Skip to main content

Heat Transfer Media and Their Properties

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

This chapter presents a discussion on effect(s) of properties on heat transfer. In general, an impact of a property(ies) on heat transfer depends primarily on the mode of heat transfer: (1) conduction (steady state or transient; special case, nuclear fuels), (2) convection (single phase, forced or natural; two phase, boiling or condensation; and special cases: cryogenic gases, fluids at critical and supercritical pressures, liquid metals, and nuclear-reactor coolants), and (3) radiation.

In support of a general discussion on the importance of various properties for heat-transfer calculations, Sections 3, 4, 5, 6, 7, 8, and 9 of this chapter contain basic properties in the tabulated form and property profiles vs. temperature in the graphical form of selected metals, alloys, insulation materials (only table data), and nuclear fuels (Sect. 3); selected gases at atmospheric pressure (Sect. 4); selected cryogenic gases (Sect. 5); low- and medium-temperature fluids on a saturation line (Sect. 6); water at subcritical, critical, and supercritical pressures; carbon dioxide, R-134a, ethanol, and methanol at supercritical pressures (Sect. 7); selected liquid metals on a saturation line (Sect. 8); and current and Generation IV nuclear-reactor coolants (Sect. 9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Area (m2)

c p :

Specific heat at constant pressure (J/kg K)

\( {\overline{c}}_p \) :

Averaged specific heat within the range of (TwTb); \( \left(\frac{H_w-{H}_b}{T_w-{T}_b\, }\right) \) (J/kg K)

D :

Inside diameter (m)

D hy :

Hydraulic diameter (m); \( \left(\frac{4\, {A}_{fl}}{P_{wetted}}\right) \)

G :

Mass flux, kg/m2s; \( \left(\frac{m}{A_{fl}}\right)=\rho u \)

g :

Gravitational acceleration (m/s)2

H :

Specific enthalpy (J/kg)

HTC :

Heat-transfer coefficient (W/m)2K

h fg :

Latent heat of evaporation (J/kg)

k :

Thermal conductivity (W/m K)

L :

Length (m)

m :

Mass-flow rate (kg/s)

P, p :

Pressure (Pa)

Q :

Heat-transfer rate (W)

q :

Heat flux, W/m2; \( \left(\frac{Q}{A_h}\right) \)

\( {q}_{\mathrm{p}.\mathrm{b}}^{\mathrm{cr}} \) :

Critical heat flux (CHF) at pool boiling (W/m)2

T, t :

Temperature (°C)

u :

Axial velocity (m/s)

V :

Volume (m)3

v :

Specific volume (m3/kg)

α :

Thermal diffusivity, m2/s; \( \left(\frac{k}{c_p\, \rho}\right) \)

β :

Volumetric thermal expansion coefficient, 1/K

Δ :

Difference

δ :

Thickness, m

μ :

Dynamic viscosity, Pa s

ρ :

Density, kg/m3

ρ el :

Electrical resistivity, Ohm·m

σ :

Surface tension, N/m

τ :

Time, s

υ :

Kinematic viscosity, m2/s

ξ :

Friction coefficient

Gr :

Grashof number; \( \left(\frac{g\, \beta \, \varDelta T\, {D}^3}{\nu^2}\right) \)

Nu :

Nusselt number; \( \left(\frac{HTC\, D}{k}\right) \)

Pr :

Prandtl number; \( \left(\frac{\mu \, {c}_p}{k}\right)=\left(\frac{\upsilon }{\alpha}\right) \)

\( \overline{\mathbf{\Pr}} \) :

Averaged Prandtl number within the range of (TwTb); \( \left(\frac{\mu \, {\overline{c}}_p}{k}\right) \)

Re :

Reynolds number; \( \left(\frac{u\, D}{v}\right)=\left(\frac{G\, D}{\mu}\right)=\left(\frac{\rho u\, D}{\mu}\right) \)

Ra :

Rayleigh number; (Gr Pr)

ac:

acceleration

ave:

average

b:

bulk

cr:

critical

D:

based on diameter

el:

electrical

f:

fluid

fg:

fluid‐gas

fl:

flow

fm:

freezing/melting

fr:

friction

g:

gravitational

h:

heated

hy:

hydraulic

in:

inlet

L:

based on length

l:

saturated liquid

ℓ:

local

out:

outlet or outside

p:

pressure

pc:

pseudocritical

r:

reduced

s, sat:

saturation

sf:

surface-fluid

v:

vapor

vol:

volume

w:

wall

AGR:

Advanced Gas-Cooled Reactor

BWR:

Boiling Water Reactor

CANDU:

CANada Deuterium Uranium (Reactor)

CHF:

Critical Heat Flux

DHT:

Deteriorated Heat Transfer

GFR:

Gas-Cooled Fast Reactor

HT:

Heat-Transfer

HTC:

Heat-Transfer Coefficient

LBE:

Lead-Bismuth Eutectic

LFR:

Lead-Cooled Fast Reactor

MOX:

Mixed Oxide (Nuclear Fuel)

MSFR:

Molten Salt Fast Reactor

MSR:

Molten Salt Reactor

NIST:

National Institute of Standards and Technology (USA)

NPP:

Nuclear-Power Plant

PWR:

Pressurized Water Reactor

R:

Refrigerant

REFPROP:

Reference Properties

SC:

Supercritical

SCP:

Supercritical Pressure

SCW:

Supercritical Water

SCWR:

Supercritical Water-Cooled Reactor

SFR:

Sodium Fast Reactor

SS:

Stainless Steel

VHTR:

Very-High-Temperature Reactor

wt:

Weight

Overline:

Symbols with an overline at the top denote average or mean values (e.g., Nu denotes average (mean) Nusselt number)

References

  • ASM Aerospace Specification Metals, Inc. (2016) http://aerospacemetals.com/. Accessed 1 Oct 2016

  • Bergman T, Lavine AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat transfer, 7th edn. Wiley, New York, 1048 pages

    Google Scholar 

  • Carbon Steels (2016) http://metalsuppliersonline.com/Default.asp. Accessed 1 Oct 2016

  • Cengel YA, Boles MA (2015) Thermodynamics. An engineering approach, 8th edn. Mc-Graw-Hill companies, Inc, New York, p 996

    Google Scholar 

  • Chemical Compatibility Guide (2013) 1st., pp. 2–19. http://www.graco.com/content/dam/graco/ipd/literature/misc/chemical-compatibility-guide/Graco_ChemCompGuideEN-B.pdf. Accessed 1 Oct 2016

  • Dittus FW, Boelter LMK (1930) Heat transfer in automobile radiators of the tubular type, University of California, Berkeley. Publications on Engineering 2(13):443–461

    MATH  Google Scholar 

  • Gas detection handbook, key concepts & reference material for permanently installed gas monitoring systems (2016) 5th. MSA, Pittsburgh, pp 50–68. www.gilsoneng.com/reference/gasdetectionhandbook.pdf. Accessed 1 Oct 2016

  • Gupta S, Saltanov E, Mokry SJ, Pioro I, Trevani L, McGillivray D (2013) Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes. Nucl Eng Des 261:116–131

    Article  Google Scholar 

  • Handbook of tables for applied engineering science (1973) 2nd., Bolz RE, Tuve GL (eds). CRC Press, Boca Raton, p 1168

    Google Scholar 

  • Haynes WM (Editor-in-Chief) (2015) Handbook of chemistry and physics, 96th edn. 2015–2016. CRC Press, Boca Raton, p 2677

    Google Scholar 

  • Heat exchanger design handbook, vol 5 (2008) Begell House, Inc., Publishers, New York

    Google Scholar 

  • IAEA TECDOC Series (2014) IAEA-TECDOC-1746, Sept, Vienna, p 496 . Free download from: http://www-pub.iaea.org/books/IAEABooks/10731/Heat-Transfer-Behaviour-and-Thermohydraulics-Code-Testing-for-Supercritical-Water-Cooled-Reactors-SCWRs; Accessed 1 Oct 2016

  • Idelchik IE (1994) Handbook of hydraulic resistance, 3rd edn. Begell House, Inc., New York, p 790

