Skip to main content

Parabasalia

  • Reference work entry
  • First Online:
Handbook of the Protists

Abstract

The Parabasalia are a clade of single-celled, anaerobic flagellates that are mainly obligate symbionts or parasites of insects and vertebrates. The group includes the common and widespread human sexually transmitted species Trichomonas vaginalis. Many species are found exclusively in the guts of termites and the wood-feeding roach Cryptocercus, where they contribute to wood digestion as part of a complex microbial community that sustains the insects. These insect symbionts often harbor an extensive and diverse assortment of ecto- and endosymbionts. The Parabasalia are characterized by a parabasal body (Golgi complex supported by a parabasal fiber), which is associated with the flagellar apparatus. Their mitochondria have evolved into hydrogenosomes, double-membrane-bounded organelles that derive energy from the breakdown of pyruvate to acetate, CO2, and H2. They vary in size from the minute Tricercomitus, which is only a few microns long, to the half-a-millimeter-long Mastotermes gut symbiont Mixotricha paradoxa. Historically, the Parabasalia have been treated as two groups: the smaller, simpler “trichomonads” which bear up to six flagella and the typically much larger, multiflagellate “hypermastigotes.” Ultrastructural and molecular evidence have shown that together these groups form a monophyletic Parabasalia, and though neither “trichomonads” nor “hypermastigotes” are monophyletic, they continue to be useful as descriptive terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbdulRahman, L., & Hafez, H. M. (2009). Susceptibility of different turkey lines to Histomonas meleagridis after experimental infection. Parasitology Research, 105, 113–116.

    Article  PubMed  Google Scholar 

  • Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., et al. (2012). The revised classification of eukaryotes. The Journal of Eukaryotic Microbiology, 59, 429–493.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexeieff, A. (1910). Sur les Flagellés intestinaux des poissons marins. Archives de Zoologie Expérimentale and Générale, 6, 1–20.

    Google Scholar 

  • Alexeief, A. (1911). Sur la spécification dans le genre Trichomonas Donné. Comptes Rendus Social Biology (Paris), 71, 539–541.

    Google Scholar 

  • Amos, W. B., Grimstone, A. V., Rothschild, L. J., & Allen, R. D. (1979). Structure, protein composition and birefringence of the costa: A motile flagellar root fibre in the flagellate Trichomonas. Journal of Cell Science, 35, 139–164.

    CAS  PubMed  Google Scholar 

  • Barratt, J. L. N., Harkness, J., Marriott, D., Ellis, J. T., & Stark, D. (2011). A review of Dientamoeba fragilis carriage in humans: Several reasons why this organism should be considered in the diagnosis of gastrointestinal illness. Gut Microbes, 2, 3–12.

    Article  PubMed  Google Scholar 

  • Benchimol, M. (2009). Hydrogenosomes under microscopy. Tissue & Cell, 41, 151–168.

    Article  CAS  Google Scholar 

  • Bernard, C., Simpson, A. G. B., & Patterson, D. J. (2000). Some free-living flagellates (protista) from anoxic habitats. Ophelia, 52, 113–142.

    Article  Google Scholar 

  • Bignell, D. E., Roisin, Y., & Lo, N. (Eds.). (2011). Biology of termites: A modern synthesis. Dordrecht: Springer.

    Google Scholar 

  • Bishop, A. (1932). A Note upon Trichomonas sanguisugae Alexeieff 1911. Parasitology, 24, 140.

    Article  Google Scholar 

  • Bishop, A. (1935). Observations upon a “Trichomonas” from pond water. Parasitology, 27, 246–256.

    Article  Google Scholar 

  • Bishop, A. (1939). A note upon the systematic position of “Trichomonaskeilini (Bishop, 1935). Parasitology, 31, 469–472.

    Article  Google Scholar 

  • BonDurant, R. H., & Honigberg, B. M. (1994). Trichomonads of veterinary importance. In Parasitic Protozoa (pp. 111–188). New York: Academic Press.

    Chapter  Google Scholar 

  • Bourguignon, T., Lo, N., Cameron, S. L., Šobotník, J., Hayashi, Y., Shigenobu, S., Watanabe, D., Roisin, Y., Miura, T., & Evans, T. A. (2015). The evolutionary history of termites as inferred from 66 mitochondrial genomes. Molecular Biology and Evolution, 32, 406–421.

    Article  CAS  PubMed  Google Scholar 

  • Brugerolle, G. (1973). Sur l’existence de vrais kystes ches les Trichomonadines intestinalis. Ultrastructure des kystes de Trichomitus batrachorum Perty 1852, Trichomitus sanguisugae Alexeieff 1911, et Monocercomonas tipulae Mackinnon 1910. Comptes Rendus. Académie des Sciences Paris Serie D, 277, 2193–2196.

    Google Scholar 

  • Brugerolle, G. (1976). Cytologie ultrastructurale, systematique et evolution des Trichomonadida. Annales de la Station Biologique de Besse-en-Chandesse, 10, 1–90.

    Google Scholar 

  • Brugerolle, G. (1986). Structural diversity of trichomonads as the basis for systematic and evolutionary considerations. Acta Universitatis Carolinae - Biologica, 30, 199–210.

    Google Scholar 

  • Brugerolle, G. (1991). Flagellar and cytoskeletal systems in amitichondrial flagellates: Archamoeba, Metamonda, and Parabasala. Protoplasma, 164, 70–90.

    Article  Google Scholar 

  • Brugerolle, G. (1999). Fine structure of Pseudotrypanosoma giganteum of Porotermes, a trichomonad with a contractile costa. European Journal of Protistology, 35, 121–128.

    Article  Google Scholar 

  • Brugerolle, G. (2001). Morphological characters of Spirotrichonymphids: Microjoenia, Spirotrichonymphella and Spirotrichonympha symbionts of the australian termite Porotermes grandis. European Journal of Protistology, 37, 103–117.

    Article  Google Scholar 

  • Brugerolle, G. (2004). Devescovinid features, a remarkable surface cytoskeleton, and epibiotic bacteria revisited in Mixotricha paradoxa, a parabasalid flagellate. Protoplasma, 224, 49–59.

    CAS  PubMed  Google Scholar 

  • Brugerolle, G. (2005). The flagellates of the termite Hodotermopsis sjoestedti: Immunological and ultrastructural characterization of four new species in the genera Spirotrichonympha, Spironympha and Microjoenia. European Journal of Protistology, 41, 299–311.

