Skip to main content

Application of Quantum Mechanics and Molecular Mechanics in Chemoinformatics

  • Reference work entry
  • First Online:
  • 5789 Accesses

Abstract

Quantum chemical and molecular mechanics-generated structure and reactivity parameters comprise a part of chemoinformatics, where such parameters are stored and properly indexed for search-information of a related molecule or a set of molecular systems. The present review makes a general survey of the various computable quantum chemical parameters for molecules. These could be used for quantitative structure activity relation (QSAR) modeling. The applicability of various quantum chemical techniques for such property (QSAR parameters) is also discussed and density functional theory (DFT)-related techniques have been advocated to be quite useful for such purposes. Molecular mechanics methods, although mostly useful for less time consuming structure calculations and important in higher level molecular dynamics and Monte-Carlo simulations, are sometimes useful to generate structure-related descriptors for QSAR analysis. A brief discussion in this connection with molecular mechanics-related QSAR modeling is included to show the use of such descriptors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Alsberg, B. K., Marchand-Geneste, N., & King, R. D. (2000). A new 3D molecular structure representation using quantum topology with application to structure–property relationships. Chemometrics and Intelligent Laboratory Systems, 54, 75.

    Article  CAS  Google Scholar 

  • Alves, C. N., Pinheiro, J. C., Camargo, A. J., Ferreira, M. M. C., & da Silva, A. B. F. (2000). A structure–activity relationship study of HEPT-analog compounds with anti-HIV activity. Journal of Molecular Structure (THEOCHEM), 530, 39.

    Article  CAS  Google Scholar 

  • Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97, 10269.

    Article  CAS  Google Scholar 

  • Bhat, S., Sulea, T., & Purisima, E. O. (2006). Coupled atomic charge selectivity for optimal ligand-charge distributions at protein binding sites. Journal of Computational Chemistry, 27, 1899.

    Article  CAS  Google Scholar 

  • Bhattacharjee, A. K., Majumdar, D., & Guha, S. (1992). Theoretical studies on the conformational properties and pharmacophoric pattern of several bipyridine cardiotonics. Journal of the Chemical Society, Perkin Transactions, 2, 805.

    Article  Google Scholar 

  • Brown, F. K. (1998). Chemoinformatics: What is it and how does it impact drug discovery. Annual Reports in Medicinal Chemistry, 33, 375.

    Article  CAS  Google Scholar 

  • Carbó, R., Leyda, L., & Arnau, M. (1980). How similar is a molecule to another? An electron density measure of similarity between two molecular structures. International Journal of Quantum Chemistry, 17, 1185.

    Article  Google Scholar 

  • Cartier, A., & Rivail, J. L. (1987). Electronic descriptors in quantitative structure – Activity relationships. Chemometrics and Intelligent Laboratory Systems, 1, 335.

    Article  CAS  Google Scholar 

  • Chattaraj, P. K., Sarkar, U., & Roy, D. R. (2006). Electrophilicity index. Chemical Reviews, 106, 2065.

    Article  CAS  Google Scholar 

  • Franke, R. (1984). Theoretical drug design methods. Amsterdam: Elsevier.

    Google Scholar 

  • Fukui, K. (1971). Recognition of stereochemical paths by orbital interaction. Accounts of Chemical Research, 4, 57.

    Article  CAS  Google Scholar 

  • Gaudio, A. C., Korolkovas, A., & Takahata, Y. (1994). Quantitative structure-activity relationships for 1,4-dihydropyridine calcium channel antagonists (nifedipine analogues): A quantum chemical/classical approach. Journal of Pharmaceutical Sciences, 83, 1110.

    Article  CAS  Google Scholar 

  • Ghose, A. K., Pritchett, A., & Crippen, G. M. (1988). Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships III: Modeling hydrophobic interactions. Journal of Computational Chemistry, 9, 80.

    Article  CAS  Google Scholar 

  • González-Díaz, H., & Uriarte, E. (2005). Proteins QSAR with Markov average electrostatic potentials. Bioorganic & Medicinal Chemistry Letters, 15, 5088.

    Article  Google Scholar 

  • Good, A. C., & Richards, W. G. (1996). The extension and application of molecular similarity calculations to drug design. Drug Information Journal, 30, 371.

    Google Scholar 

  • Grunenberg, J., & Herges, R. (1995). Prediction of chromatographic retention values (rm) and partition coefficients (log Poct) using a combination of semiempirical self-consistent reaction field calculations and neural networks. Journal of Chemical Information and Computer Sciences, 35, 905.

    CAS  Google Scholar 

  • Guha, S., Majumdar, D., & Bhattacharjee, A. K. (1992). Molecular electrostatic potential: A tool for the prediction of the pharmacophoric pattern of drug molecules. Journal of Molecular Structure (THEOCHEM), 256, 61.

