Skip to main content

Beneficial Effects of Stevia rebaudiana Bertoni and Steviol-Related Compounds on Health

  • Reference work entry
  • First Online:
Sweeteners

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Stevia rebaudiana (Bertoni) extracts and/or leaves have gained almost worldwide approval as a low-calorie sweetener. This fact has stimulated the research on potential additional functionalities of stevia as food additives and possible beneficial effects on health. The chapter analyzes the abundant evidence related to the potential effects of stevia in diabetes, cancer, and hypertension, among others. It also discusses, on the basis of the biopharmaceutical and pharmacokinetic knowledge on stevia and its glycosides, possible causes of the majorly disappointing results obtained at clinical studies when examining their effects in humans. Finally, the use of steviol and related compounds as starting points for drug discovery campaigns is overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Joint FAO/WHO Expert Committee on Food Additives (2005) Evaluation of certain food additives. WHO technical report series 928

    Google Scholar 

  2. Joint FAO/WHO Expert Committee on Food Additives (2009) Evaluation of certain food additives. WHO technical report series 60

    Google Scholar 

  3. Geuns JMC (2009) Stevioside: a safe sweetener and possible new drug for the treatment of the metabolic syndrome. In: Weerasinghe DK, DuBois GE (eds) Sweetness and sweeteners. Biology, chemistry and psychophysics. American Chemical Society, Washington, DC

    Google Scholar 

  4. Geuns JMC, Augustijns P, Mols R et al (2003) Metabolism of stevioside in pigs and intestinal absorption characteristics of stevioside, rebaudioside A and steviol. Food Chem Toxicol 41:1599–1607

    Article  CAS  Google Scholar 

  5. Koyama E, Sakai N, Ohori Y et al (2003) Absorption and metabolism of glycosidic sweeteners of Stevia mixture and their aglycone, steviol in rats and humans. Food Chem Toxicol 41:875–883

    Article  CAS  Google Scholar 

  6. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  Google Scholar 

  7. Veber DF, Johnson SR, Cheng HY et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  Google Scholar 

  8. Hutapea AM, Toskukao C, Buddhasukh D et al (1997) Digestion of stevioside, a natural sweetener, by various digestive enzymes. J Clin Biochem Nutr 23:177–186

    Article  CAS  Google Scholar 

  9. Nikiforov AI, Rihner MO, Eapen AK et al (2013) Metabolism and toxicity studies supporting the safety of rebaudioside D. In J Toxicol 34:261–273

    Google Scholar 

  10. Wingard JP, Brown F, Enderlin J et al (1980) Intestinal degradation and absorption of the glycosidic sweeteners stevioside and rebaudioside A. Experientia 36:519–520

    Article  CAS  Google Scholar 

  11. Koyama E, Kitazawa K, Ohori Y et al (2003) In vitro metabolism of the glycosidic sweeteners, stevia mixture and enzymatically modified stevia in human intestinal microflora. Food Chem Toxicol 41:359–374

    Article  CAS  Google Scholar 

  12. Gardana C, Simonetti P, Canzi E et al (2003) Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J Agric Food Chem 51:6618–6622

    Article  CAS  Google Scholar 

  13. Renwick AG, Tarka SM (2008) Microbial hydrolysis of steviol glycosides. Food Chem Toxicol 46(Suppl 7):S70–S74

    Article  CAS  Google Scholar 

  14. Roberts A, Renwick AG (2008) Comparative toxicokinetics and metabolism of rebaudioside A, stevioside, and steviol in rats. Food Chem Toxicol 46(Suppl 7):S31–S39

    Article  CAS  Google Scholar 

  15. Nakayama K, Kasahara D, Yamamoto F (1986) Absorption distribution metabolism and excretion of stevioside in rats. Shokugin Eiseigaku Zasshi 27:1–8

    Article  CAS  Google Scholar 

  16. Geuns JMC, Buyse J, Vankeirsbilck A et al (2006) Identification of steviol glucuronide in human urine. J Agric Food Chem 54:2794–2798

