Advertisement

Electrodeformation, Electroporation, and Electrofusion of Giant Unilamellar Vesicles

  • Rumiana Dimova
  • Karin A. Riske
Living reference work entry

Abstract

This chapter summarizes a spectrum of phenomena observed on model membranes exposed to electric fields. The considered model membrane system is giant unilamellar vesicles with sizes in the range of tens of microns. Because of their large size, the response of the membrane to electric fields can be directly visualized under the microscope. The membrane behavior is exemplified by several types of responses: First, the vesicles undergo morphological changes and adopt prolate, oblate, or spherocylindrical shapes. In general, the vesicle morphology depends on the conductivity conditions of the immersion and encapsulated solutions, and in the case of alternating fields – on the field frequency. Second, after switching the electric field off, these shapes can relax back to a sphere. The relaxation times depend on the initial membrane tension and on the reached transmembrane potential. Third, the vesicles can undergo topological changes such as formation of pores and, in the case of vesicles in contact, fusion. All these processes depend on the material characteristics of the membrane such as mechanical (bending rigidity and stretching elasticity), rheological (membrane shear surface viscosity), and electrical (capacitance) properties of the lipid bilayer. This chapter gives an overview of these properties and their dependence on the membrane phase state, and presents approaches for directly assessing them using giant unilamellar vesicles.

Keywords

Giant unilamellar vesicles Model membranes Membrane mechanical properties Vesicle deformation Poration Membrane fusion 

Notes

Acknowledgment

K.A.R. acknowledges the financial support of FAPESP.

References

  1. Aranda S, Riske KA, Lipowsky R, Dimova R (2008) Morphological transitions of vesicles induced by alternating electric fields. Biophys J 95(2):L19–L21CrossRefGoogle Scholar
  2. Bezlyepkina N, Gracià RS, Shchelokovskyy P, Lipowsky R, Dimova R (2013) Phase diagram and tie-line determination for the ternary mixture DOPC/eSM/cholesterol. Biophys J 104(7):1456–1464CrossRefGoogle Scholar
  3. Brochard-Wyart F, de Gennes PG, Sandre O (2000) Transient pores in stretched vesicles: role of leak-out. Physica A 278(1–2):32–51CrossRefGoogle Scholar
  4. Dimova R (2014) Recent developments in the field of bending rigidity measurements on membranes. Adv Colloid Interface Sci 208:225–234. doi:10.1016/j.cis.2014.03.003CrossRefGoogle Scholar
  5. Dimova R, Bezlyepkina N, Jordo MD, Knorr RL, Riske KA, Staykova M, Vlahovska PM, Yamamoto T, Yang P, Lipowsky R (2009) Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matter 5(17):3201–3212CrossRefGoogle Scholar
  6. Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R (2007) Giant vesicles in electric fields. Soft Matter 3(7):817–827CrossRefGoogle Scholar
  7. Gracià RS, Bezlyepkina N, Knorr RL, Lipowsky R, Dimova R (2010) Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matter 6(7):1472–1482. doi:10.1039/b920629aCrossRefGoogle Scholar
  8. Haluska CK, Riske KA, Marchi-Artzner V, Lehn JM, Lipowsky R, Dimova R (2006) Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc Natl Acad Sci U S A 103(43):15841–15846CrossRefGoogle Scholar
  9. Harbich W, Helfrich W (1979) Alignment and opening of giant lecithin vesicles by electric-fields. Z Naturforsch, A: Phys Sci 34(9):1063–1065CrossRefGoogle Scholar
  10. Karatekin E, Sandre O, Guitouni H, Borghi N, Puech PH, Brochard-Wyart F (2003) Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 84(3):1734–1749CrossRefGoogle Scholar
  11. Knorr RL, Staykova M, Gracia RS, Dimova R (2010) Wrinkling and electroporation of giant vesicles in the gel phase. Soft Matter 6(9):1990–1996CrossRefGoogle Scholar
  12. Lira RB, Dimova R, Riske Karin A (2014) Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties. Biophys J 107(7):1609–1619. doi:10.1016/j.bpj.2014.08.009CrossRefGoogle Scholar
  13. Portet T, Dimova R (2010) A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition. Biophys J 99(10):3264–3273CrossRefGoogle Scholar
  14. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79(1):328–339CrossRefGoogle Scholar
  15. Riske KA, Dimova R (2005) Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J 88(2):1143–1155CrossRefGoogle Scholar
  16. Riske KA, Dimova R (2006) Electric pulses induce cylindrical deformations on giant vesicles in salt solutions. Biophys J 91(5):1778–1786CrossRefGoogle Scholar
  17. Riske KA, Knorr RL, Dimova R (2009) Bursting of charged multicomponent vesicles subjected to electric pulses. Soft Matter 5:1983–1986CrossRefGoogle Scholar
  18. Sadik MM, Li J, Shan JW, Shreiber DI, Lin H (2011) Vesicle deformation and poration under strong dc electric fields. Phys Rev E 83(6):066316CrossRefGoogle Scholar
  19. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572CrossRefGoogle Scholar
  20. Walde P, Cosentino K, Engel H, Stano P (2010) Giant vesicles: preparations and applications. Chem Bio Chem 11(7):848–865CrossRefGoogle Scholar
  21. Yang P, Lipowsky R, Dimova R (2009) Nanoparticle formation in giant vesicles: synthesis in biomimetic compartments. Small 5(18):2033–2037CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Theory and Bio-SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  2. 2.Departamento de BiofísicaUniversidade Federal de São PauloSão PauloBrazil

Section editors and affiliations

  • P. Thomas Vernier
    • 1
  1. 1.Frank Reidy Research Center for BioelectricsOld Dominion UniversityNorfolkUSA

Personalised recommendations