    Article  Google Scholar 

  • Brugerolle, G. (2006a). The symbiotic fauna of the African termite Hodotermes mossambicus identification of four flagellate species of the genera Spironympha, Trichomonoides and Retortamonas. Parasitology Research, 98, 257–263.

    Article  PubMed  Google Scholar 

  • Brugerolle, G. (2006b). Comparative cytological study of four species in the genera Holomastigotes and Uteronympha n. comb. (Holomastigotidae, Parabasalia), symbiotic flagellates of termites. The Journal of Eukaryotic Microbiology, 53, 246–259.

    Article  PubMed  Google Scholar 

  • Brugerolle, G., & Bordereau, C. (2004). The flagellates of the termite Hodotermopsis sjoestedti with special reference to Hoplonympha, Holomastigotes and Trichomonoides trypanoides n. comb. European Journal of Protistology, 40, 163–174.

    Article  Google Scholar 

  • Brugerolle, G., & Lee, J. J. (2000). Phylum Parabasalia. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), An illustrated guide to the protozoa (pp. 1196–1250). Lawrence: Allen Press Inc.

    Google Scholar 

  • Brugerolle, G., & Patterson, D. J. (2001). Ultrastructure of Joenina pulchella Grassi, 1917 (Protista, Parabasalia), a reassessment of evolutionary trends in the parabasalids, and a new order Cristamonadida for devescovinid, calonymphid and lophomonad flagellates. Organisms, Diversity and Evolution, 1, 147–160.

    Article  Google Scholar 

  • Brugerolle, G., Breunig, A., & König, H. (1994). Ultrastructural study of Pentatrichomonoides sp., a trichomonad flagellate from Mastotermes darwiniensis. European Journal of Protistology, 30, 372–378.

    Article  Google Scholar 

  • Brugerolle, G., Silva-Neto, I. D., Pellens, R., & Grandcolas, P. (2003). Electron microscopic identification of the intestinal protozoan flagellates of the xylophagous cockroach Parasphaeria boleiriana from Brazil. Parasitology Research, 90, 249–256.

    Article  CAS  PubMed  Google Scholar 

  • Camp, R., Mattern, C. F., & Honigberg, B. M. (1974). Study of Dientamoeba fragilis Jepps & Dobell. I. Electronmicroscopic observations of the binucleate stages. II. Taxonomic position and revision of the genus. The Journal of Protozoology, 21, 69–82.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, K. J., Horak, A., & Keeling, P. J. (2010). Phylogenetic position and morphology of Spirotrichosomidae (Parabasalia): New evidence from Leptospironympha of Cryptocercus punctulatus. Protist, 161, 122–132.

    Article  CAS  PubMed  Google Scholar 

  • Carter, J. E., & Whithaus, K. C. (2008). Neonatal respiratory tract involvement by Trichomonas vaginalis: A case report and review of the literature. The American Journal of Tropical Medicine and Hygiene, 78, 17–19.

    PubMed  Google Scholar 

  • Cavalier-Smith, T. (2013). Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology, 49, 115–178.

    Article  PubMed  Google Scholar 

  • Čepička, I., Kutišová, K., Tachezy, J., Kulda, J., & Flegr, J. (2005). Cryptic species within the Tetratrichomonas gallinarum species complex revealed by molecular polymorphism. Veterinary Parasitology, 128, 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Čepička, I., Hampl, V., Kulda, J., & Flegr, J. (2006). New evolutionary lineages, unexpected diversity, and host specificity in the parabasalid genus Tetratrichomonas. Molecular Phylogenetics and Evolution, 39, 542–551.

    Article  PubMed  CAS  Google Scholar 

  • Čepička, I., Hampl, V., & Kulda, J. (2010). Critical taxonomic revision of parabasalids with description of one new genus and three new species. Protist, 161, 400–433.

    Article  PubMed  Google Scholar 

  • Céza, V., Pánek, T., Smejkalová, P., & Čepička, I. (2015). Molecular and morphological diversity of the genus Hypotrichomonas (Parabasalia: Hypotrichomonadida), with descriptions of six new species. European Journal of Protistology, 51, 158–172.

    Article  PubMed  Google Scholar 

  • Clark, C. G., Röser, D., & Stensvold, C. R. (2014). Transmission of Dientamoeba fragilis: Pinworm or cysts? Trends in Parasitology, 30, 136–140.

    Article  PubMed  Google Scholar 

  • Clemens, D. L., & Johnson, P. J. (2000). Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Molecular and Biochemical Parasitology, 106, 307–313.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, L. R. (1923). Correlation between the food and morphology of termites and the presence of intestinal protozoa. American Journal of Epidemiology, 3, 444–461.

    Article  Google Scholar 

  • Cleveland, L. R. (1925). The effects of oxygenation and starvation on the symbiosis between the termite, Termopsis, and its intestinal flagellates. The Biological Bulletin, 48, 309–327.

    Article  CAS  Google Scholar 

  • Cleveland, L. R. (1947). Sex produced in the protozoa of Cryptocercus by molting. Science, 105, 16–17.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, L. R., & Grimstone, A. V. (1964). The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proceedings of the Royal Society of London. Series B: Biological Sciences, 159, 668–686.

    Article  Google Scholar 

  • Cleveland, L. R., Hall, S. R., Sanders, E. P., & Collier, J. (1934). The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Memories of the American Academy of Arts and Sciences, 17, 185–342.

    Google Scholar 

  • Davaine, C. J. (1854). Sur les animalcules infusoires trouvés dans les selles de malades atteints du choléra et d’autres affections. Comptes Rendus. Académie des Sciences Paris Serie D, 1, 129–130.

    Google Scholar 

  • Davaine, C. J. (1860). Traité des entozoaires et des maladies vermineuses de l’homme et des animaux domestiques (1st ed.). Paris: J. B. Baillière et Fils.

    Google Scholar 

  • Desai, M. S., Strassert, J. F. H., Meuser, K., Hertel, H., Ikeda-Ohtsubo, W., Radek, R., & Brune, A. (2010). Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environmental Microbiology, 12, 2120–2132.

    CAS  PubMed  Google Scholar 

  • Desai, M. S., & Brune, A. (2012). Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. The ISME Journal, 6, 1302–1313.

