Skip to main content

Assessing Cutaneous Sensory Function and Vasomotor Responses

  • Living reference work entry
  • First Online:
  • 196 Accesses

Abstract

Cutaneous sensory function can be assessed under different conditions such as physiological, pathological and following certain treatments. Quantitative sensory testing (QST) includes a battery of stimulus modalities and response evaluation methods. Application of QST assists in understanding of potential mechanisms involved in sensory transduction, transmission, and perception under normal and pathophysiological conditions. QST has been utilized in mechanism-based diagnosis, prevention, and management of skin related disorders. In line, vasomotor responses can also be monitored in a real-time and dynamic manner. Skin vasomotor reactions such as cutaneous vasodilatation and vasoconstriction are under control of several systems including endothelial and adrenergic systems and malfunctioning would generally result in different skin circulation disorders. Cutaneous drug delivery would consequently be affected by those alterations. This chapter presents examples of assessing cutaneous sensory function and vasomotor responses in human skin and how body region or sex could influence the skin responsiveness.

This is a preview of subscription content, log in via an institution.

References

  • Barcroft H, Edholm OG. The effect of temperature on blood flow and deep temperature in the human forearm. J Physiol. 1943;102(1):5–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkve TF, Langseth-Manrique K, Bredesen JE, Gjesdal K. Increased uptake of transdermal glyceryl trinitrate during physical exercise and during high ambient temperature. Am Heart J. 1986;112(3):537–41.

    Article  CAS  PubMed  Google Scholar 

  • Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharmaceut Sci: Off J Eur Fed Pharmaceut Sci. 2001;14(2):101–14.

    Article  CAS  Google Scholar 

  • Braverman IM. The cutaneous microcirculation. J Invest Dermatol Symp Proc Soc Invest Dermatol Eur Soc Dermatol Res. 2000;5(1):3–9.

    Article  CAS  Google Scholar 

  • Charkoudian N. Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J Appl Physiol. 2010;109(4):1221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuppers HJ, Berchtold P, Berger M. Sauna-induced acceleration in insulin absorption. Br Med J. 1980;281(6235):307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazerani P, Arendt-Nielsen L. Cutaneous vasomotor reactions in response to controlled heat applied on various body regions of healthy humans: evaluation of time course and application parameters. Int J Physiol Pathophysiol Pharmacol. 2011;3(3):202–9.

    PubMed  PubMed Central  Google Scholar 

  • Geber C, Klein T, Azad S, et al. Test-retest and interobserver reliability of quantitative sensory testing according to the protocol of the German Research Network on Neuropathic Pain (DFNS): a multi-centre study. Pain. 2011;152(3):548–56.

    Article  PubMed  Google Scholar 

  • Guerci B, Sauvanet JP. Subcutaneous insulin: pharmacokinetic variability and glycemic variability. Diabet Metab. 2005;31(4 Pt 2):4S7–24.

    CAS  Google Scholar 

  • Hodges GJ, Kosiba WA, Zhao K, Johnson JM. The involvement of heating rate and vasoconstrictor nerves in the cutaneous vasodilator response to skin warming. Am J Physiol Heart Circ Physiol. 2009;296(1):H51–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsen LA, Jensen A, Larsen LE, et al. Effect of cutaneous blood flow on absorption of insulin: a methodological study in healthy male volunteers. Int J Physiol Pathophysiol Pharmacol. 2011;3(4):257–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JM, Kellogg Jr DL. Local thermal control of the human cutaneous circulation. J Appl Physiol. 2010;109(4):1229–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson JM, O’leary DS, Taylor WF, Kosiba W. Effect of local warming on forearm reactive hyperaemia. Clin Physiol. 1986;6(4):337–46.

    Article  CAS  PubMed  Google Scholar 

  • Kellogg Jr DL, Johnson JM, Kenney WL, Pergola PE, Kosiba WA. Mechanisms of control of skin blood flow during prolonged exercise in humans. Am J Physiol. 1993;265(2 Pt 2):H562–8.

    PubMed  Google Scholar 

  • Klemsdal TO, Gjesdal K, Bredesen JE. Heating and cooling of the nitroglycerin patch application area modify the plasma level of nitroglycerin. Eur J Clin Pharmacol. 1992;43(6):625–8.

    Article  CAS  PubMed  Google Scholar 

  • Koivisto VA. Sauna-induced acceleration in insulin absorption. Br Med J. 1980;281(6240):621–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koivisto VA, Fortney S, Hendler R, Felig P. A rise in ambient temperature augments insulin absorption in diabetic patients. Metab Clin Exp. 1981;30(4):402–5.

    Article  CAS  PubMed  Google Scholar 

  • Magerl W, Krumova EK, Baron R, Tolle T, Treede RD, Maier C. Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain. 2010;151(3):598–605.

    Article  PubMed  Google Scholar 

  • Maier C, Baron R, Tolle TR, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain. 2010;150(3):439–50.

    Article  CAS  PubMed  Google Scholar 

  • Minson CT, Berry LT, Joyner MJ. Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J Appl Physiol. 2001;91(4):1619–26.

    CAS  PubMed  Google Scholar 

  • Nielsen TA, Da Silva LB, Arendt-Nielsen L, Gazerani P. The effect of topical capsaicin-induced sensitization on heat-evoked cutaneous vasomotor responses. Int J Physiol Pathophysiol Pharmacol. 2013;5(3):148–60.

    PubMed  PubMed Central  Google Scholar 

  • Petersen KK, Rousing ML, Jensen C, Arendt-Nielsen L, Gazerani P. Effect of local controlled heat on transdermal delivery of nicotine. Int J Physiol Pathophysiol Pharmacol. 2011;3(3):236–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shomaker TS, Zhang J, Ashburn MA. Assessing the impact of heat on the systemic delivery of fentanyl through the transdermal fentanyl delivery system. Pain Med. 2000;1(3):225–30.

    Article  CAS  PubMed  Google Scholar 

  • Song CW. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res. 1984;44(10 Suppl):4721s–30s.

    CAS  PubMed  Google Scholar 

  • Vanakoski J, Seppala T. Heat exposure and drugs. A review of the effects of hyperthermia on pharmacokinetics. Clin Pharmacokinet. 1998;34(4):311–22.

    Article  CAS  PubMed  Google Scholar 

  • Vuksanovic V, Sheppard LW, Stefanovska A. Nonlinear relationship between level of blood flow and skin temperature for different dynamics of temperature change. Biophys J. 2008;94(10):L78–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Gazerani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Gazerani, P., Nielsen, T., Arendt-Nielsen, L. (2015). Assessing Cutaneous Sensory Function and Vasomotor Responses. In: Humbert, P., Maibach, H., Fanian, F., Agache, P. (eds) Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-26594-0_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26594-0_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26594-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics