Encyclopedia of Personality and Individual Differences

Living Edition
| Editors: Virgil Zeigler-Hill, Todd K. Shackelford

Neurotransmitter Assays

  • William ProcunierEmail author
  • Richard Procunier
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-28099-8_784-1


Omics technology

Technology used in the integration of genomics, proteomics, and metabolomics; high throughput isolation, identification and functional characterization of genes, their protein (peptide) products, and associated biochemical pathways and interactions.


Methods that involve the use of optics, genetics, and DNA recombinant technology to target distinct neuronal populations from brain tissue slices (ex vivo) with genes that produce bacterial opsins. These ion-channel membrane-associated proteins can be stimulated selectively by light and visualized through fluorescent tagging. The essential reagents used in optogenetics are light-sensitive proteins. Neuronal control is achieved using optogenetic enhancers, while optical recording of neuronal activities can be made with the help of optogenetic sensors for calcium, vesicular release, neurotransmitter, or membrane voltage (McElligott 2015; Touriño et al. 2013).


A term coined to describe a...


Personality Disorder Weizmann Institute Excitatory Amino Acid Transport Neuronal Excitation Personalized Healthcare 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Báldi, R., Ghosh, D., Grueter, B. A., & Patel, S. (2016). Electrophysiological measurement of cannabinoid-mediated synaptic modulation in acute mouse brain slices. Current Protocols in Neuroscience, 75, 6.29.1–6.29.19. doi:10.1002/cpns.8.CrossRefGoogle Scholar
  2. Beaty, R., Kaufman, S., Benedek, M., Jung, R., Kenett, Y., Jauk, E., Neubauer, A., & Silvia, P. (2015). Personality and complex brain networks: The role of openness to experience in default network efficiency. Human Brain Mapping, 37, 773–779. doi:10.1002/hbm.23065.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cern, R. (2016). Novel high throughput approach to evaluate state dependence and selectivity of voltage gated ion channels. Webinar retrieved from http://www.labroots.com/webinar/novel-applications-automated-electrophysiology-ion-channel-drug-discovery?
  4. Elbaz, Y., Danieli, Y., Kanner, B., & Schuldiner, S. (2010). Expression of neurotransmitter transporters for structural and biochemical studies. Protein Expression and Purification, 73(2), 152–160. doi:10.1016/j.pep.2010.06.CrossRefPubMedPubMedCentralGoogle Scholar
  5. EMBL-EBI. (2016). Interpro sequence analysis and classification. Retrieved from http://www.ebi.ac.uk/interpro/entry/IPR013086
  6. Janowsky, A., Neve, K., & Eshleman, A. (2001). Uptake and release of neurotransmitters. Current Protocols in Neuroscience, 2, 7.9.1–7.9.22.Google Scholar
  7. McElligott, Z. (2015). Optogenetic and chemogenetic approaches to advance monitoring molecules. ACS Chemical Neuroscience, 6, 944–947. doi:10.1021/acschemneuro.5b00081.CrossRefPubMedGoogle Scholar
  8. NCBI PubChem Open Chemistry DataBase. (2016). Bioassay Record for AID 567. Retrieved from https://pubchem.ncbi.nlm.nih.gooassay/567#section=Topv/bi
  9. NIH HumanConnectome Project. (2016). Retrieved from http://www.humanconnectomeproject.org/
  10. Pendyam, S., Mohan, A., Kalivas, P., & Nair, S. (2012). Role of perisynaptic parameters in neurotransmitter homeostasis—computational study of a general synapse. Synapse, 66, 608–621. doi:10.1002/syn.21547.CrossRefPubMedPubMedCentralGoogle Scholar
  11. SaBiosciences a Qiagen Company. (2016). Neuroscience. Retrieved from http://sabiosciences.com/neuroscience.php
  12. Stachniak, T., Ghosh, A., & Sternson, S. (2014). Chemogeentic synaptic silencing of neural circuit localizes a hypothalamus-midbrain pathway for feeding behaviour. Neuron, 82, 797–808. doi: 10.1016/j.neuron.2014.04.008. Epub 2014 Apr 24.Google Scholar
  13. Touriño, C., Eban-Rothschild, A., & de Lecea, L. (2013). Optogenetics in psychiatric diseases. Current Opinion in Neurobiology, 23(3), 430–435. doi:10.1016/j.conb.2013.03.007.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Weizmann Institute of Science. (2016a). The human disease database. Retrieved from http://www.malacards.org/search/results/personality%20disorders
  15. Weizmann Institute of Science. (2016b). The human gene database. Retrieved from http://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC6A4
  16. Wilde, G. (2016). The benefits of combining optogenetics, microscopy and electrophysiology. Webinar. Retrieved from http://www.labroots.com/webcast/the-benefits-of-combining-optogenetics-microscopy-and-electrophysiology

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PsychologyNipissing UniversityNorth BayCanada
  2. 2.Northern Shores PharmacyNorth BayCanada

Section editors and affiliations

  • Julie Schermer
    • 1
  1. 1.The University of Western OntarioLondonCanada