Advertisement

Labyrinthulomycota

  • Reuel M. Bennett
  • D. Honda
  • Gordon W. BeakesEmail author
  • Marco ThinesEmail author
Reference work entry

Abstract

The Straminipila are characterized by their anterior flagellum with tripartite hairs and form a well-supported monophyletic branch of the larger Straminipila/Alveolata/Rhizaria (SAR) superkingdom. This is an account of the molecular systematics and phylogeny of osmotrophic and phagotrophic lineages of the Straminipila, comprising the slime nets and their thraustochytrid allies, as well as some lesser known lineages. The phylum Labyrinthulomycota s. lat. contains two main clades, one of which approximates to holocarpic thraustochytrids and the other to the labyrinthulids and aplanochytrids. Together with the flagellate bicosoecids and the protermonads and opalinids, they form a monophyletic clade that is sister to the golden-brown algae and Oomycota. The systematics of the Labyrinthulomycota s. lat. is still in flux as recent studies employing environmental barcoding have revealed the presence of diverse lineages not branching within genera characterized in terms of their morphology. The current review deals primarily with the two major lineages of the Labyrinthulomycota s. lat. and discusses other lineages only briefly, due to the scarce knowledge about these organisms. Characteristics associated with zoosporogenesis and sexual reproduction are discussed in relation to other members of the Straminipila.

Keywords

Amoebae Amphitremida Aplanochytrids Bothrosome DHA (docosahexaenoic acids) Diplophrys Eelgrass wasting disease Ecology Ectoplasmic net Labyrinthulida Marine decomposers Seagrass wasting disease Scale coats Schizochytrium Slime nets Thraustochytrida Stramenopiles Straminipila Zoospore ultrastructure 

Notes

Acknowledgments

We thank various publishers for allowing the inclusion of their illustrative material. M. Thines has been supported by the excellent initiative of the federal state of Hessen (LOEWE), in the framework of the research cluster for Integrative Fungal Research (IPF). R. M. Bennett has been supported by a fellowship from KAAD and the Studienstiftung Mykologie.

References

  1. Adl, S. M., Simpson, A. G., Farmer, M. A., Andersen, R. A., Andersen, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G., Fensome, R. A., Frederico, S., James, T. Y., Karpov, S., Kurgens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, Ø., Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W., & Taylor, M. F. J. R. (2005). The new higher level classification of the eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology, 52, 399–451.PubMedCrossRefGoogle Scholar
  2. Amon, J. P. (1978). Thraustochytrids and labyrinthulids of terrestrial, aquatic and hypersaline environments of the great salt lake, USA. Mycologia, 70, 1299–1301.CrossRefGoogle Scholar
  3. Andersen, R. A., Barr, D. J. S., Lynn, D. H., Melkonian, M., Moestrup, O., & Sleigh, M. A. (1991). Terminology and nomenclature of the cytoskeletal elements associated with the flagellar/ciliary apparatus in protists. Protoplasma, 164, 1–8.CrossRefGoogle Scholar
  4. Anderson, O. R., & Cavalier-Smith, T. (2012). Ultrastructure of Diplophrys parva, a new small freshwater species, and a revised analysis of Labyrinthulea (Heterokonta). Acta Protozoologica, 51, 291–304.Google Scholar
  5. Armiger, L. C. (1964). An occurrence of Labyrinthula in New Zealand Zostera. New Zealand Journal of Botany, 2, 3–9.CrossRefGoogle Scholar
  6. Aschner, M. (1958). Isolation of Labyrinthula macrocystis from soil. Bulletin of the Research Council of Israel, 6D, 174–179.Google Scholar
  7. Azevedo, C., & Corral, L. (1997). Some ultrastructural observations of a thraustochytrid (Protoctista, Labyrinthulomycota) from clam Ruditapes descussatus (Mollusca, Bivalva). Diseases of Aquatic Organisms, 31, 73–78.Google Scholar
  8. Bahnweg, G. (1979a). Studies on the physiology of Thraustochytriales. I. Carbon nutrition of Thraustochytrium spp., ecology of thraustochytrids and labyrinthulids 141 Schizochytrium sp., Japonochytrium sp., Ulkenia spp. and Labyrinthuloides spp. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 17, 269–273.Google Scholar
  9. Bahnweg, G. (1979b). Studies on the physiology of Thraustochytriales. II. Growth requirements and nitrogen nutrition of Thraustochytrium spp., Schizochytrium sp., Japonochytrium sp., Ulkenia spp. and Labyrinthuloides spp. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 17, 245–268.Google Scholar
  10. Bahnweg, G., & Jäckle, I. (1986). A new approach to taxonomy of the Thraustochytriales and Labyrinthulales. In S. T. Moss (Ed.), The biology of marine fungi (pp. 131–140). Cambridge: Cambridge University Press.Google Scholar
  11. Bahnweg, G., & Sparrow, F. K. (1974). Occurrence, distribution and kinds of zoosporic fungi in subantartic and Antarctic waters. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 5, 149–157.Google Scholar
  12. Barr, D. J. S. (1981). The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi. Biosystems, 14, 359–370.PubMedCrossRefGoogle Scholar
  13. Barr, D. J. S., & Allan, P. M. E. (1985). A comparison of the flagellar apparatus in Phytophthora, Saprolegnia, Thraustochytrium, and Rhizidiomyces. Canadian Journal of Botany, 63, 138–154.CrossRefGoogle Scholar