    Article  CAS  Google Scholar 

  17. Geuns JMC, Buyse J, Vankeirsbilck A et al (2007) Metabolism of stevioside by healthy subjects. Exp Biol Med (Maywood) 232:164–173

    CAS  Google Scholar 

  18. Koyama E, Sakai N, Ohori Y et al (2003) Absorption and metabolism of the glycosidic sweeteners, Stevia related compounds in human and rat. Food Chem Toxicol 41:875–883

    Article  CAS  Google Scholar 

  19. Wheeler A, Boileau AC, Winkler PC et al (2008) Pharmacokinetics of rebaudioside A and stevioside after single oral doses in healthy men. Food Chem Toxicol 46(Suppl 7):S54–S60

    Article  CAS  Google Scholar 

  20. Srimaroeng C, Chatsudthipong V, Aslamkhan AG et al (2005) Transport of the natural sweetener stevioside and its aglycone steviol by human organic anion transporter (hOAT1; SLC22A6) and hOAT3 (SLC22A8). J Pharmacol Exp Ther 313:621–628

    Article  CAS  Google Scholar 

  21. Wang M, Qi H, Li J et al (2015) Transmembrane transport of steviol glucuronide and its potential interaction with selected drugs and natural compounds. Food Chem Toxicol 86:217–224

    Article  CAS  Google Scholar 

  22. Li S, Chen T, Dong S et al (2014) The effect of rebaudioside A on microbial diversity in mouse intestine. Food Sci Technol Res 20:459–467

    Article  CAS  Google Scholar 

  23. Bastaki S (2015) Pharmacotherapy of nonnutritive sweeteners in diabetes mellitus. Int J Diabetes Metab 23:11–22

    Google Scholar 

  24. Jeppesen PB, Gregersen S, Poulsen C et al (2000) Stevioside acts directly on pancreatic beta cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metabolism 49:208–214

    Article  CAS  Google Scholar 

  25. Abudula R, Jeppesen PB, Rolfsen SE et al (2004) Rebaudioside A potently stimulates insulin secretion from isolated mouse islets: studies on the dose-, glucose-, and calcium-dependency. Metabolism 53:1378–1381

    Article  CAS  Google Scholar 

  26. Jeppensen PB, Gregersen S, Alstrup KK et al (2002) Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine 9:9–14

    Article  Google Scholar 

  27. Jeppensen PB, Gregersen S, Rolfsen SE (2003) Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism 52:372–378

    Article  Google Scholar 

  28. Ferreira EB, de Assis Rocha Neves F, da Costa MA et al (2006) Comparative effects of Stevia rebaudiana leaves and stevioside on glycaemia and hepatic gluconeogenesis. Planta Med 72:691–696

    Article  CAS  Google Scholar 

  29. Lailerd N, Saengsirisuwan V, Sloniger JA et al (2004) Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle. Metabolism 53:101–107

    Article  CAS  Google Scholar 

  30. Rizzo B, Zambonin L, Angeloni C et al (2013) Steviol glycosides modulate glucose transport in different cell types. Oxid Med Cell Longev 2013:348169

    Article  Google Scholar 

  31. Bhasker S, Madhay H, Chinnamma M (2015) Molecular evidence of insulinomimetic property exhibited by steviol and stevioside in diabetes induced L6 and 3T3L1 cells. Phytomedicine 22:1037–1044

    Article  CAS  Google Scholar 

  32. Shivanna N, Naika M, Khanum F et al (2013) Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complications 27:103–113

    Article  Google Scholar 

  33. Chang JC, Wu MC, Liu IM et al (2005) Increase of insulin sensitivity by stevioside in fructose rich chow-fed rats. Horm Metab Res 37:610–616

    Article  CAS  Google Scholar 

  34. Wang Z, Xue L, Guo C et al (2012) Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-kB pathway. Biochem Biophys Res Commun 416:1280–1285

    Article  Google Scholar 

  35. Geeraert B, Crombé F, Hulsmans M et al (2010) Stevioside inhibits atherosclerosis by improving insulin signaling and antioxidant defense in obese insulin-resistant mice. Int J Obes (Lond) 34:569–577

