Skip to main content

Molecular Descriptors

  • Reference work entry
  • First Online:

Abstract

Despite the number of available chemicals growing exponentially, testing of their toxicological and environmental behavior is often a critical issue and alternative strategies are required. Additionally, there is the need to predict properties of not yet synthesized compounds to reduce the costs of synthesis, selecting only those that have the maximal potential to be active and nontoxic compounds. In order to evaluate chemical properties avoiding chemical synthesis and reducing expensive and time-demanding laboratory testing, it is necessary to build in silico models establishing a mathematical relationship between the structures of molecules and the considered properties (quantitative structure–activity relationships, QSARs). Molecular descriptors play a fundamental role in QSAR and other in silico models since they formally are the numerical representation of a molecular structure. Molecular descriptors can be classified using different criteria. Among them, there are two main categories, experimental and theoretical descriptors. The basis to understand and perform molecular descriptor calculation, the different theoretical descriptor categories together with their perspectives are described in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Ajmani, S., Rogers, S. C., Barley, M. H., & Livingstone, D. J. (2006). Application of QSPR to mixtures. Journal of Chemical Information and Modeling, 46, 2043–2055.

    Article  CAS  Google Scholar 

  • Balaban, A. T. (1982). Highly discriminating distance-based topological index. Chemical Physics Letters, 89, 399–404.

    Article  CAS  Google Scholar 

  • Balaban, A. T. (1985). Applications of graph theory in chemistry. Journal of Chemical Information and Computer Sciences, 25, 334–343.

    CAS  Google Scholar 

  • Balasubramanian, K. (1995). Geometry-dependent connectivity indices for the characterization of molecular structures. Chemical Physics Letters, 235, 580–586.

    Article  CAS  Google Scholar 

  • Basak, S. C., Gute, B. D., & Grunwald, G. D. (1997). Use of topostructural, topochemical, and geometric parameters in the prediction of vapor pressure: A hierarchical QSAR approach. Journal of Chemical Information and Computer Sciences, 37, 651–655.

    Article  CAS  Google Scholar 

  • Bobra, A., Shiu, W. Y., & Mackay, D. (1985). Quantitative structure-activity relationships for the acute toxicity of chlorobenzenes to Daphnia magna. Environmental Toxicology and Chemistry, 4, 297–305.

    Article  CAS  Google Scholar 

  • Bolton, E. E., Wang, Y., Thiessen, P. A., & Bryant, S. H. (2008). PubChem: Integrated platform of small molecules and biological activities. Annual Reports in Computational Chemistry, 4, 217–241.

    Article  CAS  Google Scholar 

  • Boyle, N. M. O., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Chemical Information and Modeling, 3, 33.

    Google Scholar 

  • Broto, P., Moreau, G., & Vandycke, C. (1984). Molecular structures: Perception, autocorrelation descriptor and sar studies. European Journal of Medicinal Chemistry, 19, 66–70.

    CAS  Google Scholar 

  • Burden, F. R. (1989). Molecular identification number for substructure searches. Journal of Chemical Information and Computer Sciences, 29, 225–227.

    CAS  Google Scholar 

  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2, MR17–MR71.

    Article  Google Scholar 

  • Carhart, R. E., Smith, D. H., & Venkataraghavan. R. (1985). Atom pairs as molecular features in structure-activity studies: Definition and applications. 13, 8–11.

    Google Scholar 

  • Cassotti, M., Ballabio, D., Consonni, V., Mauri, A., Tetko, I. V., & Todeschini, R. (2014a). Prediction of acute aquatic toxicity toward Daphnia magna by using the GA-kNN method. ATLA, Alternatives to Laboratory Animals, 42, 31–41.

    CAS  Google Scholar 

  • Cassotti, M., Consonni, V., Mauri, A., & Ballabio, D. (2014b). Validation and extension of a similarity-based approach for prediction of acute aquatic toxicity towards Daphnia magna. SAR and QSAR in Environmental Research, 25, 1013–1036.

    Article  CAS  Google Scholar 

  • Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., Dearden, J. C., Gramatica, P., Martin, Y. C., Todeschini, R., Consonni, V., Kuz, V. E., Cramer, R. D., Benigni, R., Yang, C., Rathman, J. F., Terfloth, L., Gasteiger, J., Richard, A. M., & Tropsha, A. (2014). QSAR modeling: Where have you been? Where are you going to? Journal of Medicinal Chemistry, 57, 4977–5010.

    Article  CAS  Google Scholar 

  • Consonni, V., Todeschini, R., & Pavan, M. (2002a). Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. Journal of Chemical Information and Computer Sciences, 42, 682–692.

