Encyclopedia of Personality and Individual Differences

Living Edition
| Editors: Virgil Zeigler-Hill, Todd K. Shackelford

Longitudinal Research Designs

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-28099-8_1323-1

Synonyms

Definition

In a longitudinal research design, the same attribute is observed repeatedly for at least one unit i (e.g., a person). In practice, one can roughly distinguish between two different types of longitudinal research designs: Either multiple units i = 1, …, N are observed at multiple time points t = 1, …, T, with N being large and T being small or a single unit is observed at many time points, that is N = 1 (or small) and T being large. Longitudinal panel studies (e.g., the socioeconomic panel study SOEP; Wagner et al. 2007) are a typical example of the former, whereas time series models (e.g., of stock prices; Lütkepohl 2005) are a typical example of the latter. Obviously, however, these are just two end points on a continuum of different longitudinal research designs. This encyclopedia entry provides a short overview of some of the most prominent longitudinal research designs along with their...

This is a preview of subscription content, log in to check access

References

  1. Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In J. R. Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development (pp. 1–39). New York: Academic.Google Scholar
  2. Christensen, T. C., Barrett, L. F., Bliss-Moreau, E., Lebo, K., & Kaschub, C. (2003). A practical guide to experience–sampling procedures. Journal of Happiness Studies, 4, 53–78. doi:10.1023/a:1023609306024.CrossRefGoogle Scholar
  3. Conner, T. S., Barrett, L. F., Tugade, M. M., & Tennen, H. (2007). Idiographic personality – The theory and practice of experience sampling. In R. W. Robins, R. C. Fraley, & R. F. Krueger (Eds.), Handbook of research methods in personality psychology (pp. 79–96). New York: Guilford Press.Google Scholar
  4. Duncan, T. E., Duncan, S. C., & Strycker, L. A. (2006). An introduction to latent variable growth curve modeling: Concepts, issues, and applications (2nd ed.). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  5. Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424–438. doi:10.2307/1912791.CrossRefGoogle Scholar
  6. Halaby, C. N. (2004). Panel models in sociological research: Theory into practice. Annual Review of Sociology, 30, 507–544.CrossRefGoogle Scholar
  7. Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81, 945–960. doi:10.1080/01621459.1986.10478354.CrossRefGoogle Scholar
  8. Iida, M., Shrout, P. E., Laurenceau, J.-P., & Bolger, N. (2012). Using diary methods in psychological research. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, vol 1: Foundations, planning, measures, and psychometrics (pp. 277–305). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  9. Little, T. D. (2013). Longitudinal structural equation modeling. New York: The Guilford Press.Google Scholar
  10. Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer.CrossRefGoogle Scholar
  11. Morgan, S. L., & Winship, C. (2014). Counterfactuals and causal inference: Methods and principles for social research (2nd ed.). New York: Cambridge University Press.CrossRefGoogle Scholar
  12. Schaie, K. W. (1965). A general model for the study of developmental problems. Psychological Bulletin, 64, 92–107. doi:10.1037/h0022371.CrossRefPubMedGoogle Scholar
  13. Schaie, K. W. (1994). Developmental designs revisited. In S. H. Cohen & H. W. Reese (Eds.), Life-span developmental psychology: Theoretical issues revisited (pp. 45–64). Hillsdale: Erlbaum.Google Scholar
  14. Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York: Oxford University Press.CrossRefGoogle Scholar
  15. Sliwinski, M. J. (2008). Measurement-burst designs for social health research. Social and Personality Psychology Compass, 2, 245–261. doi:10.1111/j.1751-9004.2007.00043.x.CrossRefGoogle Scholar
  16. Trull, T. J., & Ebner-Priemer, U. (2013). Ambulatory assessment. Annual Review of Clinical Psychology, 9, 151–176. doi:10.1146/annurev-clinpsy-050212-185510.CrossRefPubMedGoogle Scholar
  17. Voelkle, M. C. (2017). A new perspective on three old methodological issues: The role of time, missing values, and cohorts in longitudinal models of youth development. In A. C. Petersen, S. H. Koller, F. Motti-Stefanidi, & S. Verma (Eds.), Positive youth development in global contexts of social and economic change (pp. 110–136). New York: Taylor & Francis.Google Scholar
  18. Voelkle, M. C., & Adolf, J. (2015). History of longitudinal statistical analyses. In A. N. Pachana (Ed.), Encyclopedia of geropsychology (pp. 1–10). Singapore: Springer Singapore.CrossRefGoogle Scholar
  19. Wagner, G. G., Frick, J. R., & Schupp, J. (2007). The German socio-economic panel study (SOEP) – Scope, evolution and enhancements. Schmollers Jahrbuch: Journal of Applied Social Science Studies, 127, 139–169.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PsychologyHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Max Planck Institute for Human DevelopmentBerlinGermany