    Article  CAS  Google Scholar 

  36. Holvoet P, Rull A, García-Heredia A et al (2015) Stevia-derive compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice a transcriptomic and metabolomic study. Food Chem Toxicol 77:22–33

    Article  CAS  Google Scholar 

  37. Curi R, Alvarez M, Bazorre RB et al (1986) Effect of Stevia rebaudiana on glucose tolerance in normal adult humans. Braz J Med Biol Res 19:771–774

    CAS  Google Scholar 

  38. Gregersen S, Jeppensen PB, Holst JJ et al (2004) Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 53:73–76

    Article  CAS  Google Scholar 

  39. Anton SD, Martin CK, Han H et al (2010) Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite 55:37–43

    Article  CAS  Google Scholar 

  40. Chan P, Tomlinson B, Chen YJ et al (2000) A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br J Clin Pharmacol 50:215–220

    Article  CAS  Google Scholar 

  41. Barriocanal LA, Palacios M, Benitez G et al (2008) Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regul Toxicol Pharmacol 51:37–41

    Article  CAS  Google Scholar 

  42. Maki KC, Curry LL, Reeves MS et al (2008) Chronic consumption of rebaudioside A, a steviol glycoside, in men and women with type 2 diabetes mellitus. Food Chem Toxicol 46(Suppl 7):S47–S53

    Article  CAS  Google Scholar 

  43. Talevi A (2016) The importance of bioactivation in computer-guided drug repositioning. Why the parent drug is not always enough. Curr Top Med Chem 16(19):2078–2087

    Article  CAS  Google Scholar 

  44. Yang LM, Hsu FL, Chang SF et al (2007) Microbial metabolism of steviol and steviol-16alpha,17-epoxide. Phytochemistry 68:562–570

    Article  CAS  Google Scholar 

  45. Jayaraman S, Manoharan MS, Illanchezian S (2008) In-vitro antimicrobial and antitumor activity of Stevia rebaudiana (Asteraceae) leaf extracts. Trop J Pharm Res 7:1143–1149

    Article  Google Scholar 

  46. Debnath M (2008) Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. J Med Plant Res 2:45–51

    Google Scholar 

  47. Singh S, Garg V, Yadav D et al (2012) In vitro antioxidative and antibacterial activities of various parts of Stevia rebaudiana (Bertoni). Int J Pharm Pharm Sci 4:468–473

    Google Scholar 

  48. Puri M, Sharma D (2011) Antibacterial activity of stevioside towards food-borne pathogenic bacteria. Eng Life Sci 11:326–329

    Article  CAS  Google Scholar 

  49. Sharipova RR, Strobykina IY, Mordovskoi GG et al (2011) Antituberculosis activity of glycosides from Stevia rebaudiana and hybrid compounds of steviolbioside and pyridinecarboxylic acid hydrazides. Chem Nat Compd 46:902–905

    Article  CAS  Google Scholar 

  50. Kataev VE, Strobykina IY, Andreeva OV et al (2011) Synthesis and antituberculosis activity of derivatives of Stevia rebaudiana glycoside steviolbioside and diterpenoid isosteviol containing hydrazone, hydrazide, and pyridinoyl moieties. Russ J Bioorg Chem 37:483

    Article  CAS  Google Scholar 

  51. Khaybullin RN, Strobykina IY, Dobrynin AB (2012) Synthesis and antituberculosis activity of novel unfolded and macrocyclic derivatives of ent-kaurane steviol. Bioorg Med Chem Lett 22:6909–6913

    Article  CAS  Google Scholar 

  52. Sharipova RR, Lodochnikova OA, Strobykina IY et al (2013) Synthesis, structures, and properties of 15-oxoisosteviol thiosemicarbazone and oxime. Russ Chem Bull 62:175–182

    Article  CAS  Google Scholar 

  53. Huang TJ, Chou BH, Lin CW et al (2014) Synthesis and antiviral effects of isosteviol-derived analogues against the hepatitis B virus. Phytochemistry 99:107–114

    Article  CAS  Google Scholar 

  54. Moons N, Borggraeve W, Dehaen W (2012) Stevioside and steviol as starting materials in organic synthesis. Curr Org Chem 16:1986–1995

    Article  CAS  Google Scholar 

  55. Lin LH, Lee LW, Sheu SY et al (2004) Study on the stevioside analogues of steviolbioside, steviol, and isosteviol 19-alkyl amide dimers: synthesis and cytotoxic and antibacterial activity. Chem Pharm Bull (Tokyo) 53:1117–1122

    Article  Google Scholar 

  56. Wu Y, Dai GF, Yang JH et al (2009) Stereoselective synthesis of 15- and 16-substituted isosteviol derivatives and their cytotoxic activities. Bioorg Med Chem Lett 19:1818–1821

    Article  CAS  Google Scholar 

  57. Zhu SL, Wu Y, Liu CJ et al (2013) Synthesis and in vitro cytotoxic activity evaluation of novel heterocycle bridged carbothioamide type isosteviol derivatives as antitumor agents. Bioorg Med Chem Lett 23:1343–2346

    Article  CAS  Google Scholar 

  58. Ukiya M, Sawada S, Kikuchi T et al (2013) Cytotoxic and apoptosis-inducing activities of steviol and isosteviol derivatives against cancer cell lines. Chem Biodivers 10:177–188

    Article  CAS  Google Scholar 

  59. Malki A, Laha R, Bergmeier SC (2014) Synthesis and cytotoxic activity of MOM-ether analogs of isosteviol. Bioorg Med Chem Lett 24:1184–1187

    Article  CAS  Google Scholar 

  60. Strobykina IY, Belenok MG, Semenova MN et al (2015) Triphenylphosphonium cations of the diterpenoid isosteviol: synthesis and antimitotic activity in a sea urchin embryo model. J Nat Product 78:1300–1308

    Article  CAS  Google Scholar 

  61. Toyoda K, Matsui H, Shoda T et al (1997) Assessment of the carcinogenicity of stevioside in F344 rats. Food Chem Toxicol 35:597–603

    Article  CAS  Google Scholar 

  62. Yasukawa K, Kitanaka S, Seo S (2002) Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphrbol-13-acetate in two-stage carcinogenesis in mouse skin. Bio Pharm Bull 25:1488–1490

    Article  CAS  Google Scholar 

  63. Takasaki M, Konoshima T, Kozuka M et al (2009) Cancer preventive agents. Part 8: chemopreventive effects of stevioside and related compounds. Bioorg Med Chem 17:600–605

    Article  CAS  Google Scholar 

  64. Boonkaewwan C, Ao M, Toskulkao C et al (2008) Specific immunomodulatory and secretory activities of stevioside and steviol in intestinal cells. J Agric Food Chem 56:3777–3784

    Article  CAS  Google Scholar 

  65. Paul S, Sengupta S, Bandyopadhyay TK (2012) Stevioside induced ROS-mediated apoptosis through mitochondrial pathway in human breast cancer cell line MCF-7. Nutr Cancer 64:1087–1094

    Article  CAS  Google Scholar 

  66. Beech EMA, Humboldt G (1981) Cardio-circulatory effects of total water extract in normal persons and of stevioside in rats. Cienciu e Cultura 32:208–210

    Google Scholar 

  67. Humboldt G, Beech EMA (1977) Efeito do edulcorante natural, (stevioside) e sintetico (sacarina) sobre o ritmo cardisco em ratos. Arq Bras Cardiol 30:275–277

    Google Scholar 

  68. Melis MS, Sainati AR (1991) Effect of calcium and verapamil on renal function of rats during treatment with stevioside. J Ethnopharmacol 33:257–262

    Article  CAS  Google Scholar 

  69. Melis MS (1992) Stevioside effect on renal function of normal and hypertensive rats. J Ethnopharmacol 36:213–217

    Article  CAS  Google Scholar 

  70. Melis MS (1995) Chronic administration of aqueous extract of Stevia rebaudiana in rats: renal effects. J Ethnopharmacol 47:129–134

