Compact Nanosecond Pulse Generator Based on Printed Circuit Board Transmission Lines and Solid-State Switches

Living reference work entry

Abstract

In order to explore the biomedical application of nanosecond pulsed electric fields (nsPEFs), researchers have used numerous methods to develop nanosecond pulse generators. Transmission line-based generators are widely used for their good reliability and simplicity. With traditional method, strip lines and spark gap switches are almost homemade. At the same time, manufacture techniques of PCB (printed circuit board) strip line and solid-state switch with universal manufacture standards will benefit the generators to be compact, portable, and reliable. This chapter provides guides to develop a compact nanosecond pulse generator for biomedical application based on PCB transmission lines and solid-state switches. Firstly, the principle of Blumlein strip line pulse generator including traditional balanced, unbalanced, and stacked Blumlein strip line is presented. Unbalanced Blumlein strip line could be used to generate output voltage with variable duration and variable amplitude. Stacked Blumlein strip line could be regarded as a voltage multiplier or a current amplifier. Then, as a main part, this chapter proposes the detailed design key points of this kind of compact generator including PCB strip line, PCB microstrip line, stacked PCB transmission lines, and stacked solid-state switches. Characteristic parameters, attenuation and design procedure with detailed equations of different strip lines, and PCB design techniques with parameters of different dielectric materials are also provided.

Keywords

Nanosecond pulse generator Nanosecond pulsed electric fields (nsPEFs) PCB (printed circuit board) Blumlein transmission line Solid-state switch 

References

  1. Batista Napotnik T, Reberšek M, Vernier PT, Mali B, Miklavčič D (2016) Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review. Bioelectrochemistry 110:1–12. doi:10.1016/j.bioelechem.2016.02.011CrossRefGoogle Scholar
  2. Beebe SJ, Fox PM, Rec LJ et al (2002) Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plasma Sci 30(1):286–291. doi:10.1109/TPS.2002.1003872CrossRefGoogle Scholar
  3. Behrend M, Kuthi A, Gu X et al (2003) Pulse generators for pulsed electric field exposure of biological cells and tissues. IEEE Trans Dielectr Electr Insul 10(5):820–825. doi:10.1109/TDEI.2003.1237331CrossRefGoogle Scholar
  4. Bluhm H (2006) Pulsed power systems: principles and applications. Springer, BerlinGoogle Scholar
  5. Chen X, Kolb JF, Swanson RJ et al (2010) Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields. Pigment Cell Melanoma Res 23(4):554–563. doi:10.1111/j.1755-148X.2010.00704.xCrossRefGoogle Scholar
  6. Collin RE (2000) Foundations for microwave engineering, 2nd edn. Wiley-IEEE Press, New YorkGoogle Scholar
  7. Deng J, Stark RH, Schoenbach KH (2000) A nanosecond pulse generator for intracellular electromanipulation. International power modulator symposium, pp 47–50. doi:10.1109/MODSYM.2000.896161Google Scholar
  8. Katsuki S, Moreira K, Dobbs F, et al (2002) Bacterial decontamination with nanosecond pulsed electric fields. The 1994 Twenty-first international power modulator symposium, pp 648–651. doi:10.1109/MODSYM.2002.1189561Google Scholar
  9. Kolb JF, Kono S, Schoenbach KH (2006) Nanosecond pulsed electric field generators for the study of subcellular effects. Bioelectromagnetics 27(3):172–187. doi:10.1002/bem.20185CrossRefGoogle Scholar
  10. Li S, Qian B, Yang H et al (2011) Influence of different convolution methods on output characteristics of rolled strip pulse forming line. Qiangjiguang Yu Lizishu/High Power Laser Part Beams 23(11):2888–2892. doi:10.3788/HPLPB20112311.2888CrossRefGoogle Scholar
  11. Ma S (2007) Design and implementation of high-voltage transmission line pulse generator. Qinghai Electr Power 26(2):43–45. doi:10.15919/j.cnki.qhep.2007.02.014Google Scholar
  12. Martin TH, Guenther AH, Kristiansen M (1996) J. C. Martin on pulsed power. Plenum, New York. doi:10.1007/978-1-4899-1561-0CrossRefGoogle Scholar
  13. Mi Y, Zhang Y, Wan J et al (2016) Nanosecond pulse generator based on an unbalanced Blumlein multilayered microstrip transmission line and solid-state switches. IEEE Trans Plasma Sci 44(5):795–802. doi:10.1109/TPS.2016.2542521CrossRefGoogle Scholar
  14. Nuccitelli R, Pliquett U, Chen X et al (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343(2):351–360. doi:10.1109/MODSYM.2006.365310CrossRefGoogle Scholar
  15. Nuccitelli R, Chen X, Pakhomov AG et al (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 125(2):438–445. doi:10.1002/ijc.24345CrossRefGoogle Scholar
  16. Nuccitelli R, Huynh J, Lui K et al (2013) Nanoelectroablation of human pancreatic carcinoma in a murine xenograft model without recurrence. Int J Cancer 132(8):1933–1939. doi:10.1002/ijc.27860CrossRefGoogle Scholar
  17. Nuccitelli R, Wood R, Kreis M et al (2014) First-in-human trial of nanoelectroablation therapy for basal cell carcinoma: proof of method. Exp Dermatol 23(2):135–137. doi:10.1111/exd.12303CrossRefGoogle Scholar
  18. Pai ST, Zhang Q (1995) Introduction to high power pulse technology. World Sci Singap. doi:10.1142/2311Google Scholar
  19. Pakhomov AG, Kolb JF, White JA et al (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28(8):655–663. doi:10.1002/bem.20354CrossRefGoogle Scholar
  20. Romeo S, D’Avino C, Zeni O et al (2013) A Blumlein, nanosecond pulse generator with interchangeable transmission lines for bioelectrical applications. IEEE Trans Dielectr Electr Insul 20(4):1224–1230. doi:10.1109/TDEI.2013.6571438CrossRefGoogle Scholar
  21. Schoenbach KH, Joshi RP (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 92(7):1122–1137. doi:10.1109/JPROC.2004.829009CrossRefGoogle Scholar
  22. Schoenbach KH, Katsuki S, Stark RH et al (2002) Bioelectrics-new applications for pulsed power technology. IEEE Trans Plasma Sci 30(1):293–300. doi:10.1109/TPS.2002.1003873CrossRefGoogle Scholar
  23. Vernier PT, Ziegler MJ, Sun Y et al (2006) Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers – in cells and in silico. Phys Biol 3(4):233–247. doi:10.1088/1478-3975/3/4/001CrossRefGoogle Scholar
  24. Wheeler HA (1965) Transmission line properties of parallel strip separated by a dielectric sheet. IEEE Trans Microw Theory Tech MTT-13.2:172–185. doi:10.1109/TMTT.1965.1125962CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Electrical EngineeringChongqing UniversityChongqingChina
  2. 2.The State Grid ChongqingChangshou Power Supply CompanyChongqingChina

Personalised recommendations