    Article  CAS  PubMed  Google Scholar 

  • Diamond, L. S. (1982). A new liquid medium for xenic cultivation of Entamoeba histolytica and other lumen-dwelling protozoa. The Journal of Parasitology, 68, 958–959.

    Article  CAS  PubMed  Google Scholar 

  • Dobell, C., & Laidlaw, P. P. (1926). On the cultivation of Entamoeba histolytica and some other entozoic amoebae. Parasitology, 18, 283.

    Article  Google Scholar 

  • Dolan, M. F. (2001). Speciation of termite gut protists: The role of bacterial symbionts. International Microbiology, 4, 203–208.

    Article  CAS  PubMed  Google Scholar 

  • Dolan, M. F., Wier, A. M., & Margulis, L. (2000a). Budding and asymmetric reproduction of a trichomonad with as many as 1000 nuclei in karyomastigonts: Metacoronympha from Incisitermes. Acta Protozoologica, 39, 275–280.

    Google Scholar 

  • Dolan, M. F., Wier, A. M., & Margulis, L. (2000b). Surface kinetosomes and disconnected nuclei of a calonymphid: Ultrastructure and evolutionary significance of Snyderella tabogae. Acta Protozoologica, 39, 135–141.

    Google Scholar 

  • Dolan, M. F., Wier, A. M., Melnitsky, H., Whiteside, J. H., & Margulis, L. (2004). Cysts and symbionts of Staurojoenina assimilis Kirby from Neotermes. European Journal of Protistology, 40, 257–264.

    Article  Google Scholar 

  • Donné, A. (1836). Animalcules observés dans le matières purulentes et la produit des sécrétions des organes génitaux de l’homme et de la femme. Comptes Rendus de l'Académie des Sciences, 3, 385–386.

    Google Scholar 

  • Duboucher, C., Caby, S., Chabé, M., Gantois, N., Billy, C., Barré, E., Capron, M., Pierce, R. J., Viscogliosi, E., Dufernez, F., et al. (2006). Molecular identification of Tritrichomonas foetus-like organisms as coinfecting agents of human Pneumocystis pneumonia. Journal of Clinical Microbiology, 3, 1–5.

    Google Scholar 

  • Duboucher, C., Barbier, C., Beltramini, A., Rona, M., Ricome, J. L., Morel, G., Capron, M., Pierce, R. J., Dei-Cas, E., & Viscogliosi, E. (2007). Pulmonary superinfection by trichomonads in the course of acute respiratory distress syndrome. Lung, 185, 295–301.

    Article  PubMed  Google Scholar 

  • Dujardin, F. (1841). Histoire naturelle des zoophytes. Infusoires, comprenant la physiologie et la classification de ces animaux, et la manière de les étudier à l’aide du microscope. Paris: Roret.

    Book  Google Scholar 

  • Eme, L., Sharpe, S. C., Brown, M. W., & Roger, A. J. (2014). On the age of eukaryotes: Evaluating evidence from fossils and molecular clocks. Cold Spring Harbor Perspectives in Biology, 6.

    Google Scholar 

  • Farmer, M. A. (1993). Ultrastructure of Ditrichomonas honigbergii n. g., n. sp. (Parabasalia) and its relationships to amitochondrial protists. The Journal of Eukaryotic Microbiology, 40, 619–626.

    Article  Google Scholar 

  • Foà, A. (1905). Due nuovi flagellati parassiti. R. Accademia dei Lincei, Classe di scienze fisiche, matematiche e naturali, 14, 542–546.

    Google Scholar 

  • Geissinger, O., Herlemann, D. P. R., Morschel, E., Maier, U. G., & Brune, A. (2009). The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Applied and Environmental Microbiology, 75, 2831–2840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerbod, D., Noël, C., Dolan, M. F., Edgcomb, V. P., Kitade, O., Noda, S., Dufernez, F., Ohkuma, M., Kudo, T., Capron, M., et al. (2002). Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Devescovinidae and Calonymphidae (Trichomonadea). Molecular Phylogenetics and Evolution, 25, 545–556.

    Article  CAS  PubMed  Google Scholar 

  • Gerbod, D., Sanders, E., Moriya, S., Noël, C., Takasu, H., Fast, N. M., Delgado-Viscogliosi, P., Ohkuma, M., Kudo, T., Capron, M., et al. (2004). Molecular phylogenies of Parabasalia inferred from four protein genes and comparison with rRNA trees. Molecular Phylogenetics and Evolution, 31, 572–580.

    Article  CAS  PubMed  Google Scholar 

  • Germot, A., Philippe, H., & Le Guyader, H. (1996). Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 93, 14614–14617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gile, G. H., & Slamovits, C. H. (2012). Phylogenetic position of Lophomonas striata Bütschli (Parabasalia) from the hindgut of the cockroach Periplaneta americana. Protist, 163, 274–283.

    Article  PubMed  Google Scholar 

  • Gile, G. H., James, E. R., Scheffrahn, R. H., Carpenter, K. J., Harper, J. T., & Keeling, P. J. (2011). Molecular and morphological analysis of the family Calonymphidae with a description of Calonympha chia sp. nov., Snyderella kirbyi sp. nov., Snyderella swezyae sp. nov. and Snyderella yamini sp. nov. International Journal of Systematic and Evolutionary Microbiology, 61, 2547–2558.

    Article  PubMed  Google Scholar 

  • Gile, G. H., James, E. R., Okamoto, N., Carpenter, K. J., Scheffrahn, R. H., & Keeling, P. J. (2015). Molecular evidence for the polyphyly of Macrotrichomonas (Parabasalia: Cristamonadea) and a proposal for Macrotrichomonoides n. gen. The Journal of Eukaryotic Microbiology, 62, 494–504.

    Article  PubMed  Google Scholar 

  • Grassé, P. P. (1926). Contribution à l’étude des Flagellés parasites. Archives de Zoologie Expérimentale and Générale, 63, 345–602.

    Google Scholar 

  • Grassé P-P. 1952. Vol. 1 Fasc. 1: Phylogenie. Protozoaires. Généralités. Flagellés. In: Traité de Zoologie. Paris: Masson et Cie.