  14. Barr, D. J. S., & Désaulniers, N. L. (1989). The flagellar apparatus of the oomycetes and hyphochytriomycetes. In J. C. Green, B. S. C. Leadbeater, & W. L. Diver (Eds.), The chromophyte algae, problems and perspectives (pp. 343–355). Oxford: Oxford University Press.Google Scholar
  15. Baurain, D., Brinkman, H., Petersen, J., Rodriguez-Ezpeleta, N., Stechman, A., Demoulin, V., Roger, A. J., Burger, G., Lang, B. F., & Philippe, H. (2010). Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes and stramenopiles. Molecular Biology and Evolution, 27, 1698–1709.PubMedCrossRefGoogle Scholar
  16. Beakes, G. W., Glockling, S. L., & Sekimoto, S. (2012). The evolutionary phylogeny of the oomycete “fungi”. Protoplasma, 249, 3–19.PubMedCrossRefGoogle Scholar
  17. Beakes, G. W., Honda, D., & Thines, M. (2014). Systematics of Straminipila, Labyrinthulomycota, Hyphochytriomycota, and Oomycota. In D. J. McLaughlin & J. W. Spatafora (Eds.), The Mycota – Systematics and evolution Part A VII (pp. 39–97). Heidelberg: Springer.Google Scholar
  18. Bigelow, D. M., Olsen, M. W., & Gilbertson, R. L. (2005). Labyrinthula terrestris sp. nov., a new pathogen of turf grass. Mycologia, 97, 185–190.PubMedCrossRefGoogle Scholar
  19. Bockelmann, A. C., Beining, K., & Reusch, T. B. (2012). Widespread occurrence of endophytic Labyrinthula spp. in northern European eelgrass Zostera marina beds. Marine Ecology Progress Series, 445, 109–116.CrossRefGoogle Scholar
  20. Bongiorni, L. (2012). Thraustochytrids, a neglected component of oganic matter descompsition and food webs in marine sediments. In C. Raghukumar (Ed.), Biology of marine fungi, Progress in molecular and subcellular biology (Vol. 53, pp. 1–13).CrossRefGoogle Scholar
  21. Booth, T. (1971). Occurrence and distribution of some zoosporic fungi from soils of hibben and Moresby Islands, Queen Charlotte Islands. Canadian Journal of Botany, 49, 951–965.CrossRefGoogle Scholar
  22. Bower, S. M. (1987a). Labyrinthuloides haliotidis n. sp. (Protozoa, Layrinthulomorpha), a pathogenic parasite of of small juvenile abalone in a British Columbia mariculture facility. Canadian Journal of Zoology, 65, 2013–2020.CrossRefGoogle Scholar
  23. Bower, S. M. (1987b). Artificial culture of Labyrinthuloides haliotidis (Protozoa, Labyrinthomorpha), a pathogenic parasite of abalone. Canadian Journal of Botany, 65, 2013–2020.Google Scholar
  24. Bower, S. M., McLean, N., & Whitaker, D. J. (1989). Mechanism of infection by Labyrinthuloides haliotidis (Protozoa, Labyrinthomorpha), a parasite of abalone (Haliotis kamtschatka) (Mollusca, Gastropoda). Journal of Invertebrate Pathology, 53, 401–409.Google Scholar
  25. Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R. P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J. A., Brownlee, C., Cadoret, J.-P., Chiovitti, A., Choi, C. J., Coesel, S., De Martino, A., Detter, J. C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M. J. J., Jenkins, B. D., Jiroutova, K., Jorgensen, R. E., Joubert, Y., Kaplan, A., Kröger, N., Kroth, P. G., La Roche, J., Lindquist, E., Lommer, M., Martin-Jézéque, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L. K., Montsant, A., Oudot-Le Secq, M.-P., Napoli, C., Obornik, M., Parker, M. S., Petit, J. L., Porcel, B. M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M. R., Taylor, A. R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J., Armbrust, E. V., Green, B. R., de Peer, Y. V., & Grigoriev, I. V. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456, 239–244.PubMedCrossRefGoogle Scholar
  26. Bremer, G. B. (1976). The ecology of marine lower fungi. In E. B. G. Jones (Ed.), Advances in aquatic mycology (pp. 313–333). London: Elek Science.Google Scholar
  27. Brown, J. W., & Sorhannus, U. (2010). A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta), substantive underestimation of putative fossil ages. PloS One, 5, e12759. doi:10.1371/journal.pone.0012759.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Burki, F., Shalchian-Tabrizi, K., & Pawlowski, J. (2008). Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biology Letters, 4, 366–369.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cavalier-Smith, T., & Chao, E. E. Y. (2006). Phylogeny and megasystematics of phagotrophic heterokonts (Kingdom Chromista). Journal of Molecular Evolution, 62, 388–420.PubMedCrossRefGoogle Scholar
  30. Chang, K. J. L., Dunstan, G. A., Abell, G. C., Clementson, L. A., Blackburn, S. I., Nichols, P. D., & Koutoulis, A. (2012). Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Applied Microbiology and Biotechnology, 93, 2215–2231.CrossRefGoogle Scholar
  31. Cienkowski, L. (1867). Ueber den Bau und die Entwickelung der Labyrinthuleen. Archiv für Mikroskopishce Anatomie, 3, 274–310.CrossRefGoogle Scholar
  32. Colaco, A., Raghukumar, C., Mohandass, C., Cardigos, F., & Santos, R. S. (2006). Effect of shallow water venting in Azores on a few marine biota. Cahiers de Biologie Marine, 47, 359–364.Google Scholar
  33. Collado-Mercado, E., Radway, J. C., & Collier, J. L. (2010). Novel uncultivated labyrinthulomycetes reveales by 18S rDNA sequences from seawater and sediment samples. Aquatic Microbial Ecology, 58, 215–228.CrossRefGoogle Scholar
  34. Collier, J. (2012). Why sequence four Labrinthulomycete species? JGI DOE Joint Genome Institute. http://www.jgi.doe.gov/sequencing/why/labrinthulomycete.html. Accessed 23 Sept 2012.
