Skip to main content

Validity, Reliability, and Reproducibility of Skin Temperature in Healthy Subjects Using Infrared Thermography

  • 198 Accesses

Abstract

Infrared thermography (IRT) is a rapid and noninvasive technology to assess skin temperature (Tsk). The technical improvement and new applications of IRT on humans should be accompanied by results about the reproducibility of IRT measurements in different population groups. In addition, there is a remarkable necessity of a larger supply on software to analyze IRT images of human beings.

In the last years, some studies have further investigated the reproducibility of Tsk in patients with different pathologies and also in healthy subjects with different characteristics (young, overweight, active, etc.). Reliability has been also studied between observers and software specialized on the analysis of IRT images of human beings.

Despite differences in their methodology among studies, most of them have shown good reproducibility results. However, it has also been proven that the reproducibility of the Tsk measurements slightly decreased with some factors, as the regions of interest (ROI) analyzed and the time between measurements. Regarding reliability results, specific software solutions have been shown as the best option to analyze IRT images.

Keywords

  • Reliability
  • Reproducibility
  • Validity
  • Skin temperature
  • Infrared thermography
  • Humans
  • Healthy
  • Overweight
  • Patients
  • Software

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Akimov E, Son’kin V. Skin temperature and lactate threshold during muscle work in athletes. Hum Physiol. 2011;37(5):621–8.

    CrossRef  CAS  Google Scholar 

  • Ammer K. Need for standardisation of measurements in thermal imaging. In: Wiecek B, editor. Thermography and lasers in medicine. Lodz: Akademickie Centrum Graficzno-Marketigowe Lodar S.A; 2003. p. 13–7.

    Google Scholar 

  • Ammer K. The glamorgan protocol for recording and evaluation of thermal images of the human body. Thermol Int. 2008;18(4):125–9.

    Google Scholar 

  • Bartlett JW, Frost C. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol: Off J Int Soc Ultrasound Obstet Gynecol. 2008;31(4):466–75.

    CrossRef  CAS  Google Scholar 

  • Bruehl S, Lubenow TR, Nath H, Ivankovich O. Validation of thermography in the diagnosis of reflex sympathetic dystrophy. Clin J Pain. 1996;12(4):316–25.

    CrossRef  CAS  PubMed  Google Scholar 

  • Burnham RS, McKinley RS, Vincent DD. Three types of skin-surface thermometers: a comparison of reliability, validity, and responsiveness. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists. 2006;85(7):553–8.

    Google Scholar 

  • Cheng VS, Bai J, Chen Y. A high-resolution three-dimensional far-infrared thermal and true-color imaging system for medical applications. Med Eng Phys. 2009;31(9):1173–81.

    CrossRef  PubMed  Google Scholar 

  • Choi E, Lee P-B, Nahm FS. Interexaminer reliability of infrared thermography for the diagnosis of complex regional pain syndrome. Skin Research and Technology. 2013;19(2):189–93.

    Google Scholar 

  • Christensen J, Vaeth M, Wenzel A. Thermographic imaging of facial skin – gender differences and temperature changes over time in healthy subjects. Dentomaxillofac Radiol. 2012;41(8):662–7.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa ACS, Dibai Filho AV, Packer AC, Rodrigues-Bigaton D. Intra and inter-rater reliability of infrared image analysis of masticatory and upper trapezius muscles in women with and without temporomandibular disorder. Braz J Phys Ther. 2013;17(1):24–31.

    CrossRef  PubMed  Google Scholar 

  • Costello JT, McInerney CD, Bleakley CM, Selfe J, Donnelly AE. The use of thermal imaging in assessing skin temperature following cryotherapy: a review. J Therm Biol. 2012;37(2):245–74.