    Google Scholar 

  • Grassé, P.-P., & Hollande, A. (1951). Recherches sur les symbiotes des termites Hodotermitidae nord-africains. I. Le cycle évolutif du genre Kirbyina. II. Les Rhizomastigidae fam. nov. III. Polymastigotoides, nouveau genre de Trichomonadidae. Annales des Sciences Naturelles. Zoologie et biologie animale Série 11, 13, 1–32.

    Google Scholar 

  • Grassi, B. (1885). Intorno ad alcuni protozoi parassiti delle termiti. Atti della Accademia Gioenia di Science Naturali in Catania, 3, 235–240.

    Google Scholar 

  • Grassi, B., & Foà, A. (1911). Intorno ai protozoi dei termitidi. R. Accademia dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 5, 725–741.

    Google Scholar 

  • Gruby, D., & Delafond, H. M. O. (1843). Recherches sur des animalcules se développant en grand nombre dans 1′estomac et dans les intestins, pendant la digestion des animaux herbivores et carnivores. Comptes Rendus. Académie des Sciences Paris Serie D, 17, 1304–1308.

    Google Scholar 

  • Hampl, V., Čepička, I., Flegr, J., Tachezy, J., & Kulda, J. (2004). Critical analysis of the topology and rooting of the parabasalian 16S rRNA tree. Molecular Phylogenetics and Evolution, 32, 711–723.

    Article  CAS  PubMed  Google Scholar 

  • Hampl, V., Horner, D. S., Dyal, P., Kulda, J., Flegr, J., Foster, P. G., & Embley, T. M. (2005). Inference of the phylogenetic position of oxymonads based on nine genes: Support for Metamonada and Excavata. Molecular Biology and Evolution, 22, 2508–2518.

    Article  CAS  PubMed  Google Scholar 

  • Hampl, V., Vrlík, M., Čepička, I., Pecka, Z., Kulda, J., & Tachezy, J. (2006). Affiliation of Cochlosoma to trichomonads confirmed by phylogenetic analysis of the small-subunit rRNA gene and a new family concept of the order Trichomonadida. International Journal of Systematic and Evolutionary Microbiology, 56, 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Hampl, V., Čepička, I., Flegr, J., Tachezy, J., & Kulda, J. (2007). Morphological and molecular diversity of the monocercomonadid genera Monocercomonas, Hexamastix, and Honigbergiella gen. nov. Protist, 158, 365–383.

    Article  CAS  PubMed  Google Scholar 

  • Hampl, V., Hug, L., Leigh, J. W., Dacks, J. B., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2009). Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proceedings of the National Academy of Sciences of the United States of America, 106, 3859–3864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper, J. T., Gile, G. H., James, E. R., Carpenter, K. J., & Keeling, P. J. (2009). The inadequacy of morphology for species and genus delineation in microbial eukaryotes: An example from the parabasalian termite symbiont Coronympha. PloS One, 4, e6577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hollande, A., & Carruette-Valentin, J. (1971). Les attractophores, l’induction du fuseau, et la division cellulaire chez les hypermastigines: Étude infrastructurale et révision systématique des trichonymphines et des spirotrichonymphines. Protistologica, 7, 5–100.

    Google Scholar 

  • Hollande, A., & Carruette-Valentin, J. (1972). Le problème du centrosome et la cryptopleuromitose atractophorienne chez Lophomonas striata. Protistologica, 8, 267–278.

    Google Scholar 

  • Hollande A, Valentin J. 1968. Morphologie infrastructurale de Trichomonas (Trichomitopsis Kofoid & Swezy 1919) termopsidis, parasite intestinal de Termopsis angusticollis Walk. Critique de la notion de centrosome chez les polymastigines. Protistologica 4.

    Google Scholar 

  • Hollande, A., & Valentin, J. (1969a). Appareil de golgi, pinocytose, lysosomes, mitochondries, bacteries symbiotiques, atractophores et pleuromitose chez les hypermastigines du genre Joenia. Affinités entre Joeniides et Trichomonadines. Protistologica, 5, 39–86.

    Google Scholar 

  • Hollande, A., & Valentin, J. (1969b). La cinétide et ses dépendences dans le genre Macrotrichomonas Grassi. Considérations générales sur la sous famille des Macrotrichomonadinae. Protistologica, 5, 335–343.

    Google Scholar 

  • Hongoh, Y., Sato, T., Dolan, M. F., Noda, S., Ui, S., Kudo, T., & Ohkuma, M. (2007). The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Applied and Environmental Microbiology, 73, 6270–6276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hongoh, Y., Sharma, V. K., Prakash, T., Noda, S., Toh, H., Taylor, T. D., Kudo, T., Sakaki, Y., Toyoda, A., Hattori, M., et al. (2008). Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science, 322, 1108–1109.

    Article  CAS  PubMed  Google Scholar 

  • Honigberg, B. M. (1953). Structure, taxonomic status, and host list of Tritrichomonas batrachorum Perty. The Journal of Parasitology, 39, 191–208.

    Article  CAS  PubMed  Google Scholar 

  • Honigberg, B. M. (1963). Evolutionary and systematic relationships in the flagellate order Trichomonadida Kirby. The Journal of Protozoology, 10, 20–63.

    Article  CAS  PubMed  Google Scholar 

  • Honigberg, B. M. 1973. Remarks upon trichomonad affinities of certain parasitic protozoa. In: Progress in protozoology: abstracts of papers. p. 187.

    Google Scholar 

  • Honigberg, B. M. (1978). Trichomonads of veterinary importance. In J. P. Kreier (Ed.), Parasitic protozoa (Vol. 2, pp. 163–273). New York: Academic Press.

    Google Scholar 

  • Honigberg, B. M. (Ed.). (1990). Trichomonads parasitic in humans. New York: Springer.

    Google Scholar 

  • Honigberg, B. M., & Brugerolle, G. (1990). Structure. In B. M. Honigberg (Ed.), Trichomonads parasitic in humans (pp. 5–35). New York: Springer.

    Chapter  Google Scholar 

  • Honigberg, B. M., & Burgess, D. E. (1994). Trichomonads of importance in human medicine including Dientamoeba fragilis. In J. P. Kreier (Ed.), Parasitic Protozoa (pp. 1–109). New York: Academic Press.

    Google Scholar 

  • Honigberg, B. M., Mattern, C. F., & Daniel, W. A. (1968). Structure of Pentatrichomonas hominis (Davaine) as revealed by electron microscopy. The Journal of Protozoology, 15, 419–430.

