Advertisement

Brazzein: A Natural Sweetenerz

Living reference work entry

Later version available View entry history

Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Brazzein is a 54-amino acid, heat-stable sweetener derived from the ripe fruit of the West African plant Pentadiplandra brazzeana Baillon. Its historical use as a sweetener testifies to its safety, and it has been extensively studied, both in regard to its structure and interaction with taste receptors. It has also been investigated as a possible commercial product to fulfill the need for a natural, low-calorie, heat-stable sweetener. Here, we review brazzein in the context of other sweeteners and examine attempts to produce brazzein in recombinant systems.

Keywords

Brazzein Sweet protein Natural sweetener Recombinant sweetener Low-calorie sweetener pyrE brazzein Type 1 brazzein Des-pyrE brazzein Type 2 brazzein E1 brazzein Type 3 brazzein T1R2/T1R3 receptors 

References

  1. 1.
    Adler J (1975) Chemotaxis in bacteria. Annu Rev Biochem 44:341–356. doi:10.1146/annurev.bi.44.070175.002013CrossRefGoogle Scholar
  2. 2.
    Özcan S, Dover J, Johnston M (1998) Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17:2566–2573CrossRefGoogle Scholar
  3. 3.
    Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709CrossRefGoogle Scholar
  4. 4.
    Lindemann B (2001) Receptors and transduction in taste. Nature 413:219–225CrossRefGoogle Scholar
  5. 5.
    Scott K (2005) Taste recognition: food for thought. Neuron 48:455–464CrossRefGoogle Scholar
  6. 6.
    Amrein H, Thorne N (2005) Gustatory perception and behavior in Drosophila melanogaster. Curr Biol 15:R673–R684CrossRefGoogle Scholar
  7. 7.
    Temussi PA (2002) Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. Febs Lett 526:1–4CrossRefGoogle Scholar
  8. 8.
    Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390CrossRefGoogle Scholar
  9. 9.
    Kant R (2005) Sweet proteins–potential replacement for artificial low calorie sweeteners. Nutr J 4:1–6CrossRefGoogle Scholar
  10. 10.
    Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D (2012) Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci 17:413–422CrossRefGoogle Scholar
  11. 11.
    Bray GA, Popkin BM (2014) Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes? Health be damned! Pour on the sugar. Diabetes Care 37:950–956CrossRefGoogle Scholar
  12. 12.
    Nabors L, Gelardi R (2001) Alternative sweeteners: an overview. In: Nabors, LO (ed) Alternative sweeteners. CRC Press, Boca Rotan, FL. pp 1–10Google Scholar
  13. 13.
    Weihrauch M, Diehl V (2004) Artificial sweeteners – do they bear a carcinogenic risk? Ann Oncol 15:1460–1465CrossRefGoogle Scholar
  14. 14.
    Gallus S, Scotti L, Negri E, Talamini R, Franceschi S, Montella M, Giacosa A, Dal ML, La Vecchia C (2007) Artificial sweeteners and cancer risk in a network of case–control studies. Ann Oncol 18:40–44CrossRefGoogle Scholar
  15. 15.
    Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:181–186Google Scholar
  16. 16.
    Kim N-C, Kinghorn AD (2002) Highly sweet compounds of plant origin. Arch Pharm Res 25:725–746CrossRefGoogle Scholar
  17. 17.
    Kinghorn A, Chin Y, Pan L, Jia Z (eds) (2010) Natural products as sweeteners and sweetness modifiers. In: Townsend CA, Ebizuka Y (eds) Comprehensive natural products II: chemistry and biology. Elsevier Publishers, London, UK. pp 269–315Google Scholar
  18. 18.
    DuBois GE, Prakash I (2012) Non-caloric sweeteners, sweetness modulators, and sweetener enhancers. Annu Rev Food Sci Technol 3:353–380CrossRefGoogle Scholar
  19. 19.
    Prakash I, DuBois G, Clos J, Wilkens K, Fosdick L (2008) Development of rebiana, a natural, non-caloric sweetener. Food Chem Toxicol 46:S75–S82CrossRefGoogle Scholar
  20. 20.
    Takasaki M, Konoshima T, Murata Y, Sugiura M, Nishino H, Tokuda H, Matsumoto K, Kasai R, Yamasaki K (2003) Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides, from Momordica grosvenorii. Cancer Lett 198:37–42CrossRefGoogle Scholar
  21. 21.
    Kinghorn AD, Soejarto DD (2002) Discovery of terpenoid and phenolic sweeteners from plants. Pure Appl Chem 74:1169–1179CrossRefGoogle Scholar
  22. 22.
    Kageyama Y, Suzuki H, Saruta T (1992) Glycyrrhizin induces mineralocorticoid activity through alterations in cortisol metabolism in the human kidney. J Endocrinol 135:147–152CrossRefGoogle Scholar
  23. 23.
    Walker BR, Edwards C (1994) Licorice-induced hypertension and syndromes of apparent mineralocorticoid excess. Endocrinol Metab Clin North Am 23:359–377Google Scholar
  24. 24.
    Fenwick G, Lutomski J, Nieman C (1990) Liquorice, Glycyrrhiza glabra L. – composition, uses and analysis. Food Chem 38:119–143CrossRefGoogle Scholar
  25. 25.
    Danilova V, Hellekant G (2004) Sense of taste in a New World monkey, the common marmoset. II. Link between behavior and nerve activity. J Neurophysiol 92:1067–1076CrossRefGoogle Scholar
  26. 26.
    Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416:199–202CrossRefGoogle Scholar
  27. 27.
    Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, Xiong G, Adappa ND, Palmer JN, Kennedy DW (2014) Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest 124:1393CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301CrossRefGoogle Scholar
  29. 29.
    Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS (1999) Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96:541–551CrossRefGoogle Scholar
  30. 30.
    Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci 99:4692–4696CrossRefGoogle Scholar
  31. 31.
    Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, Max M (2004) The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J Biol Chem 279:45068–45075CrossRefGoogle Scholar
  32. 32.
    Jin Z, Danilova V, Assadi-Porter FM, Markley JL, Hellekant G (2003) Monkey electrophysiological and human psychophysical responses to mutants of the sweet protein brazzein: delineating brazzein sweetness. Chem Senses 28:491–498CrossRefGoogle Scholar
  33. 33.
    Ming D, Hellekant G (1994) Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett 355:106–108CrossRefGoogle Scholar
  34. 34.
    Hellekant G, Danilova V (2005) Brazzein a small, sweet protein: discovery and physiological overview. Chem Senses 30:i88CrossRefGoogle Scholar
  35. 35.
    Van der Wel H, Larson G, Hladik A, Hladik CM, Hellekant G, Glaser D (1989) Isolation and characterization of pentadin, the sweet principle of Pentadiplandra brazzeana Baillon. Chem Senses 14:75–79CrossRefGoogle Scholar
  36. 36.
    Venkitakrishnan RP, Choudhury M (2015) Importance of method validation: implications of non-correlated observables in sweet taste receptor studies. arXiv preprint arXiv:1511.07977Google Scholar
  37. 37.
    Izawa H, Ota M, Kohmura M, Ariyoshi Y (1996) Synthesis and characterization of the sweet protein brazzein. Biopolymers 39:95–101CrossRefGoogle Scholar
  38. 38.
    Poirier N, Roudnitzky N, Brockhoff A, Belloir C, Maison M, Thomas-Danguin T, Meyerhof W, Briand L (2012) Efficient production and characterization of the sweet-tasting brazzein secreted by the yeast Pichia pastoris. J Agric Food Chem 60:9807–9814CrossRefGoogle Scholar
  39. 39.
    Caldwell JE, Abildgaard F, Džakula Ž, Ming D, Hellekant G, Markley JL (1998) Solution structure of the thermostable sweet-tasting protein brazzein. Nat Struct Mol Biol 5:427–431CrossRefGoogle Scholar
  40. 40.
    Nagata K, Hongo N, Kameda Y, Yamamura A, Sasaki H, Lee WC, Ishikawa K, Suzuki E-i, Tanokura M (2013) The structure of brazzein, a sweet-tasting protein from the wild African plant Pentadiplandra brazzeana. Acta Crystallogr D Biol Crystallogr 69:642–647CrossRefGoogle Scholar
  41. 41.
    Gao G, Dai J, Ding M, Hellekant G, Wang J, Wang D (1999) Studies on solution NMR structure of brazzein. Sci China C Life Sci 42:409–419CrossRefGoogle Scholar
  42. 42.
    Assadi-Porter FM, Abildgaard F, Blad H, Markley JL (2003) Correlation of the sweetness of variants of the protein brazzein with patterns of hydrogen bonds detected by NMR spectroscopy. J Biol Chem 278:31331–31339CrossRefGoogle Scholar
  43. 43.
    Kohmura M, Ota M, Izawa H, Hellekant M, Göran D, Ariyoshi Y (1996) Assignment of the disulfide bonds in the sweet protein brazzein. Biopolymers 38:553–556CrossRefGoogle Scholar
  44. 44.
    Assadi-Porter FM, Aceti DJ, Markley JL (2000) Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein. Arch Biochem Biophys 376(2):259–265CrossRefGoogle Scholar
  45. 45.
    Assadi-Porter FM, Aceti DJ, Cheng H, Markley JL (2000) Efficient production of recombinant brazzein, a small, heat-stable, sweet-tasting protein of plant origin. Arch Biochem Biophys 376:252–258CrossRefGoogle Scholar
  46. 46.
    Lee Y-W, Kim K-Y, Han S-H, Kang C-H, So J-S (2012) Expression of the sweet-tasting protein brazzein in Lactobacillus spp. Food Sci Biotechnol 21:895–898CrossRefGoogle Scholar
  47. 47.
    Zhou XX, Li WF, Ma GX, Pan YJ (2006) The nisin-controlled gene expression system: construction, application and improvements. Biotechnol Adv 24:285–295CrossRefGoogle Scholar
  48. 48.
    Berlec A, Tompa G, Slapar N, Fonović UP, Rogelj I, Štrukelj B (2008) Optimization of fermentation conditions for the expression of sweet-tasting protein brazzein in Lactococcus lactis. Lett Appl Microbiol 46:227–231CrossRefGoogle Scholar
  49. 49.
    Berlec A, Štrukelj B (2009) Large increase in brazzein expression achieved by changing the plasmid/strain combination of the NICE system in Lactococcus lactis. Lett Appl Microbiol 48:750–755Google Scholar
  50. 50.
    Yan S, Song H, Pang D, Zou Q, Li L, Yan Q, Fan N, Zhao X, Yu H, Li Z (2013) Expression of plant sweet protein brazzein in the milk of transgenic mice. Plos One 8:e76769CrossRefGoogle Scholar
  51. 51.
    Lamphear B, Barker D, Brooks C, Delaney D, Lane J, Beifuss K, Love R, Thompson K, Mayor J, Clough R (2005) Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant Biotechnol J 3:103–114CrossRefGoogle Scholar
  52. 52.
    Fake G, Howard J (2014) Brazzein: a high-intensity natural sweetener. In: Howard JA, Hood EE (eds) Commercial plant-produced recombinant protein products. Springer, Berlin, pp 247–257Google Scholar
  53. 53.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Applied Biotechnology InstituteSan Luis ObispoUSA

Personalised recommendations