    Article  CAS  Google Scholar 

  • Consonni, V., Todeschini, R., Pavan, M., & Gramatica, P. (2002b). Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies. Journal of Chemical Information and Computer Sciences, 42, 693–705.

    Article  CAS  Google Scholar 

  • Corbett, P. T., Leclaire, J., Vial, L., West, K. R., Wietor, J. L., Sanders, J. K. M., & Otto, S. (2006). Dynamic combinatorial chemistry. Chemical Reviews, 106, 3652–3711.

    Article  CAS  Google Scholar 

  • Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (2001). Introduction to algorithms (2nd ed.). The MIT Press/McGraw-Hill.

    Google Scholar 

  • Durant, J. L., Leland, B. A., Henry, D. R., & Nourse, J. G. (2002). Reoptimization of MDL keys for use in drug discovery. Journal of Chemical Information and Computer Sciences, 42, 1273–1280.

    Article  CAS  Google Scholar 

  • Elyashberg, M., Williams, A. J., Blinov, K. (2011). Contemporary computer-assisted approaches to molecular structure elucidation. Royal Society of Chemistry.

    Google Scholar 

  • Estrada, E. (1995). Edge adjacency relationships and a novel topological index related to molecular volume. Journal of Chemical Information and Computer Sciences, 35, 31–33. doi:10.1021/ci00023a004.

    CAS  Google Scholar 

  • Fechner, U., Franke, L., Renner, S., Schneider, P., & Schneider, G. (2003). Comparison of correlation vector methods for ligand-based similarity searching. Journal of Computer-Aided Molecular Design, 17, 687–698.

    Article  CAS  Google Scholar 

  • Fouches, D., Muratov, E. N., & Tropsha, A. (2010). Trust but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research. Journal of Chemical Information and Modeling, 50, 1189–1204.

    Article  Google Scholar 

  • Fourches, D., Pu, D., Tassa, C., Weissleder, R., Shaw, S. Y., Mumper, R. J., & Tropsha, A. (2010). Quantitative nanostructure – Activity relationship modeling. ACS Nano, 4, 5703–5712. doi:10.1021/nn1013484.

    Article  CAS  Google Scholar 

  • Fourches, D., Pu, D., & Tropsha, A. (2011). Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles. Combinatorial Chemistry & High Throughput Screening, 14, 217–225. doi:10.2174/138620711794728743.

    Article  CAS  Google Scholar 

  • Geary, R. C. (1954). The contiguity ratio and statistical mapping. Incorporated Statistician, 5, 115–127, 129–146. doi:10.2307/2986645

    Google Scholar 

  • Gissi, A., Lombardo, A., Roncaglioni, A., Gadaleta, D., Mangiatordi, G. F., Nicolotti, O., & Benfenati, E. (2015). Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint: The bioconcentration factor (BCF). Environmental Research, 137C, 398–409.

    Article  Google Scholar 

  • Guha, R., & Willighagen, E. L. (2012). A survey of quantitative descriptions of molecular structure. Current Topics in Medicinal Chemistry, 12, 1946–1956. doi:10.1016/j.biotechadv.2011.08.021.Secreted.

    Article  CAS  Google Scholar 

  • Haasch, M. L., McClellan-Green, P., & Oberdörster, E. (2005). Consideration of the toxicity of manufactured nanoparticles. AIP Conference Proceedings, 786, 586–590.

    Article  CAS  Google Scholar 

  • Hansch, C., Leo, A., & Livingstone, D. J. (1996). Exploring QSAR fundamentals and applications in chemistry and biology. Pesticide Biochemistry and Physiology, 56, 78.

    Article  Google Scholar 

  • Harary, F. (1969). Graph theory. Reading: Addison-Wesley.

    Google Scholar 

  • Hollas, B. (2003). An analysis of the autocorrelation descriptor for molecules. Journal of Mathematical Chemistry, 33, 91–101.

    Article  CAS  Google Scholar 

  • Hughes, K., Paterson, J., & Meek, M. E. (2009). Tools for the prioritization of substances on the Domestic Substances List in Canada on the basis of hazard. Regulatory Toxicology and Pharmacology, 55, 382–393.

    Article  CAS  Google Scholar 

  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC – A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45, 177–182.

    Article  CAS  Google Scholar 

  • Ivanciuc, O., & Balaban, A. T. (1994). Design of topological indices. Part 8. Path matrices and derived molecular graph invariants. MATCH Communications Mathematical and in Computer Chemistry, 30, 141–152.

