, Miller KJ, Calahoo CM, et al. Zero thermal expansion in ZrMgMo3O12 : NMR crystallography reveals origins of thermoelastic properties. Chem Mater [Internet]. 2015 Apr 14;27(7):2633–46. Available from:  https://doi.org/10.1021/acs.chemmater.5b00429
  115. 115.
    Lapina OB, Khabibulin DF, Shubin AA, Terskikh VV. Practical aspects of 51V and 93Nb solid-state NMR spectroscopy and applications to oxide materials. Prog Nucl Magn Reson Spectrosc [Internet]. 2008 Oct [cited 2014 July 17];53(3):128–91. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0079656507000908CrossRefGoogle Scholar
  116. 116.
    Papulovskiy E, Shubin AA, Terskikh V V, Pickard CJ, Lapina OB. Theoretical and experimental insights into applicability of solid-state 93Nb NMR in catalysis. Phys Chem Chem Phys [Internet]. 2013 Apr 14 [cited 2014 June 24];15(14):5115–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23450163CrossRefGoogle Scholar
  117. 117.
    Yamada K, Shimizu T, Nakai T, Deguchi K, Yue B, Ye J. Solid-state 93Nb NMR study of nitrogen-doped lamellar niobic acid. Chem Lett [Internet]. 2013;42(10):1223–4. Available from: http://jlc.jst.go.jp/DN/JST.JSTAGE/cl/130516?lang=en&from=CrossRef&type=abstractCrossRefGoogle Scholar
  118. 118.
    Shimizu T, Nakai T, Deguchi K, Yamada K, Yue B, Ye J. A visible-light-responsive photocatalyst of nitrogen-doped solid-acid HNb3O8-N studied by ultrahigh-field 1H MAS NMR and 1H–93Nb/1H–15N HETCOR NMR in solids. Chem Lett [Internet]. 2014;43(1):80–2. Available from: http://jlc.jst.go.jp/DN/JST.JSTAGE/cl/130784?lang=en&from=CrossRef&type=abstract
  119. 119.
    Dunstan MT, Blanc F, Avdeev M, McIntyre GJ, Grey CP, Ling CD. Long-range-ordered coexistence of 4-, 5-, and 6-coordinate niobium in the mixed ionic-electronic conductor γ-Ba4Nb2O9. Chem Mater [Internet]. 2013 Aug 13 [cited 2014 July 17];25(15):3154–61. Available from:  https://doi.org/10.1021/cm4014656
  120. 120.
    Papulovskiy E, Khabibulin DF, Terskikh V, Paukshtis EA, Bondareva VM, Shubin AA, et al. Effect of impregnation on the structure of niobium oxide/alumina catalysts studied by multinuclear solid-state NMR, FTIR and quantum chemical calculations. J Phys Chem C [Internet]. 2015 May 14;119(19):10400–11. Available from:  https://doi.org/10.1021/acs.jpcc.5b01616CrossRefGoogle Scholar
  121. 121.
    Deblonde GJ-P, Coelho-Diogo C, Chagnes A, Cote G, Smith ME, Hanna JV, et al. Multinuclear solid-state NMR investigation of hexaniobate and hexatantalate compounds. Inorg Chem. 2016;55(12):5946–56.CrossRefGoogle Scholar
  122. 122.
    Greer BJ, Kroeker S. Characterisation of heterogeneous molybdate and chromate phase assemblages in model nuclear waste glasses by multinuclear magnetic resonance spectroscopy. Phys Chem Chem Phys [Internet]. 2012;14(20):7375. Available from: http://xlink.rsc.org/?DOI=c2cp40764gCrossRefGoogle Scholar
  123. 123.
    Santagneli SH, Ren J, Rinke MT, Ribeiro SJL, Messaddeq Y, Eckert H. Structural studies of AgPO3–MoO3 glasses using solid state NMR and vibrational spectroscopies. J Non Cryst Solids [Internet]. 2012 Apr;358(6–7):985–92. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022309312000464CrossRefGoogle Scholar
  124. 124.
    Hamaed H, Johnston KE, Cooper BFT, Terskikh V V., Ye E, Macdonald CLB, et al. A 115In solid-state NMR study of low oxidation-state indium complexes. Chem Sci [Internet]. 2014;5(3):982–95. Available from: http://xlink.rsc.org/?DOI=C3SC52809JCrossRefGoogle Scholar
  125. 125.
    Faucher A, Terskikh V V., Wasylishen RE. Feasibility of arsenic and antimony NMR spectroscopy in solids: an investigation of some group 15 compounds. Solid State Nucl Magn Reson [Internet]. 2014 July;61–62:54–61. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0926204014000393CrossRefGoogle Scholar
  126. 126.
    O’Dell LA, Moudrakovski IL. A combined ultra-wideline solid-state NMR and DFT study of 137Ba electric field gradient tensors in barium compounds. Chem Phys Lett [Internet]. 2013 Apr;565:56–60. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0009261413002492CrossRefGoogle Scholar
  127. 127.