    CrossRef  Google Scholar 

  • Denoble AE, Hall N, Pieper CF, Kraus VB. Patellar skin surface temperature by thermography reflects knee osteoarthritis severity. Clin Med Insights Arthritis Musculoskelet Disord. 2010;3:69–75.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dibai-Filho AV, Guirro EC, Ferreira VT, Brandino HE, Vaz MM, Guirro RR. Reliability of different methodologies of infrared image analysis of myofascial trigger points in the upper trapezius muscle. Braz J Phys Ther. 2015;19(2):122–8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Feldman F, Nickoloff EL. Normal thermographic standards for the cervical spine and upper extremities. Skeletal Radiol. 1984;12(4):235–49.

    CrossRef  CAS  PubMed  Google Scholar 

  • Fernández-Cuevas I. Effect of endurance, speed and strength training on skin temperature measured by infrared thermography. Madrid: Universidad Politécnica de Madrid; 2012.

    Google Scholar 

  • Fernández-Cuevas I, Marins JC, Gómez Carmona PM, García-Concepción MÁ, Arnáiz Lastras J, Sillero Quintana M. Reliability and reproducibility of skin temperature of overweight subjects by an infrared thermography software designed for human beings. Thermol Int. 2012;22:130. Apendix 1 to number 3.

    Google Scholar 

  • Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J, Gómez Carmona PM, Piñonosa Cano S, García-Concepción MÁ, et al. Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys Technol. 2015;71:28–55.

    CrossRef  Google Scholar 

  • Fournet D, Ross L, Voelcker T, Redortier B, Havenith G. Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol. 2013;38(6):339–44.

    CrossRef  Google Scholar 

  • Frim J, Livingstone SD, Reed LD, Nolan RW, Limmer RE. Body composition and skin temperature variation. J Appl Physiol. 1990;68(2):540–3.

    CrossRef  CAS  PubMed  Google Scholar 

  • George J, Bensafi A, Schmitt AM, Black D, Dahan S, Loche F, et al. Validation of a non-contact technique for local skin temperature measurements. Skin Res Technol. 2008;14(4):381–4.

    CrossRef  CAS  PubMed  Google Scholar 

  • Gold JE, Cherniack M, Hanlon A, Dennerlein JT,Dropkin J. Skin temperature in the dorsal hand of office workers and severity of upper extremity musculoskeletal disorders. Int Arch Occup Environ Health. 2009;82(10):1281–92.

    CrossRef  PubMed  Google Scholar 

  • Gómez Carmona PM. Influencia de la información termográfica infrarroja en el protocolo de prevención de lesiones de un equipo de fútbol profesional español. Madrid: Universidad Politécnica de Madrid; 2012.

    Google Scholar 

  • Goodman PH, Heaslet MW, Pagliano JW, Rubin BD. Stress fracture diagnosis by computer assited thermography. Physician Sportsmed. 1985;13(4):114

    Google Scholar 

  • Hart J, Omolo B, Boone WR, Brown C, Ashton A. Reliability of three methods of computer-aided thermal pattern analysis. J Can Chiropr Assoc. 2007;51(3):175–85.

    PubMed  PubMed Central  Google Scholar 

  • Head JF, Elliott RL. Infrared imaging: making progress in fulfilling its medical promise. Eng Med Biol Mag IEEE. 2002;21(6):80–5.

    CrossRef  Google Scholar 

  • Hildebrandt C, Raschner C. An intra-examiner reliability study of knee temperature patterns with medical infrared thermal imaging. Thermol Int. 2009a;19(3):73–6.

    Google Scholar 

  • Hildebrandt C. Medical infrared thermography as a screening tool for knee injuries in professional junior alpine-ski-racers in Austria – Findings of a pilot study. In: Sciences EECoS, editor. 14th annual ECSS Congress; Oslo, Norway: ECSS European College on Sport Sciences; 2009b.

    Google Scholar 

  • Hildebrandt C, Raschner C, Ammer K. An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors. 2010;10(5):4700–15.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt C, Zeilberger K, Ring EFJ, Raschner C. The application of medical infrared thermography in sports medicine. In: Zaslav KR, editor. An international perspective on topics in sports medicine and sports injury. InTech; 2012. p. 534.

    Google Scholar 

  • Jiang LJ, Ng EY, Yeo AC, Wu S, Pan F, Yau WY, et al. A perspective on medical infrared imaging. J Med Eng Technol. 2005;29(6):257–67.

    CrossRef  CAS  PubMed  Google Scholar 

  • Littlejohn RAN. Thermographic assessment of the forearm during data entry tasks: a reliability study. Virginia Tech.; Blacksburg, Virginia, USA 2008.

    Google Scholar 

  • Liu J, Xu LX. Boundary information based diagnostics on the thermal states of biological bodies. Int J Heat Mass Transfer. 2000;43(16):2827–39.

    CrossRef  Google Scholar 

  • Marins J.C.B, Fernández-Cuevas I, Arnaiz-Lastras J, Fernandes A.A. y Sillero-Quintana M. Aplicaciones de la termografía infrarroja en el deporte. Una revisión / Applications of Infrared Thermography in Sports. A Review. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte. 2015;60: 805–824.http://cdeporte.rediris.es/revista/revista60/artaplicaciones594.htm.

  • McCoy M, Campbell I, Stone P, Fedorchuk C, Wijayawardana S, Easley K. Intra-examiner and inter-examiner reproducibility of paraspinal thermography. PLoS One. 2011;6(2):e16535.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Merla A, Iodice P, Tangherlini A, De Michele G, Di Romualdo S, Saggini R, et al. Monitoring skin temperature in trained and untrained subjects throughout thermal video. Conf Proc IEEE Eng Med Biol Soc. 2005;2(1):1684–6.

    CAS  PubMed  Google Scholar 

  • Murawski P, Jung A, Ring FEJ, Zuber J, Plassmann P, Kalicki B. “Image ThermaBase” – a software programme to capture and analyse thermographic images. Thermol Int. 2003;13(1):5–9.

    Google Scholar 

  • Ng EYK. A review of thermography as promising non-invasive detection modality for breast tumor. Int J Therm Sci. 2009;48(5):849–59.

    CrossRef  CAS  Google Scholar 

  • Niu HH, Lui PW, Hu JS, Ting CK, Yin YC, Lo YL, et al. Thermal symmetry of skin temperature: normative data of normal subjects in Taiwan. Zhonghua Yi Xue Za Zhi (Taipei). 2001;64(8):459–68.

    CAS  Google Scholar 

  • Oerlemans HM, Perez RS, Oostendorp RA, Goris RJ. Objective and subjective assessments of temperature differences between the hands in reflex sympathetic dystrophy. Clin Rehabil. 1999;13(5):430–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Owens Jr EF, Hart JF, Donofrio JJ, Haralambous J, Mierzejewski E. Paraspinal skin temperature patterns: an interexaminer and intraexaminer reliability study. J Manipulative Physiol Ther. 2004;27(3):155–9.

    CrossRef  PubMed  Google Scholar 

  • Pauling JD, Shipley JA, Raper S, Watson ML, Ward SG, Harris ND, et al. Comparison of infrared thermography and laser speckle contrast imaging for the dynamic assessment of digital microvascular function. Microvascular Research. 2011;83(2):162–7.

    Google Scholar 

  • Plassmann P, Ring EF, Jones CD. Quality assurance of thermal imaging systems in medicine. Thermol Int. 2006;16(1):10–5.

    Google Scholar 

  • Plaugher G, Lopes MA, Melch PE, Cremata EE. The inter- and intraexaminer reliability of a paraspinal skin temperature differential instrument. J Manipulative Physiol Ther. 1991;14(6):361–7.

    CAS  PubMed  Google Scholar 

  • Rich PB, Dulabon GR, Douillet CD, Listwa TM, Robinson WP, Zarzaur BL, et al. Infrared thermography: a rapid, portable, and accurate technique to detect experimental pneumothorax. J Surg Res. 2004;120(2):163–70.

    CrossRef  PubMed  Google Scholar 

  • Ring E, Ammer K. The technique of infra red imaging in medicine. Thermol Int. 2000;10(1):7–14.

    Google Scholar 

  • Ring EF, Ammer K. Infrared thermal imaging in medicine. Physiol Meas. 2012;33(3):R33–46.

    CrossRef  CAS  PubMed  Google Scholar 

  • Rodrigues-Bigaton D, Dibai Filho AV, Costa ACS, Packer AC, de Castro EM. Accuracy and reliability of infrared thermography in the diagnosis of arthralgia in women with temporomandibular disorder. J Manipulative Physiol Ther. 2013;36(4):253–8.

    CrossRef  PubMed  Google Scholar 

  • Roy R, Boucher JP, Comtois AS. Validity of infrared thermal measurements of segmental paraspinal skin surface temperature. J Manipulative Physiol Ther. 2006;29(2):150–5.

    CrossRef  PubMed  Google Scholar 

  • Schwartz RG. Guidelines for neuromusculoskeletal thermography. Thermol Int. 2006;16(1):5–9.

    Google Scholar 

  • Selfe J, Hardaker N, Thewlis D, Karki A. An accurate and reliable method of thermal data analysis in thermal imaging of the anterior knee for use in cryotherapy research. Arch Phys Med Rehabil. 2006;87(12):1630–5.

    CrossRef  PubMed  Google Scholar 

  • Sherman RA, Woerman AL, Karstetter KW. Comparative effectiveness of videothermography, contact thermography, and infrared beam thermography for scanning relative skin temperature. J Rehabil Res Dev. 1996;33(4):377–86.

    CAS  PubMed  Google Scholar 

  • Simpson R, McEvoy H, Machin G, Howell K, Naeem M, Plassmann P, et al. In-field-of-view thermal image calibration system for medical thermography applications. Int J Thermophys. 2008;29(3):1123–30.

    CrossRef  CAS  Google Scholar 

  • Sivanandam S, Anburajan M, Venkatraman B, Menaka M, Sharath D. Medical thermography: a diagnostic approach for type 2 diabetes based on non-contact infrared thermal imaging. Endocrine. 2012;42(2):343–51.

    Google Scholar 

  • Skala K, Lipic T, Sovic I, Gjenero L, Grubisic I. 4D thermal imaging system for medical applications. Period Biol. 2011;113(4):407–16.

    Google Scholar 

  • Spalding SJ, Kwoh CK, Boudreau R, Enama J, Lunich J, Huber D, et al. Three-dimensional and thermal surface imaging produces reliable measures of joint shape and temperature: a potential tool for quantifying arthritis. Arthritis Res Ther. 2008;10(1):R10.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Uematsu S, Edwin DH, Jankel WR, Kozikowski J, Trattner M. Quantification of thermal asymmetry. Part 1: normal values and reproducibility. J Neurosurg. 1988;69(4):552–5.

    CrossRef  CAS  PubMed  Google Scholar 

  • Vainer BG. FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans. Phys Med Biol. 2005;50(23):R63.

    CrossRef  PubMed  Google Scholar 

  • Vardasca R, editor. Template based alignment and interpolation methods comparison of region of interest in thermal images. 3rd research student workshop. Glamorgan: The Research Office, University of Glamorgan; 2008.

    Google Scholar 

  • Varju G, Pieper CF, Renner JB, Kraus VB. Assessment of hand osteoarthritis: correlation between thermographic and radiographic methods. Rheumatology (Oxford). 2004;43(7):915–9.

    CrossRef  CAS  Google Scholar 

  • Zaproudina N, Varmavuo V, Airaksinen O, Narhi M. Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas. 2008;29(4):515–24.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Fernández-Cuevas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Fernández-Cuevas, I., Marins, J.C., Arnáiz Lastras, J., Gómez Carmona, P., Sillero Quintana, M. (2015). Validity, Reliability, and Reproducibility of Skin Temperature in Healthy Subjects Using Infrared Thermography. In: Humbert, P., Maibach, H., Fanian, F., Agache, P. (eds) Agache’s Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-26594-0_74-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26594-0_74-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26594-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine