Photoconductive Switching for Pulsed High-Voltage Generators

  • Delia Arnaud-Cormos
  • Vincent Couderc
  • Philippe Leveque
Living reference work entry


High-voltage (HV) ultrashort pulse technologies require adjustable pulse parameters such as duration, amplitude, shape, number of pulses, and the frequency rate. Generators that can produce powerful electrical pulses with adjustable characteristics are convenient but still not widely available. This chapter presents a summary of key developments around HV pulse generators built on the frozen-wave-generator concept. With this concept, a microstrip or coaxial transmission line technology is used to store a bias voltage from a high-voltage source. Ultrafast optoelectronic switches integrated on the line and triggered by laser beam allow delivery of pulses into an output load. Due to their advantages, photoconductive semiconductor switches (PCSS) are used in the linear running regime. These generators can produce pulses of various shapes (rectangular, bipolar, triangular), with durations ranging from a few hundred picoseconds to a few tens of nanoseconds and with amplitudes up to tens of kV. Developed generators include two types of transmission lines based on microstrip or coaxial technology and two types of PCSS capable of switching up to 4 kV or 20 kV bias voltages. This technology has enabled generation of pulses with peak amplitudes of around 15 kV. It also allows the profiling of the pulses depending on the conditions of PCSS commutations such as energy levels, optical delays, and synchronous or asynchronous activation.


High voltage Nanosecond and subnanosecond pulse generator Photoconductive switch Optoelectronic switching Pulse shaping 


  1. Akiyama M, Sakugawa T, Hosseini SHR, Shiraishi E, Kiyan T, Akiyama H (2010) High-performance pulsed-power generator controlled by FPGA. IEEE T Plasma Sci 38(10):2588–2592CrossRefGoogle Scholar
  2. El Amari S, De Angelis A, Arnaud-Cormos D, Couderc V, Leveque P (2011) Characterization of a linear photoconductive switch used in nanosecond pulsed electric field generator. IEEE Photon Tech Lett 23(11):673–675CrossRefGoogle Scholar
  3. El Amari S, Kenaan M, Merla C, Vergne B, Arnaud-Cormos D, Leveque P, Couderc V (2010) Kilovolt, nanosecond, and picosecond electric pulse shaping by using optoelectronic switching. IEEE Photon Technol Lett 22(21):1577–1579CrossRefGoogle Scholar
  4. Garon EB, Sawcer D, Vernier PT, Tang T, Sun YH, Marcu L, Gundersen MA, Koeffler HP (2007) In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int J Cancer 121(3):675–682CrossRefGoogle Scholar
  5. Heeren T, Camp JT, Kolb JF, Schoenbach KH, Katsuki S, Akiyama H (2007) 250 kV sub-nanosecond pulse generator with adjustable pulse-width. IEEE T Dielectr Electr Insul 14(4):884–888CrossRefGoogle Scholar
  6. Kandušer M, Miklavčič D (2009) Electroporation in biological cell and tissue: an overview Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 1–37CrossRefGoogle Scholar
  7. Kelkar KS, Islam NE, Kirawanich P, Fessler CM, Nunnally WC (2008) On-state characteristics of a high-power photoconductive switch fabricated from compensated 6-H silicon carbide. IEEE T Plasma Sci 36(1):287–292CrossRefGoogle Scholar
  8. Kenaan M, El Amari S, Silve A, Merla C, Mir LM, Couderc V, Arnaud-Cormos D, Leveque P (2011) Characterization of a 50-Ω exposure setup for high-voltage nanosecond pulsed electric field Bioexperiments. IEEE T Biomed Eng 58(1):207–214CrossRefGoogle Scholar
  9. Kohler S, Couderc V, O’Connor RP, Arnaud-Cormos D, Leveque P (2013) A versatile high voltage nano- and sub-nanosecond pulse generator. IEEE T on Dielect Electr Insul 20(4):1201–1208CrossRefGoogle Scholar
  10. Lee CH (1990) Optical control of semiconductor closing and opening switches. IEEE T Electron Dev 37(12):2426–2438CrossRefGoogle Scholar
  11. Loubriel GM, Zutavern FJ, Baca AG, Hjalmarson PP, Plut TA, Helgeson WD, Omalley MW, Ruebush MH, Brown DJ (1997) Photoconductive semiconductor switches. IEEE T Plasma Sci 25(2):124–130CrossRefGoogle Scholar
  12. Ma K, Urata R, Miller DAB, Harris JS (2004) Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches. IEEE J Quant Electron 40(6):800–804CrossRefGoogle Scholar
  13. Merla C, El Amari S, Kenaan M, Liberti M, Apollonio F, Arnaud-Cormos D, Couderc V, Leveque P (2010) A 10-Ω high-voltage nanosecond pulse generator. IEEE T on Microw Theory 58(12):4079–4085Google Scholar
  14. Napotnik TB, Rebersek M, Kotnik T, Lebrasseur E, Cabodevila G, Miklavcic D (2010) Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. Med Biol Eng Comput 48(5):407–413CrossRefGoogle Scholar
  15. Ospald F, Maryenko D, von Klitzing K, Driscoll DC, Hanson MP, Lu H, Gossard AC, Smet JH (2008) 1.55 μm ultrafast photoconductive switches based on ErAs: InGaAs. Appl Phys Lett 92(13):131117CrossRefGoogle Scholar
  16. Rebersek M, Kranjc M, Pavliha D, Batista-Napotnik T, Vrtacnik D, Amon S, Miklavcic D (2009) Blumlein configuration for high-repetition-rate pulse generation of variable duration and polarity using synchronized switch control. IEEE T Biomed Eng 56(11):2642–2648CrossRefGoogle Scholar
  17. Rebersek M, Miklavcic D, Bertacchini C, Sack M (2014) Cell membrane electroporation-part 3: the equipment. IEEE Electr Insul Mag 30(3):8–18CrossRefGoogle Scholar
  18. Renxi G, Yimen Z, Linan Y, Shunxiang S, Tongyi Z, Yuming Z (2001) Characterization of the performance parameters of linear photoconductive semiconductor switches. Solid-State and Integrated-Circuit Technology ConferenceGoogle Scholar
  19. Schoenbach KH, Joshi RP, Kolb JF, Nianyong C, Stacey M, Blackmore PF, Buescher ES, Beebe SJ (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 92(7):1122–1137CrossRefGoogle Scholar
  20. Schoenbach KH, Katsuki S, Stark RH, Buescher ES, Beebe SJ (2002) Bioelectrics-new applications for pulsed power technology. IEEE T Plasma Sci 30(1):293–300CrossRefGoogle Scholar
  21. Tang T, Wang F, Kuthi A, Gundersen MA (2007) Diode opening switch based nanosecond high voltage pulse generators for biological and medical applications. IEEE T Dielectr Electr Insul 14(4):878–883CrossRefGoogle Scholar
  22. Thaxter JB, Bell RE (1995) Experimental 6-GHz frozen wave generator with fiber-optic feed. IEEE Microw Theory 43(8):1798–1804CrossRefGoogle Scholar
  23. Weaver JC, Smith KC, Esser AT, Son RS, Gowrishankar TR (2012) A brief overview of electroporation pulse strength-duration space: a region where additional intracellular effects are expected. Bioelectrochemistry 87:236–243CrossRefGoogle Scholar
  24. Zhao HM, Hadizad P, Hur JH, Gundersen MA (1993) Avalanche injection model for the lock-on effect in III-V power photoconductive switches. J Appl Phys 73(4):1807–1812CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Delia Arnaud-Cormos
    • 1
  • Vincent Couderc
    • 1
  • Philippe Leveque
    • 1
  1. 1.CNRS, XLIM, UMR 7252University of LimogesLimogesFrance

Personalised recommendations