    Article  CAS  PubMed  Google Scholar 

  • Honigberg, B. M., Mattern, C. F., & Daniel, W. A. (1971). Fine structure of the mastigont system in Tritrichomonas foetus (Riedmüller). The Journal of Protozoology, 18, 183–198.

    Article  CAS  PubMed  Google Scholar 

  • Honigberg, B. M., Daniel, W. A., & Mattern, C. F. (1972). Fine structure of Trichomitus batrachorum (Perty). The Journal of Protozoology, 19, 446–453.

    Article  CAS  PubMed  Google Scholar 

  • Hrdy, I., Hirt, R. P., Dolezal, P., Bardonová, L., Foster, P. G., Tachezy, J., & Embley, T. M. (2004). Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature, 432, 618–622.

    Google Scholar 

  • Ikeda-Ohtsubo, W., & Brune, A. (2009). Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’. Molecular Ecology, 18, 332–342.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda-Ohtsubo, W., Desai, M., Stingl, U., & Brune, A. (2007). Phylogenetic diversity of “Endomicrobia” and their specific affiliation with termite gut flagellates. Microbiology, 153, 3458–3465.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, J.-I., Noda, S., Hongoh, Y., Ui, S., & Ohkuma, M. (2008). Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite Coptotermes formosanus. Microbes and Environments, 23, 94–97.

    Article  PubMed  Google Scholar 

  • James, E. R., Okamoto, N., Burki, F., Scheffrahn, R. H., & Keeling, P. J. (2013). Cthulhu macrofasciculumque n. g., n. sp. and Cthylla microfasciculumque n. g., n. sp., a newly identified lineage of parabasalian termite symbionts. PLoS One, 8, e58509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janicki, C. (1915). Untersuchungen an parasitischen Flagellaten. II. Die Gattungen Devescovina, Parajoenia, Stephanonympha, Calonympha. Über den Parabasalapparat. Über Kernkonstitution und Kernteilung. Zeitschrift für Wissenschaftliche Zoologie, 112, 574–691.

    Google Scholar 

  • Jongwutiwes, S., Silachamroon, U., & Putaporntip, C. (2000). Pentatrichomonas hominis in empyema thoracis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 94, 185–186.

    Article  CAS  PubMed  Google Scholar 

  • Joyon, L., Mignot, J.-P., Kattar, M.-R., & Brugerolle, G. (1969). Compléments à l’étude des Trichomonadida et plus particulièrement de leur cinétide. Protistologica, 5, 309–326.

    Google Scholar 

  • Katz, L. A., & Grant, J. R. (2015). Taxon-rich phylogenomic analyses resolve the eukaryotic tree of life and reveal the power of subsampling by sites. Systematic Biology, 64, 406–415.

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J. (2002). Molecular phylogenetic position of Trichomitopsis termopsidis (Parabasalia) and evidence for the Trichomitopsiinae. European Journal of Protistology, 38, 279–286.

    Article  Google Scholar 

  • Keeling, P. J., & Palmer, J. D. (2000). Parabasalian flagellates are ancient eukaryotes. Nature, 405, 635–637.

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J., Poulsen, N., & McFadden, G. I. (1998). Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha. Journal of Eukaryotic Microbiology, 45, 643–650.

    Google Scholar 

  • Kent, W. S. (1882). A manual of the Infusoria (Vol. 1). Oxford: David Bogue.

    Google Scholar 

  • Kirby, H. (1929). Snyderella and Coronympha, two new genera of multinucleate flagellates from termites. University of California Publications in Zoology, 31, 417–432.

    Google Scholar 

  • Kirby, H. (1937). Host-parasite relations in the distribution of protozoa in termites. University of California Publications in Zoology, 41, 189–212.

    Google Scholar 

  • Kirby, H. (1942). Devescovinid flagellates of termites II. The geneera Caduceia and Macrotrichomonas. University of California Publications in Zoology, 45, 93–166.

    Google Scholar 

  • Kirby, H. (1947). Flagellate and host relationships of trichomonad flagellates. The Journal of Parasitology, 33, 214–228.

    Article  CAS  PubMed  Google Scholar 

  • Kitade, O. (2004). Comparison of symbiotic flagellate faunae between termites and a wood-feeding cockroach of the genus Cryptocercus. Microbes and Environments, 19, 215–220.

    Article  Google Scholar 

  • Kofoid, C., & Swezy, O. (1919). Flagellate affinities of Trichonympha. Proceedings of the National Academy of Sciences of the United States of America, 5, 9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolisko, M., Čepička, I., Hampl, V., Leigh, J., Roger, A. J., Kulda, J., Simpson, A. G. B., & Flegr, J. (2008). Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: Implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evolutionary Biology, 8, 205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • König, H., & Varma, A. (Eds.). (2006). The Intestinal Microorganisms of Termites and Other Invertebrates. Berlin: Springer.

    Google Scholar 

  • König, H., Li, L., Wenzel, M., & Fröhlich, J. (2005). Bacterial ectosymbionts which confer motility: Mixotricha paradoxa from the intestine of the Australian termite Mastotermes darwiniensis. Progress in Molecular and Subcellular Biology, 41, 77–96.

    Article  Google Scholar 

  • Kozloff, E. N. (1945). The morphology of Trichomonas limacis Dujardin. Journal of Morphology, 77, 53–61.

    Article  Google Scholar 

  • Kreier, J. P. (1991). Parasitic Protozoa. New York: Academic Press.

    Google Scholar 

  • Krishna, K., Grimaldi, D. A., Krishna, V., & Engel, M. S. (2013). Treatise on the Isoptera of the world. Bulletin of the American Museum of Natural History, 377, 1–2704.

    Article  Google Scholar 

  • Kubai, D. F. (1973). Unorthodox mitosis in Trichonympha agilis: kinetochore differentiation and chromosome movement. Journal of Cell Science, 13, 511–552.

    CAS  PubMed  Google Scholar 

  • Kudo, R. (1926a). Observations on Lophomonas blattarum, a flagellate inhabiting the colon of the cockroach, Blatta orientalis. Archiv für Protistenkunde, 53, 191–214.

    Google Scholar 

  • Kudo, R. (1926b). A cytological study of Lophomonas striata Bütschli. Archiv für Protistenkunde, 55, 504–517.

