Skip to main content

Sugar Alcohols as Sugar Substitutes in Food Industry

  • Living reference work entry
  • First Online:
Sweeteners

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 781 Accesses

Abstract

Among nutritive sweeteners, there can be distinguished polyhydric alcohols (polyols), also known as sugar alcohols, because they are derived from simple carbohydrates , obtained by the substitution of the aldehyde group by the hydroxy one. They are natural sugar alternatives but are also referred to as semisynthetic sweeteners. There are many advantages of sugar alcohols, so they are becoming more and more popular among both consumers and producers. They are characterized by a lower caloric value and glycemic index than sugars and exhibit prebiotic and anticaries effects. All sugar alcohols can be used as bulking agents , which can substitute sugar or corn syrups 1:1 ratio. However, their sweetness varies from 25 % to 100 % as compared with sucrose, so they are usually combined with intense sweeteners or sugar in order to obtain the required flavor and level of sweetness. Additionally, they promote mouthfeel and eliminate improper taste. Therefore, they can be used as reduced-calorie sugar alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ventura AK, Mennella JA (2011) Innate and learned preferences for sweet taste during childhood. Curr Opin Clin Nutr Metab Care 14(4):379–384

    Article  Google Scholar 

  2. Jarosz M (2012) Normy żywienia dla populacji polskiej – nowelizacja. Instytut Żywności i Żywienia Warszawa (in Polish)

    Google Scholar 

  3. ADA Reports (2004) Position of the American Dietetic Association: use of nutritive and nonnutritive sweeteners. J Am Diet Assoc 104:255–275

    Article  CAS  Google Scholar 

  4. Lê L, Tappy L (2015) Contributions of sugars to metabolic disorders in human models. In: Goran MI, Tappy L, Lê K-A (eds) Dietary sugars and health. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  5. Lustig RH, Schmidt L, Brindis CD (2012) Public health: the toxic truth about sugar. Nature 482:27–29

    Article  CAS  Google Scholar 

  6. WHO. Health topics: Obesity http://www.who.int/topics/obesity/en/. Accessed 10 Dec 2015

  7. WHO http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 10 Dec 2015

  8. Regulation of the European Parliament and Council Regulation (EC) No 1333/2008 of 16 December 2008 on food additives

    Google Scholar 

  9. Grembecka M (2015) Natural sweeteners in a human diet. Rocz Panstw Zakl Hig 66(3):195–202

    Google Scholar 

  10. WHO. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) http://apps.who.int/food-additives-contaminants-jecfa-database/search.aspx?fc=66. Accessed 15 Dec

  11. Cummings JH, Stephen AM (2007) Carbohydrate terminology and classification. Eur J Clin Nutr 61(Suppl 1):S5–S18

    Article  CAS  Google Scholar 

  12. Barbieri G, Barone C, Bhagat A, Caruso G, Conley ZR, Parisi S (2014) Sweet compounds in foods: sugar alcohols. In: The influence of chemistry on new foods and traditional products. Springer International Publishing, Cham

    Chapter  Google Scholar 

  13. Health Canada (2005) http://www.hc-sc.gc.ca/fn-an/securit/addit/sweeten-edulcor/polyols_polydextose_factsheet-polyols_polydextose_fiche-eng.php. Accessed 1 Nov 2015

  14. Grembecka M (2015) Sugar alcohols: their role in the modern world of sweeteners: a review. Eur Food Res Technol 241(1):1–14

    Article  CAS  Google Scholar 

  15. EFSA (2011) Scientific opinion on the substantiation of health claims related to the sugar replacers xylitol, d-tagatose, xylitol, sorbitol, mannitol, maltitol, lactitol, isomalt, erythritol, d-tagatose, isomaltulose, sucralose and polydextrose and maintenance of tooth mineralisation by decreasing tooth demineralisation. EFSA J 9(4): 2076 http://www.efsa.europa.eu/en/efsajournal/doc/2076.pdf. Accessed 29 Nov 2015

  16. Grabitske HA, Slavin JL (2008) Perspectives in practice low-digestible carbohydrates in practice. J Am Diet Assoc 108:1677–1681

    Article  Google Scholar 

  17. Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low-glycaemic properties. Nutr Res Rev 16:163–191

    Article  CAS  Google Scholar 

  18. Chattopadhyay S, Raychaudhuri U, Chakraborty R (2014) Artificial sweeteners – a review. J Food Sci Technol 51:611–621