    Article  Google Scholar 

  • Hammett, L. P. (1937). The effect of structure upon the reactions of organic compounds. Benzene derivatives. Journal of the American Chemical Society, 59, 96.

    Article  CAS  Google Scholar 

  • Hansch, C. (1969). Quantitative approach to biochemical structure-activity relationships. Accounts of Chemical Research, 2, 232.

    Article  CAS  Google Scholar 

  • Hansch, C., & Coats, E. (1970). α-chymotrypsin: A case study of substituent constants and regression analysis in enzymic structure – activity relationships. Journal of Pharmaceutical Sciences, 59, 731.

    Article  CAS  Google Scholar 

  • Hansch, C., Leo, A., & Taft, R. W. (1991). A survey of Hammett substituent constants and resonance and field parameters. Chemical Reviews, 91, 165.

    Article  CAS  Google Scholar 

  • Jensen, F. (1999). Introduction to computational chemistry. New York: Wiley.

    Google Scholar 

  • Kadlubanski, P., Calderón-Mojica, K., Rodriguez, W. A., Majumdar, D., Roszak, S., & Leszczynski, J. (2013). Role of the multipolar electrostatic interaction energy components in strong and weak cation −π interactions. The Journal of Physical Chemistry. A, 117, 7989.

    Article  CAS  Google Scholar 

  • Karelson, M., Lobanov, V. S., & Katritzky, A. R. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 96, 1027.

    Article  CAS  Google Scholar 

  • Kim, K. S., Lee, J. Y., Lee, S. J., Ha, T.-K., & Kim, D. H. (1994). On binding forces between aromatic ring and quaternary ammonium compound. Journal of the American Chemical Society, 116, 7399.

    Article  CAS  Google Scholar 

  • Klebe, G., Abraham, U., & Mietzner, T. (1994). Molecular similarity indices in a comparative analysis (comsia) of drug molecules to correlate and predict their biological activity. Journal of Medicinal Chemistry, 37, 4130.

    Article  CAS  Google Scholar 

  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133.

    Article  Google Scholar 

  • Labute, P. (2000). A widely applicable set of descriptors. Journal of Molecular Graphics and Modelling, 18, 464.

    Article  CAS  Google Scholar 

  • Leach, A. R., & Gillet, V. J. (2007). An introduction to chemoinformatics. Dordrecht: Springer.

    Book  Google Scholar 

  • Lewis, D. F. V. (1987). Molecular orbital calculations on solvents and other small molecules: Correlation between electronic and molecular properties ν, αMOL, π*, and β. Journal of Computational Chemistry, 8, 1084.

    Article  CAS  Google Scholar 

  • Löwdin, P.-O. (1970). On the nonorthogonality problem. Advances in Quantum Chemistry, 5, 185.

    Article  Google Scholar 

  • Ma, J. C., & Dougherty, D. A. (1997). The cation −π interaction. Chemical Reviews, 97, 1303.

    Article  CAS  Google Scholar 

  • Majumdar, D., Roszak, S., & Leszczynski, J. (2006). Probing the acetylcholinesterase inhibition of sarin: A comparative interaction study of the inhibitor and acetylcholine with a model enzyme cavity. The Journal of Physical Chemistry. B, 110, 13597.

    Article  CAS  Google Scholar 

  • Majumdar, D., Roszak, S., & Leszczynski, J. (2012). Theoretical studies on the structure and electronic properties of cubic gold nanoclusters. The Canadian Journal of Chemical Engineering, 90, 852.

    Article  CAS  Google Scholar 

  • Makhija, M., & Kulkarni, V. (2001). Molecular electrostatic potentials as input for the alignment of HIV-1 integrase inhibitors in 3D QSAR. Journal of Computer-Aided Molecular Design, 15, 961.

    Article  CAS  Google Scholar 

  • Martin, R. L., Davidson, E. R., & Eggers, D. F. (1979). Ab initio theory of the polarizability and polarizability derivatives in H2S. Chemical Physics, 38, 341.

    Article  CAS  Google Scholar 

  • Milischuk, A., & Matyushov, D. V. (2002). Dipole solvation: Nonlinear effects, density reorganization, and the breakdown of the onsager saturation limit. The Journal of Physical Chemistry. A, 106, 2146.

    Article  CAS  Google Scholar 

  • Mulliken, R. S. (1955). Electronic population analysis on LCAO–MO molecular wave functions I. The Journal of Chemical Physics, 23, 1833.

    Article  CAS  Google Scholar 

  • Murray, J. S., Macaveiu, L., & Politzer, P. (2014). Factors affecting the strengths of σ-hole electrostatic potentials. Journal of Computational Science, 5, 590.

