Skip to main content

Radiative Properties of Particles

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

This chapter aims at providing an overview on established theories, methods, and tools for dealing with the determination of the radiative properties of particles. The assumptions on the particulate media are provided to confine the treatise to configurations that are common and generic in contemporary thermal science and engineering problems. Basics of the physics of electromagnetic absorption and scattering by particles are summarized. The radiative properties of interest are derived and their use for thermal radiation transfer clarified. A general methodology and a toolbox for calculating the radiative properties of particles are introduced. The existing certified methods for predicting directly the properties of individual particles are briefly presented, separating the cases of particles with arbitrary shapes from those with regular shapes. Common approaches for deriving the radiative properties of particles from measurements are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi S (2009) Properties of semiconductor alloys: group-IV, III–V and II–VI semiconductors. Wiley, Chichester, West Sussex, United Kingdom

    Google Scholar 

  • Asano S, Yamamoto G (1975) Light scattering by a spheroidal particle. Appl Opt 14(1):29–45

    Article  Google Scholar 

  • Aslan M, Yamada J, Mengüç MP (2003) Characterization of individual cotton fibers via light-scattering experiments. AIAA J Thermophys Heat Tran 17(4):442–449

    Article  Google Scholar 

  • Aslan M, Crofcheck C, Tao D, Mengüç MP (2006a) Evaluation of micro-bubble size and gas holdup in two-phase gas–liquid columns via scattered light measurements. J Quant Spectrosc Radiat Transf 101(3):527–539

    Article  Google Scholar 

  • Aslan M, Mengüç MP, Manickavasagam S, Saltiel G (2006b) Size and shape prediction of colloidal metal oxide MgBaFeO particles from light scattering measurements. J Nanopart Res 8(6):981–994

    Article  Google Scholar 

  • Baillis D, Sacadura JF (2000) Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. J Quant Spectrosc Radiat Transf 67(5):327–363

    Article  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Born M, Wolf E (1999) Principles of optics, 7th edn. England, Cambridge

    Book  Google Scholar 

  • Chen G (2005) Nanoscale energy transport and conversion. Oxford University Press, New York

    Google Scholar 

  • Gervais F, Palik ED (1991) Handbook of optical constants of solids II. Academic, Boston

    Google Scholar 

  • Gouesbet G, Gréhan G (2011) The generalized Mie theories. Springer, Berlin

    Book  Google Scholar 

  • Greenberg JM, Pedersen NE, Pedersen JC (1961) Microwave analog to the scattering of light by nonspherical particles. J Appl Phys 32(2):233–242

    Article  Google Scholar 

  • Greffet JJ, Carminati R, Joulain K, Mulet JP, Mainguy S, Chen Y (2002) Coherent emission of light by thermal sources. Nature 416:61–64

    Article  Google Scholar 

  • Gurton KP, Dahmani R (2005) Effect of surface roughness and complex indices of refraction on polarized thermal emission. Appl Opt 44(26):5361–1642

    Article  Google Scholar 

  • Gustafson BAS (2009) Scaled analogue experiments in electromagnetic scattering. Springer Light Scatt Rev 4:3–30

    Google Scholar 

  • Hergert W, Wriedt T (2012) The Mie theory: basics and applications. Springer series in optical sciences. Springer, Berlin

    Google Scholar 

  • Howell JR, Mengüç MP, Siegel R (2016) Thermal radiation heat transfer, 6th edn. CRC Press, Boca Raton

    Google Scholar 

  • Jackson JD (1998) Classical electrodynamics. Wiley, New York

    MATH  Google Scholar 

  • Kahnert FM (2003) Numerical methods in electromagnetic scattering theory. J Quant Spectrosc Radiat Transf 79:775–824

    Article  Google Scholar 

  • Kahnert FM (2016) Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: a tutorial review. J Quant Spectrosc Radiat Transf 178:22–37

    Article  Google Scholar 

  • Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New York

    Google Scholar 

  • Kozan M, Thangala J, Bogale R, Mengüç MP, Sunkara MK (2008) In-situ characterization of dispersion stability of wo3 nanoparticles and nanowires. J Nanopart Res 10(4):599–612

    Article  Google Scholar 

  • Mengüç MP (2003) Characterization of fine particles via elliptically-polarized light scattering. Purdue Heat Transfer Celebration, West Lafayette

    Google Scholar 

  • Mishchenko MI (2006) Scale invariance rule in electromagnetic scattering. J Quant Spectrosc Radiat Transf 101(3):411–415

    Article  Google Scholar 

  • Mishchenko MI (2014) Electromagnetic scattering by particles and particle groups: an introduction. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Mishchenko MI, Travis LD, Mackowski DW (1996) T-matrix computations of light scattering by nonspherical particles: a review. J Quant Spectrosc Radiat Transf 55(5):535–575

    Article  Google Scholar 

  • Mishchenko MI, Hovenier JW, Travis LD (2000) Light scattering by non–spherical particles. Theory, measurements and applications. Academic, New York

    Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption, and emission of light by small particles. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2006) Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press, Cambridge

    Google Scholar 

  • Mishchenko MI, Zakharova NT, Khlebtsov NG, Videen G, Wriedt T (2016) Comprehensive thematic t-matrix reference database: a 2014–2015 update. J Quant Spectrosc Radiat Transf 178:276–283

    Article  Google Scholar 

  • Modest MF (2013) Radiative heat transfer, 3rd edn. Academic, New York

    Google Scholar 

  • Muñoz O, Hovenier JW (2011) Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review. J Quant Spectrosc Radiat Transf 112(11):1646–1657

    Article  Google Scholar 

  • Muñoz O, Moreno F, Guirado D, Dabrovska DD, Volten H, Hovenier JW (2012) The Amsterdam Granada light scattering database. J Quant Spectrosc Radiat Transf 113:565–574

    Article  Google Scholar 

  • Palik ED (1998) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

  • Sandus O (1965) A review of emission polarization. Appl Opt 4(12):1634–1642

    Article  Google Scholar 

  • Sorensen CM (2011) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35:648–687

    Article  Google Scholar 

  • Tien CL, Drolen BL (1987) Thermal radiation in particulate media with dependent and independent scattering. Annu Rev Heat Tran 1(1):1–32

    Article  Google Scholar 

  • Ungut A, Gréhan G, Gouesbet G (1981) Comparisons between geometrical optics and lorenz-mie theory. Appl Opt 20(17):2911–2918

    Article  Google Scholar 

  • Vaillon R, Geffrin JM (2014) Recent advances in microwave analog to light scattering experiments. J Quant Spectrosc Radiat Transf 146:100–105

    Article  Google Scholar 

  • Van de Hulst HC (1981) Light scattering by small particles. Wiley, New York, USA

    Google Scholar 

  • Wriedt T (2016) Scattport. URL http://www.scattport.org/. Accessed 28 Oct 2016

  • Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat Transf 106(1):558–589

    Article  Google Scholar 

Download references

Acknowledgments

The author was hosted by the Department of Mechanical Engineering at the University of Utah when this chapter was written. The financial support from the College of Engineering (W.W. Clyde Visiting Chair award) is acknowledged. The author is thankful to Olivier Dupré for having read carefully the manuscript and made helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Vaillon .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vaillon, R. (2018). Radiative Properties of Particles. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_60

Download citation

Publish with us

Policies and ethics