  35. Craven, K. D., Peterson, P. D., Windham, D. E., Mitchell, T. K., & Martin, S. B. (2005). Molecular identification of the turf grass rapid blight pathogen. Mycologia, 97, 160–166.PubMedCrossRefGoogle Scholar
  36. Damare, V., & Raghukumar, S. (2008). Abundance of thraustochytrids and bacteria in the equatorial Indian Ocean, in relation to transparent exopolymreic particles (TEPs). FEMS Microbiology Ecology, 65, 40–49.PubMedCrossRefGoogle Scholar
  37. Damare, V., & Raghukumar, S. (2010). Association of the stramenopilan proitst, the aplanochytrids, with zooplankton of the equatorial Indian Ocean. Marine Ecology Progress Series, 399, 53–68.CrossRefGoogle Scholar
  38. Dick, M. W. (2001). Straminipilous fungi (670 pp). Dordrecht: Kluwer.CrossRefGoogle Scholar
  39. Diéz, B., Pedrós-Alió, C., & Massana, R. (2001). Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Applied and Environmental Microbiology, 67, 2932–2941.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Doenoeud, F., Roussel, M., Noel, B., Wawrzyniak, I., Da Silva, C., Diogon, M., Viscogliosi, E., Brochier-Armanet, C., Couloux, A., Poulain, J., Segurens, B., Anthouard, V., Texier, C., Blot, N., Poirier, P., Ng, G. C., Tan, K. S., Artiguenave, F., Jaillon, O., Aury, J. M., Delbac, F., Wincker, P., Vivarès, C. P., & El Alaoui, H. (2011). Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biology, 12, R29. doi:10.1186/gb-2011-12-3-r29.CrossRefGoogle Scholar
  41. Dorrell, R. G., & Smith, A. G. (2011). Do red and green make brown? Perspectives on plastid acquisitions within chromalveolates. Eukaryotic Cell, 10, 856–868. doi:10.1128/EC.00326-10.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Douhan, G. W., Olsen, M. W., Herrell, A., Winder, C., Wong, F., & Entwistle, K. (2009). Genetic diversity in Labyrinthula terrestris, a newly emergent plant pathogen, and the discovery of new Labyrinthulid organism. Mycological Research, 113, 1192–1199.PubMedCrossRefGoogle Scholar
  43. Dykova, I., Fiala, I., Dvorakova, H., & Peckova, H. (2008). Living together, the marine amoeba Thecamoeba hilla Shaeffer, 1926 and its endosymbiont Labyrinthula sp. European Journal of Protistology, 44, 308–316.PubMedCrossRefGoogle Scholar
  44. Dykstra, M. J., & Porter, D. (1984). Diplophrys marina, a new scale-forming marine protist with labyrinthulid affinities. Mycologia, 76, 626–632.CrossRefGoogle Scholar
  45. Evans, O., Paul-Pont, I., & Whittington, R. J. (2017). Detection of ostreid herpesvirus 1 microvariant DNA in aquatic invertebrate species, sediment and other samples collected from the Georges River estuary, New South Wales, Australia. Diseases of Aquatic Organisms, 122, 247–255.PubMedCrossRefGoogle Scholar
  46. Fan, K. W., & Chen, F. (2006). Production of high value products by marine microalgae thraustochytrids. In S. T. Yang (Ed.), Bioprocessing for value-added products from renewable resources (pp. 293–323). Amsterdam: Elsevier BV.Google Scholar
  47. Fan, K. W., Vrijmoed, L. L. P., & Jones, E. B. G. (2002). Physiological studies of subtropical mangrove thraustochytrids. Botanica Marina, 45, 50–57.CrossRefGoogle Scholar
  48. Fan, K. W., Tsunchiro, A., Chen, F., & Jiang, Y. (2010). Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World Journal of Microbiology and Biotechnology, 26, 1303–1309.Google Scholar
  49. FioRito, R., Leander, C., & Leander, B. (2016). Characterization of three novel species of Labyrinthulomycota isolated from ochre sea stars (Pisaster ochraceus). Marine Biology, 163, 170. doi:10.1007/s00227-016-2944-5.CrossRefGoogle Scholar
  50. Gaertner, A. (1968). Eine method des quantitativen Nachweises niederer mit pollen koderbarer pilze in meerwasser und im sediment. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 3, 75–92.Google Scholar
  51. Gaertner, A. (1979). Some fungal parasites found in the diatom populations of the Rosfjord area (South Norway) during March 1979. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 18, 92–33.Google Scholar
  52. Garcia-Verdrenne, A. E., Groner, M., Page-Karjian, A., Siegmund, G. F., Singhal, S., Sziklay, J., & Robert, S. (2013). Development of genomic resources for a thraustochytrid pathogen and investigation of temperature influences on gene expression. PloS One, 8, e74196. doi:10.1371/journal.pone.0074196.CrossRefGoogle Scholar
  53. Garcias-Bonet, N., Sherman, T. D., Duarte, C. M., & Marba, N. (2011). Distribution and pathogenicity of the protist Labyrinthula sp. in western Mediterranean seagrass meadows. Estauries and Coasts, 34, 1161. doi:10.1007/s12237-011-9416-4.CrossRefGoogle Scholar
  54. Goldstein, S. (1973). Zoosporic marine fungi (Thraustochytriaceae and Dermocystidiaceae). Annual Review of Microbiology, 27, 13–25.PubMedCrossRefGoogle Scholar
  55. Gomaa, F., Mitchell, E. A. D., & Lara, E. (2013). Amphitremida (Poche, 2013) is a new major, ubiquitous Labyrinthulomycete clade. PloS One, 8, e53046. doi:10.1371/journal.pone.0053046.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hackett, J. D., Yoon, H. S., Li, S., Reyes-Prieto, A., Rümmele, S. E., & Bhattacharya, D. (2007). Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromalveolates. Molecular Biology and Evolution, 24, 1702–1713.PubMedCrossRefGoogle Scholar