    CAS  Google Scholar 

  • Ivanciuc, O., & Ivanciuc, T. (2000). Matrices and structural descriptors computed from molecular graph distances. In A. T. Balaban & J. Devillers (Eds.), Topological indices and related descriptors in QSAR and QSPR (pp. 221–277). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Jurs, P. C., Dixon, J. S., & Egolf, L. M. (1995). Representations of molecules. In H. Van Waterbeemd (Ed.), Chemometrics methods in molecular design (Vol. 2, pp. 15–38). New York: VCH Publishers.

    Chapter  Google Scholar 

  • Kar, S., Gajewicz, A., Puzyn, T., & Roy, K. (2014). Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Toxicology in Vitro, 28, 600–606.

    Article  CAS  Google Scholar 

  • Kier, L. B., & Hall, L. H. (1977). The nature of structure-activity relationships and their relation to molecular connectivity. European Journal of Medicinal Chemistry, 12, 307–375.

    CAS  Google Scholar 

  • Kind, T., & Fiehn, O. (2010). Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical Reviews, 2, 23–60.

    Article  Google Scholar 

  • Kühne, R., Ebert, R. U., Vonderohe, P. C., Ulrich, N., Brack, W., & Schüürmann, G. (2013). Read-across prediction of the acute toxicity of organic compounds toward the water flea Daphnia magna. Molecular Informatics, 32, 108–120.

    Article  Google Scholar 

  • Lehn, J.-M. (1999). Dynamic combinatorial chemistry and virtual combinatorial libraries. Chemistry A European Journal, 5, 2455–2463.

    Article  CAS  Google Scholar 

  • Lovasz, L., & Pelikan, J. (1973). On the eigenvalues of trees. Periodica Mathematica Hungarica, 3, 175–182.

    Article  Google Scholar 

  • Mannhold, R., Poda, G. I., Ostermann, C., & Tetko, I. V. (2009). Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. Journal of Pharmaceutical Sciences, 98, 861–893.

    Article  CAS  Google Scholar 

  • Mauri, A., Manganaro, A., Todeschini, R., Consonni, V., & Ballabio, D. (2014). Dragon software for molecular descriptor calculation.

    Google Scholar 

  • Merris, R. (1994). Laplacian matrices of graphs: A survey. Linear Algebra and its Applications, 197–198, 143–176.

    Article  Google Scholar 

  • Mihalic, Z., Nikolić, S., & Trinajstić, N. (1992). Comparative study of molecular descriptors derived from the distance matrix. Journal of Chemical Information and Modeling, 32, 28–37.

    Article  CAS  Google Scholar 

  • Mohar, B., Babic, D., & August, R. (1993). A novel definition of the Wiener index for trees. Journal of Chemical Information and Computer Sciences, 33, 153–154.

    CAS  Google Scholar 

  • Moran, P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 17–23.

    Article  CAS  Google Scholar 

  • Moreau, J. L., & Broto, P. (1980). Autocorrelation of molecular structures: Application to SAR studies. Nouveau Journal de Chimie, 4, 757–764.

    CAS  Google Scholar 

  • Murray-Rust, P. (1999). Chemical markup, XML, and the Worldwide Web. 1. Basic principles. Journal of Chemical Information and Computer Sciences, 39, 928–942.

    Article  CAS  Google Scholar 

  • Murray-Rust, P., & Rzepa, H. S. (2001). Chemical markup, XML and the World-Wide Web. 2. Information objects and the CMLDOM. Journal of Chemical Information and Computer Sciences, 41, 1113–1123.

    Article  CAS  Google Scholar 

  • Oksel, C., Ma, C. Y., Liu, J. J., Wilkins, T., & Wang, X. Z. (2015). (Q)SAR modelling of nanomaterial toxicity: A critical review. Particuology, 21, 1–19.

    Article  CAS  Google Scholar 

  • Oprisiu, I., Novotarskyi, S., & Tetko, I. V. (2013). Modeling of non-additive mixture properties using the Online CHEmical database and Modeling environment (OCHEM). Journal of Chemical Information and Modeling, 5, 4. doi:10.1186/1758-2946-5-4.

    CAS  Google Scholar 

  • Pence, H. E., & Williams, A. (2010). Chemspider: An online chemical information resource. Journal of Chemical Education, 87, 1123–1124.

    Article  CAS  Google Scholar 

  • Puzyn, T., Leszczynska, D., & Leszczynski, J. (2009). Toward the development of “Nano-QSARs”: Advances and challenges. Small, 5, 2494–2509. doi:10.1002/smll.200900179.

    Article  CAS  Google Scholar 

  • Randić, M. (1975). On characterization of molecular branching. Journal of the American Chemical Society, 97, 6609–6615. doi:10.1021/ja00856a001.

    Article  Google Scholar 

  • Randić, M. (1992). Similarity based on extended basis descriptors. Journal of Chemical Information and Modeling, 32, 686–692. doi:10.1021/ci00010a016.