    Willans MJ, Feindel KW, Ooms KJ, Wasylishen RE. An investigation of lanthanum coordination compounds by using solid-state La-139 NMR spectroscopy and relativistic density functional theory. Chem Eur J [Internet]. 2006;12(1):159–68. Available from: http://doi.wiley.com/10.1002/chem.200500778
  128. 128.
    Paterson AL, Hanson MA, Werner-Zwanziger U, Zwanziger JW. Relating 139La quadrupolar coupling constants to polyhedral distortion in crystalline structures. J Phys Chem C [Internet]. 2015 Nov 12;119(45):25508–17. Available from:  https://doi.org/10.1021/acs.jpcc.5b09122CrossRefGoogle Scholar
  129. 129.
    Dithmer L, Lipton AS, Reitzel K, Warner TE, Lundberg D, Nielsen UG. Characterization of phosphate sequestration by a lanthanum modified bentonite clay: a solid-state NMR, EXAFS, and PXRD study. Environ Sci Technol [Internet]. 2015 Apr 7;49(7):4559–66. Available from:  https://doi.org/10.1021/es506182sCrossRefGoogle Scholar
  130. 130.
    Widdifield CM, Bain AD, Bryce DL. Definitive solid-state 185/187Re NMR spectral evidence for and analysis of the origin of high-order quadrupole-induced effects for I = 5/2. Phys Chem Chem Phys [Internet]. 2011;13(27):12413–20. Available from: http://xlink.rsc.org/?DOI=c1cp20572bCrossRefGoogle Scholar
  131. 131.
    Schurko RW, Wi S, Frydman L. Dynamic effects on the powder line shapes of half-integer quadrupolar nuclei: a solid-state NMR study of XO4- groups. J Phys Chem A [Internet]. 2002 Jan;106(1):51–62. Available from:  https://doi.org/10.1021/jp0130214CrossRefGoogle Scholar
  132. 132.
    Hamaed H, Laschuk MW, Terskikh V V., Schurko RW. Application of solid-state 209Bi NMR to the structural characterization of bismuth-containing materials. J Am Chem Soc [Internet]. 2009 June 17;131(23):8271–9. Available from:  https://doi.org/10.1021/ja901347kCrossRefGoogle Scholar
  133. 133.
    Wu G, Kroeker S, Wasylishen RE, Griffin RG. Indirect spin-spin coupling in multiple-quantum magic-angle-spinning NMR spectra of quadrupolar nuclei. J Magn Reson [Internet]. 1997 Jan [cited 2016 Apr 14];124(1):237–9. Available from: http://www.sciencedirect.com/science/article/pii/S1090780796910423CrossRefGoogle Scholar
  134. 134.
    Pallister PJ, Moudrakovski IL, Ripmeester JA. Mg-25 ultra-high field solid state NMR spectroscopy and first principles calculations of magnesium compounds. Phys Chem Chem Phys [Internet]. 2009;11(48):11487–500. Available from: http://xlink.rsc.org/?DOI=b916076kCrossRefGoogle Scholar
  135. 135.
    Hanson MA, Schnepf A, Terskikh VV, Huang Y, Baines KM. Characterisation of germanium monohalides by solid-state NMR spectroscopy and first principles quantum chemical calculations. Aust J Chem. 2013;66(10):1202–10.Google Scholar
  136. 136.
    Takeuchi Y, Takayama T. 73Ge NMR spectroscopy of organogermanium compounds. 2004. p. 155–200. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0066410304540048
  137. 137.
    Hanson MA, Sutrisno A, Terskikh V V., Baines KM, Huang Y. Solid-state 73Ge NMR spectroscopy of simple organogermanes. Chem Eur J [Internet]. 2012 Oct 22;18(43):13770–9. Available from:  https://doi.org/10.1002/chem.201201944CrossRefGoogle Scholar
  138. 138.
    Sedykh P, Michel D, Charnaya EV, Haase J. Size effects in fine barium titanate particles. Ferroelectrics [Internet]. 2010 Sept 21;400(1):135–43. Available from:  https://doi.org/10.1080/00150193.2010.505514CrossRefGoogle Scholar
  139. 139.
    Gervais C, Veautier D, Smith ME, Babonneau F, Belleville P, Sanchez C. Solid state 47,49Ti, 87Sr and 137Ba NMR characterisation of mixed barium/strontium titanate perovskites. Solid State Nucl Magn Reson [Internet]. 2004 Nov;26(3–4):147–52. Available from: http://www.sciencedirect.com/science/article/B6THK-4DCD2WG-6/2/42b5b9d12e3d4b5bb358bb08de260d9a

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Olga B. Lapina
    • 1
  • Aleksandr A. Shubin
    • 1
  • Victor V. Terskikh
    • 2
  1. 1.Boreskov Institute of CatalysisRussian Academy of SciencesNovosibirskRussia
  2. 2.Department of ChemistryUniversity of OttawaOttawaCanada

Personalised recommendations