    Google Scholar 

  • Kutisova, K., Kulda, J., Čepička, I., Flegr, J., Koudela, B., Teras, J., & Tachezy, J. (2005). Tetratrichomonads from the oral cavity and respiratory tract of humans. Parasitology, 131, 309–319.

    Article  CAS  PubMed  Google Scholar 

  • Lankester, F., Sc, M., Sc, B. V., Kiyang, J. A., Ph, D., Unwin, S., Sc, B., & Sc, B. V. (2010). Dientamoeba fragilis: Initial evidence of pathogenicity in the Western Lowland Gorilla (Gorilla gorilla gorilla). Journal of Zoo and Wildlife Medicine, 41, 350–352.

    Article  PubMed  Google Scholar 

  • Lavette, A. (1970). Sur le genre Projoenia et les affinités des Joeniidae (Zooflagellés Metamonadina). Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences Paris, Serie D, 270, 1695–1698.

    Google Scholar 

  • Lawson, B., Cunningham, A. A., Chantrey, J., Hughes, L. A., John, S. K., Bunbury, N., Bell, D. J., & Tyler, K. M. (2011). A clonal strain of Trichomonas gallinae is the aetiologic agent of an emerging avian epidemic disease. Infection, Genetics and Evolution, 11, 1638–1645.

    Article  PubMed  Google Scholar 

  • Lee, J. J., Leedale, G. F., & Bradbury, P. (Eds.). (2000). An Illustrated Guide to the Protozoa. Lawrence: Allen Press.

    Google Scholar 

  • Leidy, J. (1877). On intestinal parasites of Termes flavipes. Proceedings of the Academy of Natural Sciences of Philadelphia, 29, 146–149.

    Google Scholar 

  • Leidy, J. (1881). Parasites of the termites. Journal of the Academy of Natural Sciences of Philadelphia, 8, 425–447.

    Google Scholar 

  • Leterrier, M., Morio, F., Renard, B. T., Poirier, A.-S., Miegeville, M., & Chambreuil, G. (2012). Trichomonads in pleural effusion: Case report, literature review and utility of PCR for species identification. New Microbiologica, 35, 83–87.

    PubMed  Google Scholar 

  • Levine, N. D., Corliss, J. O., Cox, F. E., Deroux, G., Grain, J., Honigberg, B. M., Leedale, G. F., Loeblich, A. R., Lom, J., Lynn, D., et al. (1980). A newly revised classification of the protozoa. The Journal of Protozoology, 27, 37–58.

    Article  CAS  PubMed  Google Scholar 

  • Li, R., & Gao, Z. C. (2016). Lophomonas blattarum infection or just the movement of ciliated epithelian cells? Chinese Medical Journal, 129, 739–742.

    Article  PubMed  PubMed Central  Google Scholar 

  • Light, S. (1927). Kofoidia, a new flagellate, from a California termite. University of California Publications in Zoology, 29, 467–492.

    Google Scholar 

  • Lindmark, D. G., & Müller, M. (1973). Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. The Journal of Biological Chemistry, 248, 7724–7729.

    CAS  PubMed  Google Scholar 

  • Lingle, W. L., & Salisbury, J. L. (1995). Ultrastructure of the parabasalid protist Holomastigotoides. Journal of Eukaryotic Microbiology, 42, 490–505.

    Article  Google Scholar 

  • Mackinnon, D. L. (1913). Protists parasitic in the larva of the crane-fly, Tipula sp. Parasitology, 5, 175–189.

    Article  Google Scholar 

  • Malik, S.-B., Pightling, A. W., Stefaniak, L. M., Schurko, A. M., & Logsdon, J. M. (2008). An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PloS One, 3, e2879.

    Article  PubMed Central  Google Scholar 

  • Martin, W. F., & Müller, M. (Eds.). (2007). Origin of Mitochondria and Hydrogenosomes. New York: Springer.

    Google Scholar 

  • Mattern, C. F., Honigberg, B. M., & Daniel, W. A. (1967). The mastigont system of Trichomonas gallinae (Rivolta) as revealed by electron microscopy. The Journal of Protozoology, 14, 320–339.

    Article  CAS  PubMed  Google Scholar 

  • Mattern, C. F. T., & Honigberg, B. M. (1971). Observations on undulatory motion of costa in zooflagellate Trichomitopsis termopsidis. Transactions of the American Microscopical Society, 90, 309–313.

    Article  CAS  PubMed  Google Scholar 

  • McDougald, L. R., & Reid, W. M. (1978). Histomonas meleagridis and relatives. In Parasitic Protozoa (pp. 139–161). New York: Academic Press.

    Google Scholar 

  • Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., Frandsen, P. B., Ware, J., Flouri, T., Beutel, R. G., et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346, 763–767.

    Article  CAS  PubMed  Google Scholar 

  • Moestrup, Ø. (2000). The flagellate cytoskeleton: Introduction of a general terminology for microtubular flagellar roots in protists. In The flagellates: Unity, diversity and evolution (pp. 69–94). London/New York: Taylor.

    Google Scholar 

  • Morin-Adeline, V., Mueller, K., Conesa, A., & Šlapeta, J. (2015). Comparative RNA-seq analysis of the Tritrichomonas foetus PIG30/1 isolate from pigs reveals close association with Tritrichomonas foetus BP-4 isolate “bovine genotype.”. Veterinary Parasitology, 212, 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima, H., Hongoh, Y., Noda, S., Yoshida, Y., Usami, R., Kudo, T., & Ohkuma, M. (2006). Phylogenetic and morphological diversity of Bacteroidales members associated with the gut wall of termites. Bioscience, Biotechnology, and Biochemistry, 70, 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Nalepa, C. A. (1984). Colony composition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behavioral Ecology and Sociobiology, 14, 273–279.

    Article  Google Scholar 

  • Nie, D. (1950). Morphology and taxonomy of the intestinal protozoa of the guinea-pig, Cavia porcella. Journal of Morphology, 86, 381–493.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, M. H., & Diemer, N. H. (1976). The size, density, and relative area of chromatic granules (“hydrogenosomes”) in Trichomonas vaginalis Donné from cultures in logarithmic and stationary growth. Cell and Tissue Research, 167, 461–465.