  57. Harel, M., Ben-Dov, E., Rasoulouniriana, D., Siboni, N., Kramarsky-Winter, E., Loya, Y., Barak, Z., Wiesman, Z., & Kushmaro, A. (2008). A new thraustochytrid, strain Fng1, isolated from the surface mucus of the hermatypic coral Fungia granulosa. FEMS Microbiology Ecology, 64, 378–387.Google Scholar
  58. Hatai, K. (2012). Diseases of fish and shellfish caused by marine fungi. In C. Raghukumar (Ed.), Biology of marine fungi, Progress in molecular and subcellular biology (Vol. 53, pp. 15–52). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  59. Höhnk, W., & Ulken, A. (1979). Pilze aus marinen schwämmen. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 17, 199–204.Google Scholar
  60. Honda, D., Yokochi, T., Nakahara, T., Ragukumar, S., Nakagiri, A., Schaimann, K., & Higashirhara, T. (1999). Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of the 18S ribosomal RNA gene. Journal of Eukaryotic Microbiology, 46, 637–647.PubMedCrossRefGoogle Scholar
  61. Iwata, I., Kimura, K., Tomaru, Y., Motomura, T., Koike, K., Koike, K., & Honda, D. (2016). Bothrosome formation in Schizochytrium aggregatum (Labyrinthulomycetes, stramenopiles) during zoospore settlement. Protist. doi:10.1016/j.protis.2016.12.002.PubMedGoogle Scholar
  62. Jain, R., Raghukumar, S., Tharanathan, R., & Bhosle, N. B. (2005). Extracellular polysaccharide production by thraustochytrid protists. Marine Biotechnology, 7, 184–192.PubMedCrossRefGoogle Scholar
  63. Jiang, R. H. Y., & Tyler, B. M. (2012). Mechanisms and evolution of virulence in oomycetes. Annual Review of Phytopathology, 50, 295–318. doi:10.1146/annrev-phyto-081211-172912.PubMedCrossRefGoogle Scholar
  64. Jones, E. B. G., & Harrison, J. L. (1976). Physiology of marine phycomycetes. In E. B. G. Jones (Ed.), Recent advances in aquatic mycology (pp. 261–278). London: Elek Science.Google Scholar
  65. Jones, G. M., & O’Dor, R. K. (1983). Ultrastructual observations on a thraustochytrid fungus parasitic in the gills of squid (Illex illecebrosus Lesueur). Journal of Parasitology, 69, 903–911.CrossRefGoogle Scholar
  66. Jones, M. D. M., Forn, I., Gadelha, C., Egan, M. J., Bass, D., Masana, R., & Richards, T. A. (2011). Discovery of novel intermediate forms redefines the fungal tree of life. Nature, 474, 200–203.PubMedCrossRefGoogle Scholar
  67. Karling, J. S. (1981). Predominantly holocarpic and eucarpic simple biflagellate phycomycetes. Vaduz: J. Cramer.Google Scholar
  68. Kazama, F. Y. (1974). The ultrastructure of nuclear division in Thraustochytrium sp. Protoplasma, 82, 155–175.CrossRefGoogle Scholar
  69. Kazama, F. Y. (1980). The zoospore of Schizochytrium aggregatum. Canadian Journal of Botany, 58, 2434–2446.CrossRefGoogle Scholar
  70. Kazama, F. Y., & Schornstein, K. L. (1973). Ultrastructure of a fungus herpes-type virus. Virology, 52, 478–487.PubMedCrossRefGoogle Scholar
  71. Keeling, P. J. (2009). Chromalveolates and the evolution of plastids by secondary endosymbiosis. Journal of Eukaryotic Microbiology, 56, 1–8.PubMedCrossRefGoogle Scholar
  72. Kimura, H., Sato, M., Sugiyama, C., & Naganuma, T. (2001). Coupling of thraustochytrids and POM, and of bacterio- and phytoplankton in a semi-enclosed coastal area, implication for different substrate preference by the planktonic decomposers. Aquatic Microbial Ecology, 25, 293–300.CrossRefGoogle Scholar
  73. Kobayashi, T., Sakaguchi, K., Matsuda, T., Abe, E., Hama, Y., Hayashi, M., Honda, D., Okita, Y., Sugimoto, S., Okino, N., & Ito, M. (2011). Increase of eicosapentaenoic acid in thraustochytrids through thraustochytrids ubiquitin promoter-driven expression of a fatty acid Δ5 desaturase gene. Applied and Environmental Microbiology, 77, 3870–3876.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Koske, R. E. (1981). Labyrinthula inside the spores of a vesicular-arbuscular mycorrhizal fungus. Mycologia, 73, 1175–1180.CrossRefGoogle Scholar
  75. Kramarsky-Winter, E., Harel, M., Siboni, N., Ben Dov, E., & Brickner, I. (2006). Identification of a protist-coral association and its possible ecological role. Marine Ecology Progress Series, 317, 67–73.CrossRefGoogle Scholar
  76. Kuznetsov, E. A. (1981). Anabiosis in lower aquatic fungi. Mikologiya i Fitopatologiya, 15, 526–531.Google Scholar
  77. Leander, C. A., & Porter, D. (2001). The Labyrinthulomycota is comprised of three distinct lineages. Mycologia, 93, 459–464.CrossRefGoogle Scholar
  78. Leander, C. A., Porter, D., & Leander, B. S. (2004). Comparative morphology and molecular phylogeny of aplanochytrids (Labryrinthulomycota). European Journal of Protistology, 40, 317–328.CrossRefGoogle Scholar
  79. Leaño, E. M. (2001). Straminipilous organisms from fallen mangrove leaves from Panay Island, Philippines. Fungal Diversity, 6, 75–81.Google Scholar