    Article  Google Scholar 

  • Murray, J. S., Shields, Z. P.-I., Seybold, P. G., & Politzer, P. (2015). Intuitive and counterintuitive noncovalent interactions of aromatic π regions with the hydrogen and the nitrogen of HCN. Journal of Computational Science, 10, 209.

    Article  Google Scholar 

  • Oliferenko, A. A., Oliferenko, P. V., Huddleston, J. G., Rogers, R. D., Palyulin, V. A., Zefirov, N. S., & Katritzky, A. R. (2004). Theoretical scales of hydrogen bond acidity and basicity for application in qsar/qspr studies and drug design. Partitioning of aliphatic compounds. Journal of Chemical Information and Computer Sciences, 44, 1042.

    Article  CAS  Google Scholar 

  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105, 7512.

    Article  CAS  Google Scholar 

  • Popelier, P. L. A. (2000). Atoms in molecules: An introduction. New York: Prentice Hall.

    Book  Google Scholar 

  • Roos, G., Geerlings, P., & Messens, J. (2009). Enzymatic catalysis: The emerging role of conceptual density functional theory. The Journal of Physical Chemistry. B, 113, 13465.

    Article  CAS  Google Scholar 

  • Roy, R. K., Krishnamurti, S., Geerlings, P., & Pal, S. (1998). Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: Carbonyl compounds. The Journal of Physical Chemistry. A, 102, 3746.

    Article  CAS  Google Scholar 

  • Schlick, T. (2002). Molecular modeling and simulation: An interdisciplinary guide. New York: Springer.

    Book  Google Scholar 

  • Schwöbel, J., Ebert, R.-U., Kühne, R., & Schüürmann, G. (2009). Modeling the H bond donor strength of -OH, −NH, and -CH sites by local molecular parameters. Journal of Computational Chemistry, 30, 1454.

    Article  Google Scholar 

  • Schwöbel, J. A. H., Koleva, Y. K., Enoch, S. J., Bajot, F., Hewitt, M., Madden, J. C., Roberts, D. W., Schultz, T. W., & Cronin, M. T. D. (2011). Measurement and estimation of electrophilic reactivity for predictive toxicology. Chemical Reviews, 111, 2562.

    Article  Google Scholar 

  • Scrocco, E., & Tomasi, J. (1973). The electrostatic molecular potential as a tool for the interpretation of molecular properties. Topics in Current Chemistry, 42, 95.

    CAS  Google Scholar 

  • Scrocco, E., & Tomasi, J. (1978). Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials. Advances in Quantum Chemistry, 11, 115.

    Article  CAS  Google Scholar 

  • Stanon, D. L., Dimitrov, S., Gruncharov, V., & Mekenyan, O. G. (2002). Charged partial surface area (CPSA) descriptors QSAR applications. SAR and QSAR in Environmental Research, 13, 341.

    Article  Google Scholar 

  • Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S., & Morokuma, K. (1996). ONIOM: A multilayered integrated mo + mm method for geometry optimizations and single point energy predictions. a test for diels − alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. The Journal of Physical Chemistry, 100, 19357.

    Article  CAS  Google Scholar 

  • Warshel, A. (1991). Computer modeling of chemical reactions in enzymes and solutions. New York: Wiley.

    Google Scholar 

  • Weiner, P. K., Langridge, R., Blaney, J. M., Schaefer, R., & Kollman, P. A. (1982). Electrostatic potential molecular surfaces. Proceedings of the National Academy of Sciences of the United States of America, 79, 3754.

    Article  CAS  Google Scholar 

  • Weinhold, F., & Landis, C. R. (2012). Discovering chemistry with natural bond orbitals. Hoboken: Wiley.

    Book  Google Scholar 

  • Woodward, R. B., & Hoffmann, R. (1969). The conservation of orbital symmetry. Angewandte Chemie International Edition in English, 8, 781.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of NSF CREST (No.: HRD-0833178) grant. One of the authors (S.R.) acknowledges the financial support by a statutory activity subsidy from Polish Ministry of Science and Technology of Higher Education for the Faculty of Chemistry of Wroclaw University of Science and Technology and NCN grant no UMO-2013/09/B/ST4/00097.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Devashis Majumdar or Jerzy Leszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Sizochenko, N., Majumdar, D., Roszak, S., Leszczynski, J. (2017). Application of Quantum Mechanics and Molecular Mechanics in Chemoinformatics. In: Leszczynski, J., Kaczmarek-Kedziera, A., Puzyn, T., G. Papadopoulos, M., Reis, H., K. Shukla, M. (eds) Handbook of Computational Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27282-5_52

Download citation

Publish with us

Policies and ethics