    Article  CAS  PubMed  Google Scholar 

  • Noda, S., Inoue, T., Hongoh, Y., Kawai, M., Nalepa, C. A., Vongkaluang, C., Kudo, T., & Ohkuma, M. (2006). Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environmental Microbiology, 8, 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Noda, S., Kitade, O., Inoue, T., Kawai, M., Kanuka, M., Hiroshima, K., Hongoh, Y., Constantino, R., Uys, V., Zhong, J., et al. (2007). Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Molecular Ecology, 16, 1257–1266.

    Article  CAS  PubMed  Google Scholar 

  • Noda, S., Mantini, C., Bordereau, C., Kitade, O., Dolan, M. F., Viscogliosi, E., & Ohkuma, M. (2009). Molecular phylogeny of parabasalids with emphasis on the order Cristamonadida and its complex morphological evolution. Molecular Phylogenetics and Evolution, 52, 217–224.

    Article  CAS  PubMed  Google Scholar 

  • Noda, S., Mantini, C., Meloni, D., Inoue, J.-I., Kitade, O., Viscogliosi, E., & Ohkuma, M. (2012). Molecular phylogeny and evolution of parabasalia with improved taxon sampling and new protein markers of actin and elongation factor-1α. PloS One, 7, e29938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noël, C., Noda, S., Mantini, C., Dolan, M. F., Moriya, S., Delgado-Viscogliosi, P., Kudo, T., Capron, M., Pierce, R. J., Ohkuma, M., et al. (2007). Molecular phylogenetic position of the genera Stephanonympha and Caduceia (Parabasalia) inferred from nuclear small subunit rRNA gene sequences. Journal of Eukaryotic Microbiology, 54, 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Odelson, D. A., & Breznak, J. A. (1985). Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Applied and Environmental Microbiology, 49, 614–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkuma, M. (2008). Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends in Microbiology, 16, 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma, M., Noda, S., Hattori, S., Iida, T., Yuki, M., Starns, D., Inoue, J., Darby, A. C., & Hongoh, Y. (2015). Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proceedings of the National Academy of Sciences of the United States of America, 112, 10224–10230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkuma, M., Ohtoko, K., Iida, T., Tokura, M., Moriya, S., Usami, R., Horikoshi, K., & Kudo, T. (2000). Phylogenetic identification of hypermastigotes, Pseudotrichonympha, Spirotrichonympha, Holomastigotoides, and parabasalian symbionts in the hindgut of termites. Journal of Eukaryotic Microbiology, 47, 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma, M., Saita, K., Inoue, T., & Kudo, T. (2007a). Comparison of four protein phylogeny of parabasalian symbionts in termite guts. Molecular Phylogenetics and Evolution, 42, 847–853.

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma, M., Sato, T., Noda, S., Ui, S., Kudo, T., & Hongoh, Y. (2007b). The candidate phylum “Termite Group 1” of bacteria: Phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiology Ecology, 60, 467–476.

    Article  CAS  PubMed  Google Scholar 

  • Parfrey, L. W., Lahr, D. J. G., Knoll, A. H., & Katz, L. A. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences, 108, 13624–13629.

    Article  CAS  Google Scholar 

  • Pecka, Z., Nohýnková, E., & Kulda, J. (1996). Ultrastructure of Cochlosoma anatis Kotlán, 1923 and taxonomic position of the family Cochlosomatidae (Parabasala: Trichomonadida). European Journal of Protistology, 32, 190–201.

    Article  Google Scholar 

  • Pereira-Neves, A., & Benchimol, M. (2009). Tritrichomonas foetus: Budding from multinucleated pseudocysts. Protist, 160, 536–551.

    Google Scholar 

  • Pereira-Neves, A., Ribeiro, K. C., & Benchimol, M. (2003). Pseudocysts in trichomonads – New insights. Protist, 154, 313–329.

    Article  PubMed  Google Scholar 

  • Perty, M. (1852). Zur Kenntniss kleinster Lebensformen. Bern: Jent und Reinert.

    Google Scholar 

  • Poinar, G. O. (2009). Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasites & Vectors, 2, 12.

    Article  Google Scholar 

  • Raikov, I. B. (1995). Meiosis in protists: Recent advances and persisting problems. European Journal of Protistology, 31, 1–7.

    Article  Google Scholar 

  • Ritter, H., Inoué, S., & Kubai, D. (1978). Mitosis in Barbulanympha. I. Spindle structure, formation, and kinetochore engagement. The Journal of Cell Biology, 77, 638–654.

    Article  PubMed  Google Scholar 

  • Rösel, J., Radek, R., & Hausmann, K. (1996). Ultrastructure of the trichomonad flagellate Stephanonympha nelumbium. Journal of Eukaryotic Microbiology, 43, 505–511.

    Article  Google Scholar 

  • Sato, T., Hongoh, Y., Noda, S., Hattori, S., Ui, S., & Ohkuma, M. (2009). Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environmental Microbiology, 11, 1007–1015.

    Google Scholar 

  • Sato, T., Kuwahara, H., Fujita, K., Noda, S., Kihara, K., Yamada, A., Ohkuma, M., & Hongoh, Y. (2014). Intranuclear verrucomicrobial symbionts and evidence of lateral gene transfer to the host protist in the termite gut. The ISME Journal, 8, 1008–1019.

    Article  CAS  PubMed  Google Scholar 

  • Schuster, F. L. (1968). Ultrastructure of Histomonas meleagridis (Smith) Tyzzer, a parasitic amebo-flagellate. Journal of Parasitology, 54, 725.

    Google Scholar 

  • Simpson, A. G. B. (2003). Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). International Journal of Systematic and Evolutionary Microbiology, 53, 1759–1777.

    Article  PubMed  Google Scholar 

  • Šlapeta, J., Müller, N., Stack, C. M., Walker, G., Lew-Tabor, A., Tachezy, J., & Frey, C. F. (2012). Comparative analysis of Tritrichomonas foetus (Riedmüller, 1928) cat genotype, T. foetus (Riedmüller, 1928) cattle genotype and Tritrichomonas suis (Davaine, 1875) at 10 DNA loci. International Journal for Parasitology, 42, 1143–1149.

    Article  PubMed  CAS  Google Scholar 

  • Smejkalová, P., Petrželková, K. J., Pomajbíková, K., Modrý, D., & Čepička, I. (2012). Extensive diversity of intestinal trichomonads of non-human primates. Parasitology, 139, 92–102.