    Article  CAS  Google Scholar 

  71. Melis MS (1996) A crude extract of Stevia rebaudiana increases the renal plasma flow of normal and hypertensive rats. Braz J Med Biol Res 28:669–675

    Google Scholar 

  72. Hsu YH, Liu JC, Kao PF et al (2002) Antihypertensive effect of stevioside in different strains of hypertensive rats. Zhonghua Yi Xue Za Zhi (Taipei) 65:1–6

    Google Scholar 

  73. Liu JC, Kao PF, Ming HH et al (2000) Antihypertensive effect of stevioside derivative isosteviol in spontaneously hypertensive rats. Acta Cardiol Sinica 17:133–140

    Google Scholar 

  74. Liu JC, Kao PF, Chan P et al (2003) Mechanism of the antihypertensive effect of stevioside in anesthetized dogs. Pharmacology 67:14–20

    Article  CAS  Google Scholar 

  75. Wong KL, Chan P, Yang HY et al (2004) Isosteviol acts on potassium channels to relax isolated aortic strips of Wistar rat. Life Sci 75:2379–2387

    Article  Google Scholar 

  76. Melis MS, Sainati AR (1991) Participation of prostaglandins in the effect of stevioside on rat renal function and arterial pressure. Braz J Med Biol Res 24:1269–1276

    CAS  Google Scholar 

  77. Hsieh MH, Chan P, Sue YM et al (2003) Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: a two-year, randomized, placebo-controlled study. Clin Ther 25:2797–2808

    Article  CAS  Google Scholar 

  78. Ferri LA, Alves-Do-Prado W, Yamada SS et al (2006) Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytother Res 20:732–736

    Article  CAS  Google Scholar 

  79. Onakpoya IJ, Heneghan CJ (2015) Effect of the natural sweetener, steviol glycoside, on cardiovascular risk factors: a systematic review and meta-analysis of randomised clinical trials. Eur J Prev Cardiol 22:1575–1587

    Article  Google Scholar 

  80. Wonganan O, Tocharus C, Puedsing C et al (2013) Potent vasorelaxant analogs from chemical modification and biotransformation of isosteviol. Eur J Med Chem 62:771–776

    Article  CAS  Google Scholar 

  81. Sharma D, Puri M, Tiwari AK et al (2010) Antiamnesic effect of stevioside in scopolamine-treated rats. Indian J Pharmacol 42:164–167

    Article  CAS  Google Scholar 

  82. Talevi A, Enrique AV, Bruno-Blanch LE (2012) Anticonvulsant activity of artificial sweeteners: a structural link between sweet-taste receptor T1R3 and brain glutamate receptors. Bioorg Med Chem Lett 22:4072–4074

    Article  CAS  Google Scholar 

  83. Di Ianni ME, Del Valle ME, Enrique AV et al (2015) Computer-aided identification of anticonvulsant effect of natural nonnutritive sweeteners stevioside and rebaudioside A. Assay Drug Dev Technol 13:313–318

    Article  Google Scholar 

  84. Yang PS, Lee JJ, Taso CW et al (2009) Stimulatory effect of stevioside on peripheral mu opioid receptors in animals. Neurosci Lett 454:72–75

    Article  CAS  Google Scholar 

  85. Matera S, Piersante MV, Ragone MI, Consolini AE (2011) Sedative and antispasmodic effects of Stevia rebaudiana and noncompetitive inhibition of intestinal contractility by stevioside. Pharmacol online 1:1–8

    Google Scholar 

  86. Fura A (2006) Role of pharmacologically active metabolites in drug discovery and development. Drug Discov Today 11:133–142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is a researcher from the University of La Plata and the Argentinean National Council of Scientific and Technical Research (CONICET). The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Talevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Talevi, A. (2018). Beneficial Effects of Stevia rebaudiana Bertoni and Steviol-Related Compounds on Health. In: Mérillon, JM., Ramawat, K. (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27027-2_24

Download citation

Publish with us

Policies and ethics