    Article  Google Scholar 

  • Randić, M. (1996). Molecular bonding profiles. Journal of Mathematical Chemistry, 19, 375–392. doi:10.1007/BF01166727.

    Article  Google Scholar 

  • Randić, M. (2001). The connectivity index 25 years after. Journal of Molecular Graphics and Modelling, 20, 19–35. doi:10.1016/S1093-3263(01)00098-5.

    Article  Google Scholar 

  • Renner, S., Fechner, U., & Schneider, G. (2006). Alignment-free pharmacophore patterns – A correlation vector approach. In T. Langer & R. D. Hoffmann (Eds.), Pharmacophores and pharmacophore searches (pp. 49–79). Weinheim: Wiley-VCH.

    Chapter  Google Scholar 

  • Rogers, D., & Hahn, M. (2010). Extended-connectivity fingerprints. Journal of Chemical Information and Modeling, 50, 742–754. doi:10.1021/ci100050t.

    Article  CAS  Google Scholar 

  • Roy, K., Das, R. N., & Popelier, P. L. a. (2014). Quantitative structure-activity relationship for toxicity of ionic liquids to Daphnia magna: Aromaticity vs. lipophilicity. Chemosphere, 112, 120–127. doi:10.1016/j.chemosphere.2014.04.002.

    Article  CAS  Google Scholar 

  • Ruggiu, F., Marcou, G., Varnek, A., & Horvath, D. (2010). ISIDA property-labelled fragment descriptors. Molecular Informatics, 29, 855–868.

    Article  CAS  Google Scholar 

  • Schneider, G., Neidhart, W., Giller, T., & Schmid, G. (1999). “Scaffold-Hopping” by topological pharmacophore search: A contribution to virtual screening. Angewandte Chemie International Edition in English, 38, 2894–2896.

    Article  CAS  Google Scholar 

  • Testa, B., & Kier, L. B. (1991). The concept of molecular structure in structure-activity relationship studies and drug design. Medicinal Research Reviews, 11, 35–48.

    Article  CAS  Google Scholar 

  • Todeschini, R., & Consonni, V. (2009). Molecular descriptors for chemoinformatics (Vol. 2). Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Todeschini, R., & Gramatica, P. (1997). The Whim theory: New 3D molecular descriptors for QSAR in environmental modelling. SAR and QSAR in Environmental Research, 7, 89–115.

    Article  CAS  Google Scholar 

  • Todeschini, R., Lasagni, M., & Marengo, E. (1994). New molecular descriptors for 2D and 3D structures. Theory. Journal of Chemometrics, 8, 263–272.

    Article  CAS  Google Scholar 

  • Trinajstic, N., Nikolic, S., Lucic, B., Amic, D., & Mihalic, Z. (1997). The Detour matrix in chemistry. Journal of Chemical Information and Modeling, 37, 631–638.

    CAS  Google Scholar 

  • Tropsha, A. (2010). Best practices for QSAR model development, validation, and exploitation. Molecular Informatics, 29, 476–488.

    Article  CAS  Google Scholar 

  • Vighi, M., & Calamari, D. (1985). QSARs for organotin compounds on Daphnia magna. Chemosphere, 14, 1925–1932.

    Article  CAS  Google Scholar 

  • Weininger, D. (1988). SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Modeling, 28, 31–36.

    Article  CAS  Google Scholar 

  • Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69, 17–20.

    Article  CAS  Google Scholar 

  • Williams, A., & Tkachenko, V. (2014). The Royal Society of Chemistry and the delivery of chemistry data repositories for the community. Journal of Computer-Aided Molecular Design, 28, 1023–1030.

    Article  CAS  Google Scholar 

  • Worth, A. P. (2010). Chapter 13: The role of QSAR methodology in the regulatory assessment of chemicals. Media. pp 367–382.

    Google Scholar 

  • Young, D., Martin, T., Venkatapathy, R., & Harten, P. (2008). Are the chemical structures in your QSAR correct? QSAR and Combinatorial Science, 27, 1337–1345.

    Article  CAS  Google Scholar 

  • Zeeman, M., Auer, C. M., Clements, R. G., Nabholz, J. V., & Boethling, R. S. (1995). U.S. EPA regulatory perspectives on the use of QSAR for new and existing chemical evaluations. SAR and QSAR in Environmental Research, 3, 179–201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mauri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Mauri, A., Consonni, V., Todeschini, R. (2017). Molecular Descriptors. In: Leszczynski, J., Kaczmarek-Kedziera, A., Puzyn, T., G. Papadopoulos, M., Reis, H., K. Shukla, M. (eds) Handbook of Computational Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27282-5_51

Download citation

Publish with us

Policies and ethics