    Article  PubMed  Google Scholar 

  • Smejkalová, P., Votýpka, J., Lukeš, J., & Čepička, I. (2014). First report on trichomonads from true bugs. Folia Parasitologica (Prague), 61, 189–194.

    Article  Google Scholar 

  • Stein F. 1860. Über Leucophrys patula und über zwei neue Infusoriengattungen Gyrocoris und Lophomonas. Sitzungsberichte der Königl. Böhmischen Gesellschaft der Wissenschaften Prag:44–50.

    Google Scholar 

  • Stein, F. (1878). Der Organismus der Infusionsthiere. Liepzig: Verlag Von Wilhelm Engelmann.

    Google Scholar 

  • Strassert, J. F. H., Desai, M. S., Radek, R., & Brune, A. (2010). Identification and localization of the multiple bacterial symbionts of the termite gut flagellate Joenia annectens. Microbiology, 156, 2068–2079.

    Article  CAS  PubMed  Google Scholar 

  • Tachezy, J. (Ed.). (2008). Hydrogenosomes and mitosomes: Mitochondria of anaerobic eukaryotes. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Tai, V., Carpenter, K. J., Weber, P. K., Nalepa, C. A., Perlman, S. J., & Keeling, P. J. 2016. Genome evolution and nitrogen-fixation in bacterial ectosymbionts of a protist inhabiting wood-feeding cockroaches. Applied and Environmental Microbiology.

    Google Scholar 

  • Tai, V., Gile, G. H., Pan, J., James, E. R., Carpenter, K. J., Scheffrahn, R. H., & Keeling, P. J. (2014). The Phylogenetic Position of Kofoidia loriculata (Parabasalia) and its implications for the evolution of the Cristamonadea. Journal of Eukaryotic Microbiology, 62, 255–259.

    Article  PubMed  CAS  Google Scholar 

  • Tai, V., James, E. R., Nalepa, C. A., Scheffrahn, R. H., Perlman, S. J., & Keeling, P. J. (2015). The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Applied and Environmental Microbiology, 81, 1059–1070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamm, S., & Tamm, S. L. (1973). The fine structure of the centriolar apparatus and associated structures in the flagellates Deltotrichonympha and Koruga. II. Division. The Journal of Protozoology, 20, 245–252.

    Article  Google Scholar 

  • Tamm, S. L. S. L. (1982). Flagellated ectosymbiotic bacteria propel a eucaryotic cell. The Journal of Cell Biology, 94, 697–709.

    Article  CAS  PubMed  Google Scholar 

  • Turner, G., & Müller, M. (1983). Failure to detect extranuclear DNA in Trichomonas vaginalis and Tritrichomonas foetus. The Journal of Parasitology, 69, 234–236.

    Article  CAS  PubMed  Google Scholar 

  • Van Der Giezen, M., Tovar, J., & Clark, C. G. (2005). Mitochondrion-derived organelles in protists and fungi. International Review of Cytology, 244, 175–225.

    Article  CAS  PubMed  Google Scholar 

  • Wenzel, M., Radek, R., Brugerolle, G., & König, H. (2003). Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. European Journal of Protistology, 39, 11–23.

    Article  Google Scholar 

  • Wexler-Cohen, Y., Stevens, G. C., Barnoy, E., van der Bliek, A. M., & Johnson, P. J. (2014). A dynamin-related protein contributes to Trichomonas vaginalis hydrogenosomal fission. The FASEB Journal, 28, 1113–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamin, M. A. (1978). Axenic cultivation of the flagellate Tricercomitus divergens Kirby from the termite Cryptotermes cavifrons Banks. The Journal of Parasitology, 64, 1122–1123.

    Article  Google Scholar 

  • Yao, C., & Köster, L. S. (2015). Tritrichomonas foetus infection, a cause of chronic diarrhea in the domestic cat. Veterinary Research, 46, 35.

    Google Scholar 

  • Yubuki, N., Čepička, I., & Leander, B. S. (2016). Evolution of the microtubular cytoskeleton (flagellar apparatus) in parasitic protists. Molecular and Biochemical Parasitology.

    Google Scholar 

  • Yubuki, N., Céza, V., Čepička, I., Yabuki, A., Inagaki, Y., Nakayama, T., Inouye, I., & Leander, B. S. (2010). Cryptic diversity of free-living parabasalids, Pseudotrichomonas keilini and Lacusteria cypriaca n. g., n. sp., as inferred from small subunit rDNA sequences. Journal of Eukaryotic Microbiology, 57, 554–561.

    Article  CAS  PubMed  Google Scholar 

  • Yubuki, N., & Leander, B. S. (2013). Evolution of microtubule organizing centers across the tree of eukaryotes. The Plant Journal, 75, 230–244.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, N. (2003). Microorganisms in the gut of beetles: Evidence from molecular cloning. Journal of Invertebrate Pathology, 84, 226–233.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Táborský, P., Silberman, J. D., Pánek, T., Čepička, I., & Simpson, A. G. B. (2015). Marine isolates of Trimastix marina form a plesiomorphic deep-branching lineage within Preaxostyla, separate from other known trimastigids (Paratrimastix n. gen.). Protist, 166, 468–491.

    Article  PubMed  Google Scholar 

  • Zubáčová, Z., Cimbůrek, Z., & Tachezy, J. (2008). Comparative analysis of trichomonad genome sizes and karyotypes. Molecular and Biochemical Parasitology, 161, 49–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Guy Brugerolle for the kind permission to use the micrograph featured in Fig. 6c; the Department of Special Collections and University Archives of the W.E.B. Du Bois Library, University of Massachusetts, Amherst, for the use of the David Chase micrographs in Fig. 7ac; Dale Callaham for the micrographs used in Fig. 7d, e; Michael Kotyk for micrographs 3A–D and G; Jaroslav Kulda for lending us protargol preparations of Monocercomonas, Tritrichomonas, Parahistomonas, Histomonas, Dientamoeba, and Trichomonas; and Johana Rotterová for creating Fig. 5a, b. This work was supported by the Czech Science Foundation (project GA14-14105S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Čepička .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Čepička, I., Dolan, M.F., Gile, G.H. (2017). Parabasalia. In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_9

Download citation

Publish with us

Policies and ethics