Skip to main content

The Acousto-elastic Effect and Its Use in NDE

  • Reference work entry
  • First Online:
  • 3235 Accesses

Abstract

The acousto-elastic effect describes the influence of an elastic strain state on the elastic properties of a metallic material and hence on the velocities of elastic waves propagating in the strained component. The effect is used to evaluate stress states by ultrasonic methods. This chapter summarizes the fundamental concepts, measuring techniques, and evaluation procedures of nondestructive ultrasonic methods to evaluate one, two, and three axial stress states of components. The state of the art is detailed by discussing results of applications in, e.g., bolts, sheets, gear parts, and turbine rotors. The applicability and limitations of such techniques will be discussed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   759.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Becker M, Gross N, Herzer R (2016) Determination of preload in bolts by ultrasound without referencing in unloaded state. In: Conference proceedings: 19th world conference of nondestructive testing

    Google Scholar 

  • Brokowski A, Deputat J (1985) Ultrasonic measurements of residual stresses in rails. In: Conference proceedings: 11th world conference of nondestructive testing, pp 592–598

    Google Scholar 

  • Deputat J (1995) DEBBIE the fast nondestructive measurement of stress for in service railway wheel inspection. DEBRO UMS, Akademicka 3, 02-038 Warsaw

    Google Scholar 

  • Egle DM, Bray DE (1976) Measurement of acoustoelastic and third order elastic constants for rail steel. J Acoust Soc Am 60(3):741–744

    Article  Google Scholar 

  • Gilardoni C, Gherbin M, Carboni M, Gianneo A (2014) High-performance methodology for residual stress measurement in railway wheels. In: Conference proceedings: 11th European conference of nondestructive testing

    Google Scholar 

  • Herzer R, Frotscher H, Schillo K, Bruche D, Schneider E (1994) Ultrasonic set-up to characterize stress states in rims of railroad wheels. In: Green RE, Kozaczek KJ, Ruud CO (eds) Nondestructive characterization of materials VI. Springer, Boston, pp 699–706

    Chapter  Google Scholar 

  • Hughes DS, Kelly JL (1953) Second order elastic deformation of solids. Phys Rev 94(5):1145–1149. https://doi.org/10.1103/PhysRev921145

    Article  MATH  Google Scholar 

  • Intellifast GmbH (2009) Bolting failure-free technology on the offshore wind industry. In: Power & energy & solutions Europe, pp 54–57. Available via PES Europe. http://cdn.pes.eu.com/assets/misc/corperate-focus-intellifast-gmbhpdf-35.pdf. Accessed 29 Mar 2018

  • Jemec V, Grum J, Bozicko S (2008) Ultrasonic measurement of hoop stress in the rim of monoblock railroad wheel. In: 38th international CNdT conference Defektoskopie 2008. Conference Proceedings, Brno, pp 269–274

    Google Scholar 

  • Jimenez JA, Garcia V, Boyero C (2016) Handheld solution for measurement of residual stresses on railway wheels using EMATs. In: Conference proceedings: 19th world conference of nondestructive testing

    Google Scholar 

  • Kibblewhite IE (1989) Ultrasonic load indicating member, apparatus and method. Patent number 4899591. Type: Grant. Assignee: SPS Technology, Inc.

    Google Scholar 

  • Murnaghan FD (1951) Finite deformation of an elastic solid. Wiley, New York

    MATH  Google Scholar 

  • Schneider E (1997) Ultrasonic techniques. In: Hauk V (ed) Structural and residual stress analysis by nondestructive methods. Elsevier, Amsterdam, pp 522–563

    Google Scholar 

  • Schneider E (2000) Untersuchung der materialspezifischen Einflüsse und verfahrenstechnische Entwicklungen der Ultraschallverfahren zur Spannungsanalyse an Bauteilen. Fraunhofer IRB, Stuttgart

    Google Scholar 

  • Schneider E, Herzer R (2006) Ultraschall-System zur on-line Bestimmung der Schraubenvorspannkraft und zur Schraubersteuerung. ZfP-Zeitung 100:40–46

    Google Scholar 

  • Schneider E, Herzer R, Bruche D, Frotscher H (1994) Ultrasonic characterization of stress states in rims of railroad wheels. In: Green RE, Kozaczek KJ, Ruud CO (eds) Nondestructive characterization of materials VI. Springer, Boston, pp 383–390

    Chapter  Google Scholar 

  • Szelazek J (2001) Postepy W Ultradzwiekowych Badaniach Naprezen. Praca Habilitacyjna ISSN0208–5658

    Google Scholar 

  • Thompson RB, Lu WY, Clark AV Jr (1996) Ultrasonic methods. In: Lu J (ed) Handbook of experimental mechanics. The Fairemont Press Inc., Lilburn, pp 149–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Rüdiger Herzer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Herzer, HR., Becker, M.M., Schneider, E. (2019). The Acousto-elastic Effect and Its Use in NDE. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-26553-7_56

Download citation

Publish with us

Policies and ethics