  80. Leipe, D. D., Tong, S. M., Goggin, C. L., Slemenda, S. B., Pieniazek, N. J., & Sogin, M. L. (1994). 16S–like rDNA sequences from Developayella elegans, Labyrinthuloides haliotidis, and Proteromonas lacertae confirm that the stramenopiles are a primarily heterotrophic group. European Journal of Protistology, 33, 369–377.Google Scholar
  81. Lévesque, C. A. (2011). Fifty years of oomycetes – From consolidation to evolutionary and genomic exploration. Fungal Diversity, 50, 35–46.CrossRefGoogle Scholar
  82. Lévesque, C. A., Brouwer, H., Cano, L., Hamilton, J. P., Holt, C., Huitema, E., Raffaele, S., Robideau, G. P., Thines, M., Win, J., Zerillo, M. M., Beakes, G. W., Boore, J. L., Busam, D., Dumas, B., Ferriera, S., Fuerstenberg, S. I., Gachon, C. M. M., Gaulin, E., Govers, F., Grenville-Briggs, L., Horner, N., Hostetler, J., Jiang, R. H. Y., Johnson, J., Krajaejun, T., Lin, H., Meijer, H. J. G., Moore, B., Morris, P., Phuntmart, V., Puiu, D., Shetty, J., Stajich, J. E., Tripathy, S., Wawra, S., van West, P., Whitty, B. R., Coutinho, P. M., Henrissat, B., Martin, F., Thomas, P. D., Tyler, B. M., De Vries, R. P., Kamoun, S., Yandell, M., Tisserat, N., & Buell, C. R. (2010). Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 11, R73. doi:10.1186/gb-2010-11-7-r73.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Liu, B., Ertesvåg, H., Aasen, I. M., Vadstein, O., Brautaset, T., & Heggeset, T. M. B. (2016). Draft genome sequence of the docosahexaenoic acid producing thraustochytrid Aurantiochytrium sp. T66. Genomics Data, 8, 115–116. doi:10.1016/j.gdata.2016.04.013.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lyons, M. M., Ward, J. E., Smolowitz, R., Uhlinger, K. R., & Gast, R. J. (2005). Lethal marine snow, pathogen of bivalve mollusc conceales in marine aggregates. Limnology and Oceanography, 50, 1983–1988.CrossRefGoogle Scholar
  85. Lyons, M. M., Smolowitz, R., Gomez-Chiarri, M., & Ward, E. (2007). Epizootiology of Quahog parasite unknown (QPX) disease in northern quahogs ( = hard clams) Mercenaria mercenaria. Journal of Shellfish Research, 26, 371–381.CrossRefGoogle Scholar
  86. Marano, A. V., Jesus, A. L., De Souza, J. I., Jerônimo, G. H., Gonçalves, D. R., Boro, M. C., Rocha, S. C. O., & Pires-Zottarelli, C. L. A. (2016). Ecological roles of saprotrophic Peronosporales (Oomycetes, Straminipila) in natural environments. Fungal Ecology, 19, 77–88.CrossRefGoogle Scholar
  87. Martens, C., Vandepoele, K., & van de Peer, Y. (2008). Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species. Proceedings of the National Academy of Sciences, 105, 3427–3432.CrossRefGoogle Scholar
  88. Maruyama, S., Matsuzaki, M., Misawa, K., & Nozaki, H. (2009). Cyanobacterial contribution to the genomes of the plastid lacking protists. BMC Evolutionary Biology, 9, 197. doi:10.1186/1471-2148-9-197.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Massana, R., & Pedró-Alió, C. (2008). Unveiling new microbial eukaryotes in the surface ocean. Current Opinion in Microbiology, 11, 213–218.PubMedCrossRefGoogle Scholar
  90. Massana, R., Guillou, L., Diez, B., & Pedró-Alió, C. (2002). Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Applied and Environmental Microbiology, 68, 4554–4558.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Massana, R., Castresana, J., Balagué, V., Guillou, L., Romari, K., Groisillier, A., Valentin, K., & Pedró-Alió, C. (2004). Phylogenetic and ecological analysis of novel marine stramenopiles. Applied and Environmental Microbiology, 70, 3528–3534.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Massana, R., Terrado, R., Forn, I., Lovejoy, C., & Pedró-Alió, C. (2006). Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environmental Microbiology, 8, 1515–1522.PubMedCrossRefGoogle Scholar
  93. McLean, I. N., & Porter, D. (1987). Lesions produced by a thraustochytrids in Tritonia diomedea (Mollusca, Gastropoda, Nudibranchia). Journal of Invertebrate Pathology, 49, 223–225.CrossRefGoogle Scholar
  94. Miller, J. D., & Jones, E. B. G. (1983). Observations on the association of thraustochytrids marine fungi with decaying seaweed. Botanica Marina, 26, 345–351.CrossRefGoogle Scholar
  95. Miller, M. R., Nichols, P. D., & Carter, C. G. (2007). Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L) diets. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 148, 382–392.CrossRefGoogle Scholar
  96. Moreira, D., & Lopez-Garcia, P. (2002). The molecular ecology of microbial eukaryotes unveils a hidden world. Trends in Microbiology, 10, 31–38.PubMedCrossRefGoogle Scholar
  97. Moro, I., Negrisolo, E., Callegaro, A., & Andreoli, C. (2003). Aplanochytrium stocchinoi, a new Labyrinthulomycota from the Southern Ocean (Ross Sea, Antarctica). Protist, 154, 331–340.Google Scholar
  98. Moss, S. T. (1985). An ultrastructural study of taxonomically significant characters of the Thraustochytriales and Labyrinthulales. Botanical Journal of the Linnean Society, 91, 329–357.CrossRefGoogle Scholar
  99. Moss, S. T. (1986). Biology and phylogeny of the Labyrinthulales and Thraustochytriales. In S. T. Moss (Ed.), The biology of marine fungi (pp. 105–129). Cambridge: Cambridge University Press.Google Scholar
  100. Moustafa, A., Beszteri, B., Maier, U. G., Bowler, C., Valentin, K., & Bhattacharya, D. (2011). Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science, 324, 1724–1726.CrossRefGoogle Scholar
  101. Muehlstein, L. K., & Porter, D. (1991). Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina. Mycologia, 83, 180–191.Google Scholar
  102. Muehlstein, L. K., Porter, D., & Short, F. T. (1988). Labyrinthula sp., a marine slime mold producing the symptoms of wasting disease in eelgrass, Zostera marina. Marine Biology, 99, 465–472.CrossRefGoogle Scholar
  103. Naganuma, T., Kimura, H., Karimoto, R., & Pimenov, N. V. (2006). Abundance of planktonic thraustochytrids and bacteria and the concentration of particulate ATP in the Greenland and Norwegian seas. Polar Bioscience, 20, 37–45.Google Scholar
  104. Nakatsuji, N., & Bell, E. (1980). Control by calcium of the contractility of Labyrinthula slimeways and of the translocation of Labyrinthula cells. Cell Motility, 1, 17–29.CrossRefGoogle Scholar
  105. Olsen, M. W. (2007). Labyrinthula terrestris, a new pathogen of cool-season turfgrasses. Molecular Plant Pathology, 8, 817–820.PubMedCrossRefGoogle Scholar
  106. Pan, J., del Campo, J., & Keeling, P. J. (2017). Reference tree and environmental sequence diversity of Labyrinthulomycetes. Journal of Eukaryotic Microbiology, 64, 88–96.PubMedCrossRefGoogle Scholar
  107. Patterson, D. J. (1989). Chromophytes from a protistan perspective. In J. P. Green, B. S. C. Leadbeater, & W. L. Diver (Eds.), The chromophyte algae, problems and perspectives (pp. 357–379). Oxford: Clarendon Press.Google Scholar
  108. Perkins, F. O. (1970). Formation of centriole and centriole-like structures during meiosis and mitosis in Labyrinthula sp. (rhizopodea, Labyrinthulida). Journal of Cell Science, 6, 629–653.PubMedGoogle Scholar
  109. Perkins, F. O. (1973). Observations of thraustochytriaceous (phycomycetes) and labyrinthulid (rhizopodea) ectoplasmic nets on natural and artificial substrates – An electron microscope study. Canadian Journal of Botany, 51, 485–491.CrossRefGoogle Scholar
  110. Perkins, F. O. (1976). Fine structure of lower marine and estuarine fungi. In E. B. G. Jones (Ed.), Recent advances in aquatic mycology (pp. 513–542). London: Elek Press.Google Scholar
  111. Perkins, F. O., & Amon, J. P. (1969). Zoosporulation in Labyrinthula sp., an electron microscope study. Journal of Protozoology, 16, 235–256.CrossRefGoogle Scholar
  112. Polglase, J. L. (1980). A preliminary report on the thraustochytrid(s) and labyrinthulid(s) associated with a pathological condition in the lesser octopus Eledone cirrhosa. Botanica Marina, 23, 699–706.CrossRefGoogle Scholar
  113. Porter, D. (1990). Phylum Labyrinthulomycota. In L. Margulis, J. O. Corliss, M. Melkonian, & D. J. Chapman (Eds.), Handbook of Protoctista (pp. 388–398). Boston: Jones and Bartlett.Google Scholar
  114. Quick, J. A. (1974). Labyrinthuloides schizochytrops n. sp., a new marine Labyrinthula with spheroid “spindle” cells. Transactions of the American Microscopical Society, 93, 344–365.CrossRefGoogle Scholar
  115. Raghukumar, C. (1987a). Fungal parasites of marine algae from Mandapam (South India). Diseases of Aquatic Organisms, 3, 137–145.CrossRefGoogle Scholar
  116. Raghukumar, C. (1987b). Fungal parasites of the marine alga, Cladophora and Rhizoclonium. Botanica Marina, 29, 289–297.Google Scholar
  117. Raghukumar, S. (1992). Bacterivory, a novel dual role for thraustochytrids in the sea. Marine Biology, 113, 165–169.CrossRefGoogle Scholar
  118. Raghukumar, S. (2002). Ecology of marine protists, the Labrinthulomycetes (thraustochytrids and Labyrinthulids). European Journal of Protistology, 38, 127–145.CrossRefGoogle Scholar
  119. Raghukumar, C. (2006). Algal-fungal interactions in the marine ecosystem, symbiosis to parasitism. In A. Tewari (Ed.), Recent advances on applied aspects of Indian marine algae with reference to global scenario (Vol. 1, pp. 366–385). Bhavnagar: Central Salt and Marine Chemicals Research Institute.Google Scholar
  120. Raghukumar, S. (2008). Thraustochytrid marine protists, production of PUFAs and other emerging technologies. Marine Biotechnology, 10, 631–640.PubMedCrossRefGoogle Scholar
  121. Raghukumar, S., & Balasubramanian, R. (1991). Occurrence of thraustochtrid fungi in corals and mucus. Indian Journal of Marine Science, 20, 176–181.Google Scholar
  122. Raghukumar, S., & Damare, V. S. (2011). Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Botanica Marina, 54, 3–11.CrossRefGoogle Scholar
  123. Raghukumar, S., & Schaumann, K. (1993). An epifluorescence microscopy method for direct detection and enumeration of the fungi like marine protist, the thraustochytrids. Limnology and Oceanography, 38, 182–187.CrossRefGoogle Scholar
  124. Raghukumar, S., Sharma, S., Raghukumar, C., & Sathe-Pathak, V. (1994). Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of Rhizophora apiculata Blume. Journal of Experimental Marine Biology and Ecology, 183, 113–131.Google Scholar
  125. Raghukumar, S., Sathe-Pathak, V., Sharma, S., & Raghukumar, C. (1995). Thraustochytrid and fungal component of marine detritus. III, Field studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. Aquatic Microbial Ecology, 9, 117–125.CrossRefGoogle Scholar
  126. Raghukumar, S., Ramaiah, N., & Raghukumar, C. (2001). Dynamics of thraustochytrid protists in the water column of the Arabian Sea. Aquatic Microbial Ecology, 24, 175–186.CrossRefGoogle Scholar
  127. Reeb, V. C., Peglaer, M. T., Yoon, H. S., Bai, J. R., Wu, M., Shiu, P., Grafenberg, J. L., Reyes-Prieto, A., Rümmele, S. E., Gross, J., & Bhattacharya, D. (2009). Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists. Molecular Phylogenetics and Evolution, 53, 202–211.PubMedCrossRefGoogle Scholar
  128. Richards, T. A., Soanes, D. M., Jones, M. D. M., Vasieva, O., Leonard, G., Paszkiewicz, K., Foster, P. G., Hall, N., & Talbot, N. J. (2011). Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proceedings of the National Academy of Sciences, 108, 15258–15263.CrossRefGoogle Scholar
  129. Richards, T. A., Jones, M. D., Leonard, G., & Bass, G. (2012). Marine fungi, their ecology and molecular diversity. Annual Review of Marine Science, 4, 495–522.PubMedCrossRefGoogle Scholar
  130. Riemann, F., & Schrage, M. (1983). On a mass occurrence of a thraustochytrioid protist (fungi or rhizopodan protozoa) in an Antarctic anaerobic marine sediment. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 19, 191–202.Google Scholar
  131. Riisberg, I., Orr, R. J., Kluge, R., Shalchian-Tabrizi, K., Bowers, H. A., Patil, V., Edvardsen, B., & Jakobsen, K. S. (2009). Seven gene phylogeny of heterokonts. Protist, 160, 191–204.PubMedCrossRefGoogle Scholar
  132. Sargent, J. R., Bell, M. V., Bell, J. G., Henderson, R. J., & Tocher, D. R. (1995). Origins and functions of (n-3) polyunsaturated fatty acids in marine oranisms. In G. Cevc & F. Paltauf (Eds.), Phospolipids, characterization, metabolism and novel biological applications (pp. 248–259). Champaign: AOCS Press.Google Scholar
  133. Sathe-Pathak, V., Raghukumar, S., Raghukumar, C., & Sharma, S. (1993). Thraustochytrid and fungal component of marine detritus. I. Field studies on decomposition of the brown alga Sargassum cinereum J Ag. Indian Journal of Marine Science, 22, 159–167.Google Scholar
  134. Schärer, L., Knoflach, D., Vizoso, D. B., Rieger, G., & Peintner, U. (2007). Thraustochytrids as novel parasitic protists of marine free-living flatworms, Thraustochytrium caudivorum sp. nov. parasitizes Macrostomum lignano. Marine Biology, 152, 1095–1104.CrossRefGoogle Scholar
  135. Schneider, J. (1981). Ein ökologischer vergleich aquatischer niederer pilze (Thraustochytrium sp.) von meeres- und binnenlandstandorten. Botanica Marina, 24, 475–484.CrossRefGoogle Scholar
  136. Segarra, A., Pépin, J. F., Arzul, I., Morga, B., Faury, N., & Renault, T. (2010). Detection and description of a particular ostreid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, Crassostrea gigas, in France in 2008. Virus Research, 153, 92–99.PubMedCrossRefGoogle Scholar
  137. Short, F. T., Porter, D., Iizumi, H., & Aioi, K. (1993). Occurrence of the eelgrass pathogen Labyrinthula zosterae in Japan. Diseases of Aquatic Organisms, 16, 73–77.CrossRefGoogle Scholar
  138. Sims, P. A., Mann, D. G., & Medlin, L. K. (2006). Evolution of the diatoms, insights from fossil, biological and molecular data. Phycologia, 45, 361–402.CrossRefGoogle Scholar
  139. Sparrow, F. K. (1936). Biological observation on the marine fungi of Woods Hole waters. Biological Bulletin of the Marine Biological Laboratory, 70, 236–263.CrossRefGoogle Scholar
  140. Sparrow, F. K. (1960). Aquatic Phycomycetes (2nd revised ed.). Ann Arbor: University of Michigan Press.Google Scholar
  141. Sparrow, F. K. (1973). Mastigomycotina. In G. C. Ainsworth, F. K. Sparrow FK, & A. S. Sussman (Eds.), The fungi (Vol. 4b, pp. 61–73). New York/London: Academic Press.Google Scholar
  142. Sparrow, F. K. (1976). The present status of classification in biflagellate fungi. In E. B. Gareth-Jones (Ed.), Recent advances in aquatic mycology (pp. 213–222). London: Elek Science.Google Scholar
  143. Stiller, J. W., Huang, J., Ding, W., Trian, J., & Goodwillie, C. (2009). Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses. BMS Genomics, 10, 484. doi:10.1186/1471-2164-10-484.CrossRefGoogle Scholar
  144. Stoeck, T., Taylor, G., & Epstein, S. S. (2003). Novel eukaryotes frm a permanently anoxic Cariaco Basin (Carribean Sea). Applied and Environmental Microbiology, 69, 5656–5663.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Stoeck, T., Hayward, B., Taylor, G. T., Valera, R., & Epstein, S. S. (2006). A multiple PCR-primer approach to access the microeukaryotic diversity in the anoxic Cariaco Basin (Caribbean Sea). Protist, 157, 31–43.PubMedCrossRefGoogle Scholar
  146. Stoeck, T., Kasper, J., Bunge, J., Leslin, C., Ilyin, V., & Epstein, S. (2007). Protistan diversity in the arctic, a case of paleoclimate shaping modern biodiversity. PloS One, 8, e728. doi:10.1371/journal.pone.0000728.CrossRefGoogle Scholar
  147. Stowell, L. J., Martin, S. B., Olsen, M., Bigelow, D., Kohout, M., Peterson, P. D., Camberto, J., & Gelernter, W. D. (2005). Rapid blight, a new plant disease. APSnet Features. doi:10.1094/APSnetFeature/2005-0705.Google Scholar
  148. Takahashi, Y., Yoshida, M., Inouye, I., & Watanabe, M. M. (2014). Diplophrys mutabilis sp. nov., a new member of Labyrinthulomycetes from freshwater habitats. Protist, 165, 50–65.PubMedCrossRefGoogle Scholar
  149. Takao, Y., Nagasaki, K., Mise, K., Okuno, T., & Honda, D. (2005). Isolation and characterization of a novel single-stranded RNA virus infectious to a marine fungoid protist, Schizochytrium sp.(Thraustochytriaceae, Labyrinthulea). Applied and Environmental Microbiology, 71, 4516–4522.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Thines, M. (2014). Phylogeny and evolution of plant pathogenic oomycetes – A global overview. European Journal of Plant Pathology, 138, 431–447.CrossRefGoogle Scholar
  151. Tice, A. K., Silberman, J. D., Walthall, A. C., Le, K. N. D., Spiegel, F. W., & Brown, M. W. (2016). Sorodiplophrys stercorea, another novel lineage of sorocarpic multicellularity. Journal of Eurkaryotic Microbiology, 63, 623–628.CrossRefGoogle Scholar
  152. Tsui, C. K., & Vrijmoed, L. L. (2012). A re-visit to the evolution and ecophysiology of the labyrinthulomycetes. Rijeka/Shanghai: INTECH Open Access Publisher.Google Scholar
  153. Tsui, C. K. M., Marshall, W., Yokoyama, R., Honda, D., Lippmeier, J. C., Craven, K. D., & Berbee, M. L. (2009). Labryinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Molecular Phylogenetics and Evolution, 50, 129–140.PubMedCrossRefGoogle Scholar
  154. Ueda, M., Nomura, Y., Doi, K., & Nakajima, M. (2015). Seasonal dynamics of culturable thraustochytrids (Labyrinthulomycetes, stramenopiles) in estuarine and coastal waters. Aquatic Microbial Ecology, 74, 187–204.CrossRefGoogle Scholar
  155. Vergeer, L. H. T., & den Hartog, C. (1991). Occurrence of wasting disease in Zostera noltii. Aquatic Botany, 40, 155–163.CrossRefGoogle Scholar
  156. Vergeer, L. H. T., & den Hartog, C. (1994). Omnipresence of Labyrinthulaceae in seagrasses. Aquatic Botany, 48, 1–20.CrossRefGoogle Scholar
  157. Wagner-Merner, B. T., Duncan, W. R., & Lawrence, J. M. (1980). Preliminary comparison of Thraustochytriaceae in the guts of a regular and irregular echinoid. Botanica Marina, 23, 95–97.Google Scholar
  158. Winwood, R. J. (2013). Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. OCL, 20(6), D604.CrossRefGoogle Scholar
  159. Worden, A. Z., & Not, F. (2008). Ecology and diversity of piceukaryotes. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (2nd ed., pp. 159–205). New York: Wiley.CrossRefGoogle Scholar
  160. Yokochi, T., Nakahara, T., Higashihara, T., Yamaoka, M., & Kurane, R. (2001). A new isolation method for labyrinthulids using a bacterium, Psychrobacter phenylpyruvicus. Marine Biotechnology, 3, 68–73.PubMedCrossRefGoogle Scholar
  161. Yokoyama, R., & Honda, D. (2007). Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes), emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience, 48, 199–211.CrossRefGoogle Scholar
  162. Yokoyama, R., Salleh, B., & Honda, D. (2007). Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes), emmedation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen. nov. Mycoscience, 48, 329–341.Google Scholar
  163. Yubuki, N., Leander, B. S., & Silberan, J. D. (2010). Ultrastructure and molecular phylogenetic position of a novel phagotrophic position of a novel phagotrophic stramenopile from low oxygen environments, Rictus lutensis gen. et sp. nov. (Biocoecida, incertae sedis). Protist, 161, 264–278.PubMedCrossRefGoogle Scholar
  164. Zopf, F. W. (1892). Zur Kenntniss der Labyrinthuleen, einer Familie der Mycetozoen. Beiträge zur Physiologie und Morphologie niederer Organismen, 2, 36–48.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biological Sciences, Institute of Ecology, Evolution and DiversityGoethe UniversityFrankfurt am MainGermany
  2. 2.Senckenberg Biodiversity and Climate Research CentreSenckenberg Gesellschaft für NaturforschungFrankfurt am MainGermany
  3. 3.Institute for Integrative NeurobiologyKonan UniversityKobeJapan
  4. 4.Faculty of Science and EngineeringKonan UniversityKobeJapan
  5. 5.Department of BiologySchool of Biology, Newcastle UniversityNewcastle upon TyneUK
  6. 6.Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, LOEWE Excellence Cluster for Integrative Fungal Research (IPF) and Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für NaturforschungGoethe University Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations