Skip to main content

Turbulence Effects on Convective Heat Transfer

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering
  • 7689 Accesses

Abstract

The subject of this chapter is the influence of flow field turbulence on heat transfer augmentation to both the turbulent and laminar boundary layers. Initially, the response of turbulence to the presence of a wall is reviewed as background to one of the key constraints in the interaction of turbulence to both turbulent and laminar boundary layers. Next, research on the influence of external turbulence to the flat plat turbulent boundary layer is discussed in terms of both the physics of the interaction of external turbulence with a developing turbulent boundary layer and the correlation of the resulting enhancement. A simple physics based eddy diffusivity model for the external turbulence is presented and predictive results using this model are presented and discussed. The influence of turbulence on laminar boundary layer heat transfer augmentation to stagnation region and other laminar regions is also reviewed. Initially, the influence of both the strain field and leading edge surface on the intensification of small scale turbulence and the blocking of relatively large scale turbulence is discussed. A physically based correlating method for stagnation region heat transfer augmentation is presented along with historical and alternate models. Heat transfer augmentation mechanisms in laminar regions with no intensification are also discussed and the simple physics based eddy diffusivity model for the turbulent boundary layer is extended to laminar flow prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

turbine airfoil chord length (m2)

Cf/2:

skin friction coefficient = τ/(ρU2/2)

CP:

specific heat at constant pressure (J/kg/K)

Cμ:

constant for k – ε model, Cμ = 0.09

D:

pin, cylinder or leading edge diameter (m)

E2(k1):

one dimensional energy spectrum function of v′, E2(k1) = U E2(f)/2/π (m3/s2)

f:

frequency (1/s)

fMIX:

blending function for mixing length and outer layer model

fμ:

damping function for k – ε model

h:

heat transfer coefficient (W/m2/K)

HB:

the Hancock-Bradshaw correlating parameter, HB = \( {\left(\frac{{\mathrm{u}}^{\prime }}{\mathrm{U}}\right)}_{\mathrm{e}}\times 100/\left(\ \frac{{\mathrm{L}}_{\mathrm{e}}^{\mathrm{u}}}{\updelta_{.995}}+2.0\right) \)

k:

thermal conductivity (W/m/K)

k:

turbulent kinetic energy (m2/s2)

K:

turbulent flow acceleration parameter, ν/U2 dU/dx

k1:

wavenumber, k1 = 2πf/U (m−1)

L:

macro-scale of turbulence (m)

Lu:

energy scale, Lu = 1.5 |u|3/ε (m)

\( {\mathrm{L}}_{\mathrm{u}}^{\mathrm{e}} \) :

dissipation scale, Lu = 1.5 |u|3/ε (m)

l :

mixing length (m)

Nu:

diameter Nusselt number, Nu = hD/k

Pr:

Prandtl number, Pr = ν/α

ReD:

diameter Reynolds number

Reθ:

momentum thickness Reynolds number

ReΔ2:

enthalpy thickness Reynolds number

St:

Stanton number, h/ρ CP U

St′:

Stanton prime, h/ρ CP u′

t:

time (s)

T+:

inner variable nondimensional temperature (K)

TL + :

correlating parameter for turbulent boundary layer heat transfer

TLR:

turbulence parameter for turbulent heat transfer, TLR = Tu (ReΔ2/1000)1/42/Lu)1/3

TRL:

turbulence parameter for stagnation heat transfer, TRL = Tu ReD5/12 (D/Lu)1/3

Tu:

turbulence level, Tu = u′/U

U:

streamwise velocity (m/s)

U+:

velocity nondimensionalized on inner variables, U+ = U(Y)/uτ

U:

streamwise velocity (m/s)

uτ:

shear velocity, uτ = U.•(Cf/2)1/2 (m/s)

u′:

rms streamwise fluctuation velocity (m/s)

v′:

rms endwall normal fluctuation velocity (m/s)

V:

normal velocity (m/s)

W:

spanwise velocity (m/s)

w′:

rms spanwise fluctuation velocity (m/s)

x:

axial distance (m)

y:

endwall normal distance (m)

Y + :

dimensionless normal distance from wall in inner variables, Y+ = y uτ

α:

thermal diffusivity, m2/s

δ , δ0.995:

boundary layer thickness, m

δ2 , θ:

momentum thickness, m

Δ2:

enthalpy thickness, m

ε:

turbulent dissipation rate, m2/s3

εM:

eddy diffusivity, m2/s

κ:

mixing length model constant

λ:

Taylor microscale, m

λX:

streamwise integral scale of turbulence, m

η, eta:

Kolmogorov length scale, η = (ν3/ε)1/4, m

μ:

absolute viscosity, Pa s

ν:

kinematic viscosity, m2/s

ρ:

fluid density, mass per unit of volume, kg/m3

τ:

shear stress, kg/m-s2

ω:

specific dissipation, k – ω model, s−1

∞, e:

free-stream conditions, unaffected by wall

0:

low free-stream turbulence value

References

  • Ames FE (1994) Experimental study of vane heat transfer and aerodynamics at elevated levels of turbulence. NASA CR-4633

    Google Scholar 

  • Ames FE (1996) Experimental study of vane heat transfer and film cooling at elevated levels of turbulence. NASA CR 198525

    Google Scholar 

  • Ames FE (1997) The influence of large scale, high intensity turbulence on vane heat transfer. ASME J Turbomach 119:23

    Article  Google Scholar 

  • Ames FE, Dvorak LA (2006) Turbulent transport in pin fin arrays – experimental data and predictions. ASME J Turbomach 128:71–81

    Article  Google Scholar 

  • Ames FE, Moffat RJ (1990) Heat transfer with high intensity, large scale turbulence: the flat plate turbulent boundary layer and the cylindrical stagnation point, Report no. HMT-44, Thermosciences Division of Mechanical Engineering, Stanford University

    Google Scholar 

  • Ames FE, Kwon O, Moffat RJ (1999) An algebraic model for high intensity large scale turbulence, ASME paper no. 99-GT-160

    Google Scholar 

  • Ames FE, Wang C, Barbot PA (2003) Measurement and prediction of the influence of catalytic and dry low NOx combustor turbulence on vane surface heat transfer. ASME J Turbomach 125:210–220

    Article  Google Scholar 

  • Ames FE, Argenziano M, Wang C (2004) Measurement and prediction of heat transfer distributions on an aft loaded vane subjected to the influence of catalytic and dry low NOx combustor turbulence. ASME J Turbomachi 126:139–149

    Article  Google Scholar 

  • Ames FE, Dvorak LA, Morrow MJ (2005) Turbulent augmentation of internal convection off pins in staggered pin fin arrays. ASME J Turbomach 127:183–190

    Article  Google Scholar 

  • Bae S, Lele SK, Sung HG (2002) The influence of inflow disturbances on stagnation region heat transfer. ASME J Heat Transfer 122:258–265

    Article  Google Scholar 

  • Barrett MJ, Hollingsworth DK (2003a) Heat transfer in turbulent boundary layers subjected to free-stream turbulence—part I: experimental results. J Turbomach 125(2):232–241

    Article  Google Scholar 

  • Barrett MJ, Hollingsworth DK (2003b) Heat transfer in turbulent boundary layers subjected to free-stream turbulence—part II: analysis and correlation. J Turbomach 125(2):242–251

    Article  Google Scholar 

  • Becko Y (1975) Heat transfer analysis along the blades of a gas turbine stator by thermal and kinematic boundary layer theory, ASME paper no. 75-GT-15

    Google Scholar 

  • Blair MF (1983a) Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development, part I-experimental data. J Heat Transf 105:33

    Article  Google Scholar 

  • Blair MF (1983b) Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development, part II-analysis of results. J Heat Transf 105:41

    Article  Google Scholar 

  • Blair MF, Werle MJ (1980) The influence of free-stream turbulence on the zero-pressure gradient fully turbulent boundary layer, UTRC Report R-80-914388-12

    Google Scholar 

  • Boyle RJ, Ameri AA (2015) Effects of turbulence intensity and scale on turbine blade heat transfer, ASME paper no. GT2015–43597

    Google Scholar 

  • Boyle RJ, Giel PW, Ames FE (2004) Predictions for the effects of freestream turbulence on turbine blade heat transfer, ASME paper no. GT-2004-54332

    Google Scholar 

  • Britter RE, Hunt JCR, Mumford JC (1979) The distortion of turbulence by a circular cylinder. J Fluid Mech 92(2):269

    Article  Google Scholar 

  • Brown A, Burton RC (1978) The effects of free-stream turbulence intensity and velocity distribution on heat transfer to curved surfaces. ASME J Eng Power 100:159–165

    Article  Google Scholar 

  • Charnay G, Mathieu J, Comte-Bellot G (1976) Response of the turbulent boundary layer to random fluctuations in the external stream. Phys Fluids 19(9):1261

    Article  Google Scholar 

  • Chowdhury NHK, Ames FE (2013) The response of high intensity turbulence in the presence of large stagnation regions, ASME paper no. GT2013–95055

    Google Scholar 

  • Dullenkopf K, Mayle RE (1995) An account of free-stream turbulence length scale on laminar heat transfer. ASME J Turbomach 117:401–406

    Article  Google Scholar 

  • Dunham J (1972) Predictions of boundary layer transition on turbomachinery blades (Predictions of boundary layer transition on turbomachine blades). AGARD-AG-164, pp 55–71

    Google Scholar 

  • Durbin PA (1995) Separated flow computations with the k-epsilon-v-squared model. AIAA J 33(4):659–664

    Article  Google Scholar 

  • Forest AE (1977) Engineering predictions of transitional boundary layers. In AGARD Laminar-Turbulent Transition 19 p (SEE N78-14316 05-34)

    Google Scholar 

  • Gandaparavu P, Ames FE (2013) The influence of leading edge diameter on stagnation region heat transfer augmentation including effects of turbulence level, scale, and Reynolds number. ASME J Turbomach 135:011008-1-8

    Google Scholar 

  • Gifford AR, Diller TE, Vlachos PP (2011) The physical mechanism of heat transfer augmentation in stagnation flow subject to freestream turbulence. ASME J Heat Transfer 133:021901-1-11

    Article  Google Scholar 

  • Hancock PE, Bradshaw P (1983) The effect of free stream turbulence on turbulent boundary layers. J Fluids Eng 105:284

    Article  Google Scholar 

  • Hancock PE, Bradshaw P (1989) Turbulence structure of a boundary layer beneath a turbulent free stream. J Fluid Mech 205:45

    Article  Google Scholar 

  • Hollingsworth DK, Bourgogne HA (1995) The development of a turbulent boundary layer in high free-stream turbulence produced by a two-stream mixing layer. Exp Thermal Fluid Sci 11 (2):210–222

    Article  Google Scholar 

  • Huffman GD, Zimmerman DR, Bennett WA (1972) The effect of free stream turbulence level on the flow and heat transfer in the entrance region of an annulus. Int J Heat Mass Transf 20:763

    Google Scholar 

  • Hunt JCR (1973) A theory of turbulent flow round two-dimensional bluff bodies. J Fluid Mech 61(part 4):625

    Article  MathSciNet  Google Scholar 

  • Hunt JCR, Graham JMR (1978) Free-stream turbulence near plane boundaries. J Fluid Mech 84:209

    Article  MathSciNet  Google Scholar 

  • Hylton LD, Mihelc MS, Turner ER, Nealy DA, York RE (1983) Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes. National Aeronautics and Space Administration, NASA Lewis Research Center, Cleveland

    Google Scholar 

  • Kestin J (1966) The effect of free-stream turbulence on heat transfer rate. In: Irvine TF, Harnett JP (eds) Advances in heat transfer, 3rd edn. Academic, London

    Google Scholar 

  • Kestin J, Wood RT (1971) The influence of turbulence on mass transfer from cylinders. J Heat Transf 93(4):321

    Article  Google Scholar 

  • Kingery JA, Ames FE (2016) Stagnation region heat transfer augmentation at very high turbulence levels. ASME J Turbomach 138(8):081005. https://doi.org/10.1115/1.4032677. (10 pages)

    Article  Google Scholar 

  • Kwon O, Ames FE (1996) A velocity and length scale approach to k-ε modeling. ASME J Heat Transf 118: 857.

    Article  Google Scholar 

  • Lander RD (1969) Evaluation of the effect of free stream turbulence on the heat transfer to turbine airfoil (No. PWA-3713). Pratt and Whitney Aircraft Group East Hartford

    Google Scholar 

  • Lowery GW, Vachon RI (1975) The effect of turbulence on heat transfer from heated cylinders. Int J Heat Mass Transf 18:1229

    Article  Google Scholar 

  • Maciejewski PK, Moffat RJ (1989) Heat transfer with very high free-stream turbulence, Report HMT-42, Deptartment of Mechanical Engineering, Stanford University

    Google Scholar 

  • Maciejewski PK, Moffat RJ (1992) Heat transfer with very high free-stream turbulence: part I-experimental data and part II-analysis of results. ASME J Heat Transfer 114:847

    Google Scholar 

  • MacMullin R, Elrod W, Rivir R (1989) Free-stream turbulence from a circular wall jet on a flat plate heat transfer and boundary layer flow. J Turbomach 111(1):78–86

    Article  Google Scholar 

  • Mayle RE (1991) The role of laminar-turbulent transition in gas turbine engines, 1991 ASME international gas turbine institute scholar award paper. J Turbomach 113:509–537

    Article  Google Scholar 

  • Medic GG, Durbin PA (2002) Toward improved prediction of heat transfer on turbine blades. ASME J Turbomach 124(2):187–192. https://doi.org/10.1115/1.1458020.

    Article  Google Scholar 

  • Mehendale AB, Han JC, Ou S (1991) Influence of high mainstream turbulence on leading edge heat transfer. ASME J Heat Transfer 113:843–850

    Article  Google Scholar 

  • Miyazaki HH, Sparrow EM (1977) Analysis of effects of free-stream turbulence on heat transfer and skin friction. ASME J Heat Transfer 99(4):614–619. https://doi.org/10.1115/1.3450751.

    Article  Google Scholar 

  • Nealy DA, Mihelc MS, Hylton LD, Gladden HJ (1984) Measurements of heat transfer distribution over the surfaces of highly loaded turbine nozzle guide vanes. J Eng Gas Turbines Power 106:149–158

    Article  Google Scholar 

  • Nix AC, Diller TE (2009) Experiments on the physical mechanism of heat transfer augmentation by freestream turbulence at a cylinder stagnation point. ASME J Turbomach 131(2):021015-021015-7. https://doi.org/10.1115/1.2950079

    Article  Google Scholar 

  • Nix AC, Diller TE, Ng WF (2007) Experimental measurements and modeling of the effects of large-scale freestream turbulence on heat transfer. ASME J Turbomach 129:542–550

    Article  Google Scholar 

  • Oo AN, Ching CY (2002) Stagnation line heat transfer augmentation due to freestream vortical structures and vorticity. ASME J Heat Transfer 124:583–587

    Article  Google Scholar 

  • Rigby DL, Van Fossen GJ (1991) Increased heat transfer to a cylindrical leading edge due to spanwise variations in the freestream velocity. In: AIAA-91-1739, AIAA 22nd fluid dynamics, plasma dynamics and lasers conference, Honolulu

    Google Scholar 

  • Sadeh WZ, Sullivan PP (1980) Turbulence amplification in flow about an airfoil. In: ASME 1980 international gas turbine conference and products show, ASME paper no. 80-GT-111, pp V01BT02A017-V01BT02A017

    Google Scholar 

  • Sahm MK, Moffat RJ (1992) Turbulent boundary layers with high turbulence: experimental heat transfer and structure on flat and convex walls, Report no. HMT-45, Deptartment of Mechanical Engineering, Stanford University

    Google Scholar 

  • Sanitjai S, Goldstein RJ (2001) Effect of free stream turbulence on local mass transfer from a circular cylinder. Int J Heat Mass Transf 44(15):2863–2875

    Article  Google Scholar 

  • Schmidt RC, Patankar SV (1988) Two-equation low-Reynolds-number turbulence modeling of transitional boundary layer flows characteristic of gas turbine blades. PhD thesis, Final contractor report, NASA CR 4145

    Google Scholar 

  • Smith MC, Kuethe AM (1966) Effects of turbulence on laminar skin friction and heat transfer. Phys Fluids 9(12):2337

    Article  Google Scholar 

  • Thole KA, Bogard DG (1995) Enhanced heat transfer and skin friction due to high freestream turbulence. ASME J Turbomach 117:418

    Article  Google Scholar 

  • Thomas NH, Hancock PE (1977) Grid turbulence near a moving wall. J Fluid Mech 82(Part 3):481

    Article  Google Scholar 

  • Turner AB (1971) Local heat transfer measurements on a gas turbine blade. J Mech Eng Sci 13(1):1–12

    Article  MathSciNet  Google Scholar 

  • Uzkan T, Reynolds WC (1967) A shear-free turbulent boundary layer. J Fluid Mech 28:803

    Article  Google Scholar 

  • Van Fossen GJ, Bunker RS (2001) Augmentation of stagnation region heat transfer due to turbulence from a DLN can combustor. ASME J Turbomach 123:140–146

    Article  Google Scholar 

  • Van Fossen GJ, Bunker RS (2002) Augmentation of stagnation region heat transfer due to turbulence from an advanced dual-annular combustor. In: ASME Turbo Expo 2002: power for land, sea, and air, ASME paper no. GT2002–30184, pp 199–206

    Google Scholar 

  • Van Fossen GJ, Simoneau RJ, Ching CY (1995) Influence of turbulence parameters, Reynolds number, and body shape on stagnation region heat transfer, ASME. J Heat Transf 117:597–603

    Article  Google Scholar 

  • Varty J, Ames FE (2016) Experimental heat transfer distributions over an aft loaded vane with a large leading edge at very high turbulence levels, ASME paper no. IMECE2016-67029

    Google Scholar 

  • Wissink JG, Rodi W (2011) Direct numerical simulation of heat transfer from the stagnation region of a heated cylinder affected by an impinging wake. J Fluid Mech 669:64–89

    Article  Google Scholar 

  • Zapp GM (1950) The effect of turbulence on local heat transfer coefficients around a cylinder normal to an air stream. Master’s thesis, Oregon State College

    Google Scholar 

  • Zukauskas A, Ziugzda J (1985) Heat transfer of a cylinder in crossflow. Hemisphere Publishing Corporation, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Forrest E. Ames .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ames, F.E. (2018). Turbulence Effects on Convective Heat Transfer. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_17

Download citation

Publish with us

Policies and ethics