    Google Scholar 

  • JAHM Software, Inc. (2016) Material Property Database. https://www.jahm.com/

  • Kirillov PL, Lozhkin VV, Smirnov AM (2003) Investigation of Borders of deteriorated regimes of a channel at supercritical pressures, (in Russian), state scientific Center of Russian Federation Institute of physics and power engineering by the name of a.I. Leypunskiy, FEI-2988, Obninsk, p 20

    Google Scholar 

  • Kirillov PL, Terent'eva MI, Deniskina NB (2007) Thermophysical properties of nuclear engineering materials. 3rd revised and augmented edn, IzdAT Publishing House, Moscow, p 194

    Google Scholar 

  • Leung LKH, Pioro IL, Bullock DE (2003) Post-Dryout surface-temperature distributions in a vertical Freon-cooled 37-element bundle. In: Proceedings of the 10th international topical meeting on nuclear reactor thermal hydraulics (NURETH-10), Seoul, 5–9 Oct, paper #C00201, p 13

    Google Scholar 

  • McAdams WH (1942) Heat transmission, 2nd edn. McGraw-Hill, New York, p 459

    Google Scholar 

  • Mokry S, Pioro IL, Farah A, King K, Gupta S, Peiman W, Kirillov P (2011) Development of supercritical water heat-transfer correlation for vertical bare tubes. Nucl Eng Des 241:1126–1136

    Article  Google Scholar 

  • NEA No. 6195 (2007) Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies. Nuclear energy agency (NEA) and organisation for economic co-operation and development (OECD), 693pp. .Free download from https://www.oecd-nea.org/science/reports/2007/pdf/lbe-handbook-complete.pdf. Accessed 1 Oct 2016

  • NIST (National Institute of Standards and Technology) (2013) NIST standard reference database 23. NIST reference fluid thermodynamic and transport properties – REFPROP. Ver. 9.1. Technology administration, US Department of Commerce. http://www.nist.gov/srd/nist23.cfm

  • NIST (National Institute of Standards and Technology) (2016) https://www.nist.gov/. Accessed 1 Oct 2016

  • Oka Y, Koshizuka S, Ishiwatari Y, Yamaji A (2010) Super light water reactors and super fast reactors. Springer, New York, p 416

    Book  Google Scholar 

  • Peiman W, Pioro I, Gabriel K (2012) Thermal aspects of conventional and alternative fuels in SuperCritical water-cooled reactor (SCWR) applications. In: Mesquita AZ (ed) Nuclear reactors. INTECH, Rijeka, pp 123–156. Free download from http://www.intechopen.com/books/nuclear-reactors/-thermal-aspects-of-conventional-and-alternative-fuels-in-supercritical-water-cooled-reactor-scwr-ap

    Google Scholar 

  • Perry’s chemical engineers’ handbook (2008) 8th edn., DW Green, RH Perry (eds). McGraw-Hill Companies, Inc., New York

    Google Scholar 

  • Pioro IL (1999) Experimental evaluation of constants for the Rohsenow pool boiling correlation. Int J Heat Mass Transfer 42:2003–2013

    Article  Google Scholar 

  • Pioro I (2011) The potential use of supercritical water-cooling in nuclear reactors. In: Krivit SB, Lehr JH, ThB K (eds) Nuclear energy encyclopedia: science, technology, and applications. Wiley, Hoboken, pp 309–347

    Chapter  Google Scholar 

  • Pioro IL, Duffey RB (2007) Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications. ASME Press, New York, p 334

    Book  Google Scholar 

  • Pioro IL (ed) (2016) Handbook of generation IV nuclear reactors. Elsevier – Woodhead Publishing (WP), Duxford, p 940

    Google Scholar 

  • Pioro I, Mokry S (2011a) Heat transfer to fluids at supercritical pressures. In: Belmiloudi A (ed), Heat transfer. Theoretical analysis, experimental investigations and industrial systems. INTECH, Rijeka, Croatia, pp 481–504. Free download from: http://www.intechopen.com/books/heat-transfer-theoretical-analysis-experimental-investigations-and-industrial-systems/heat-transfer-to-supercritical-fluids.

    Google Scholar 

  • Pioro I, Mokry S( 2011b) Thermophysical properties at critical and supercritical conditions. In: Belmiloudi A (ed), Heat transfer. Theoretical analysis, experimental investigations and industrial systems. INTECH, Rijeka, Croatia, pp 573–592. Free download from: http://www.intechopen.com/books/heat-transfer-theoretical-analysis-experimental-investigations-and-industrial-systems/thermophysical-properties-at-critical-and-supercritical-pressures.

    Google Scholar 

  • Pioro LS, Pioro IL (1997) Industrial two-phase Thermosyphons. Begell House, Inc., New York, p 288

    Google Scholar 

  • Pioro I, Duffey R, Dumouchel T (2004a) Hydraulic resistance of fluids flowing in channels at supercritical pressures (survey). Nucl Eng Des 231(2):187–197

    Article  Google Scholar 

  • Pioro IL, Rohsenow W, Doerffer S (2004b) Nucleate pool-boiling heat transfer—I. Review of parametric effects of boiling surface. International J. Heat & Mass Transfer 47(23):5033–5044

    Article  Google Scholar 

  • Pioro IL, Rohsenow W, Doerffer S (2004c) Nucleate pool-boiling heat transfer—II. Assessment of prediction methods. International J Heat & Mass Transfer 47(23):5045–5057

    Article  Google Scholar 

  • Poling BE, Prausnitz JM, O’Connell JP (2000) The properties of gases and liquids, 5th edn. McGraw-Hill Companies, Inc., New York, p 768

    Google Scholar 

  • Reay D, Kew P, McGlen R (2013) Heat pipes. Theory, design and applications, 6th edn. Elsevier/Butterworth-Heinemann, Oxford, p. 288

    Chapter  Google Scholar 

  • Rohsenow WM, Hartnett JP, Cho YI (eds) (1998) Handbook of heat transfer, 3rd edn. McGraw-Hill Companies, Inc, New York

    Google Scholar 

  • Sadegh AM, Worek WM (eds) (2017) Marks’ standard handbook for mechanical engineers, 12th edn. McGraw-Hill Companies, Inc., New York, p 1936

    Google Scholar 

  • Schulenberg T, Starflinger J (2012) High performance light water reactor. In: Design and analyses, scientific publishing. Karlsruher Institut fūr Technologie (KIT), Germany, p 241

    Google Scholar 

  • Technical data for the elements in the periodic table (2016) http://periodictable.com/Elements/011/data.html. Accessed 1 Oct 2016.

  • The royal society of chemistry (2016) www.rsc.org/. Accessed 1 Oct 2016

  • Timoshenko SP Gere JM (1961) Theory of elastic stability, 2nd edn.. McGraw Hill Book Company, New York, p 541

    Google Scholar 

  • Vargaftik NB, Vinogradov YK, Yargin VS (1996) Handbook of physical properties of liquids and gases. Pure substances and mixtures, 3rd augmented and revised edition. Begell House, Inc., New York, p 1355

    Google Scholar 

  • Weisend JG II (ed) (1999) Handbook of cryogenic engineering. Taylor & Francis, Philadelphia, p 504

    Google Scholar 

  • Wild Ch, Eckhard W (2016) The CVD diamond booklet, 1st edn. www.diamond-materials.com/downloads/cvd_diamond_booklet.pdf. Accessed 1 Oct 2016

  • Winterton RHS (1998) Where did the Dittus and Boelter equation come from? Int J Heat Mass Transf 41(4–5):809–810

    Article  Google Scholar 

  • Young WC, Budynas RG, Sadegh A (2011) Roark’s formulas for stress and strain, 7th edn. McGraw-Hill, New York, p 1072

    Google Scholar 

  • Zahlan H, Groeneveld DC, Tavoularis S (2010) Look-up table for trans-critical heat transfer. In: Proceedings of the 2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2010), Toronto, 25–28 Apr, p 18

    Google Scholar 

  • Zahlan H, Groeneveld DC, Tavoularis S, Mokry S, Pioro I (2011) Assessment of supercritical heat transfer prediction methods. In: Proceedings of the 5th International Symposium on SCWR (ISSCWR-5), Vancouver, 13–16 Mar, Paper P008, p. 20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor L. Pioro .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pioro, I.L., Mahdi, M., Popov, R. (2018). Heat Transfer Media and Their Properties. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_23

Download citation

Publish with us

Policies and ethics