    Article  CAS  Google Scholar 

  19. Shankar P, Ahuja S, Sriram K (2013) Non-nutritive sweeteners: review and update. Nutrition 29:1293–1299

    Article  CAS  Google Scholar 

  20. Sylvetsky AC, Brown RJ, Rother KI (2015) Biological and health effects of nonnutritive sweeteners. In: Goran MI, Tappy L, Lê K-A (eds) Dietary sugars and health. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  21. INCHEM. Aspartame. http://www.inchem.org/documents/jecfa/jecmono/v16je03.htm. Accessed 16 Dec 2015

  22. Hampton T (2008) Sugar substitutes linked to weight gain. JAMA 299:2137–2138

    Article  CAS  Google Scholar 

  23. Swithers SE, Davidson TL (2008) A role for sweet taste: calorie predictive relations in energy regulation by rats. Behav Neurosci 122:161–173

    Article  Google Scholar 

  24. Swithers SE, Sample CH, Davidson TL (2013) Adverse effects of high-intensity sweeteners on energy intake and weight control in male and obesity-prone female rats. Behav Neurosci 127(2):262–274

    Article  CAS  Google Scholar 

  25. Report of a Joint FAO/WHO Expert Consultation 14–18 April 1997. Carbohydrates in human nutrition. http://www.fao.org/docrep/w8079e/w8079e00.htm, Rome. Accessed 16 Dec 2015

  26. Sentko A, Bernard J (2012) Isomalt. In: O’Brien Nabors L (ed) Alternative sweeteners. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  27. Evrendilek GA (2012) Sugar alcohols (Polyols). In: Varzakas T, Labropoulos A, Anestis S (eds) Sweeteners: nutritional aspects, applications, and production technology. CRC Press, Boca Raton

    Google Scholar 

  28. de Cock P (2012) Erythritol. In: O’Brien Nabors L (ed) Alternative sweeteners. CRC Pres, Boca Raton

    Google Scholar 

  29. de Cock P (2012) Erythritol. In: O’Donnell K, Kearsley MW (eds) Sweeteners and sugar alternatives in food technology. Wiley-Blackwell, West Sussex

    Google Scholar 

  30. Zacharis C (2012) Lactitol. In: O’Donnell K, Kearsley MW (eds) Sweeteners and sugar alternatives in food technology. Wiley-Blackwell, West Sussex

    Google Scholar 

  31. Kearsley MW, Boghani N (2012) Maltitol. In: O’Brien Nabors L (ed) Alternative sweeteners. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  32. Koivistoinen M (2007) Lactitol. In: Wilson R (ed) Sweeteners. Blackwell Publishing/Leatherhead Publishing, Oxford/Surrey

    Google Scholar 

  33. Lawson P (2007) Erythritol. In: Wilson R (ed) Sweeteners. Blackwell Publishing/Leatherhead Publishing, Oxford/Surrey

    Google Scholar 

  34. Ly KA, Milgrom P, Rothen M (2006) Xylitol, sweeteners, and dental caries. Pediatr Dent 28:154–163

    Google Scholar 

  35. Kearsley MW, Deis RC (2012) Maltitol powder. In: O’Donnell K, Kearsley MW (eds) Sweeteners and sugar alternatives in food technology. Wiley-Blackwell, West Sussex

    Google Scholar 

  36. EFSA (2015) Scientific opinion on the safety of the proposed extension of use of erythritol (E 968) as a food additive. EFSA J 13(3):4033

    Article  CAS  Google Scholar 

  37. Joint Expert Committee on Food Additives (JECFA) “Isomalt”. International Programme on Chemical Safety (IPCS) http://inchem.org/documents/jecfa/jecmono/v20je14.htm. Accessed 18 Dec 2015

  38. Zacharis C, Stowell J (2012) Lactitol. In: O’Brien Nabors L (ed) Alternative sweeteners. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  39. Bernt WO, Borzelleca JF, Flamm G, Munro IC (1996) Erythritol: a review of biological and toxicological studies. Regul Toxicol Pharmacol 24:S191–S197

    Article  CAS  Google Scholar 

  40. den Hartog GJ, Boots AW, Adam-Perrot A, Brouns F, Verkooijen IW, Weseler AR, Haenen GR, Bast A (2010) Erythritol is a sweet antioxidant. Nutrition 26:449–458

    Article  CAS  Google Scholar 

  41. Munro IC, Bernt WO, Borzelleca JF, Flamm G, Lynch BS, Kennepohl E, Bär EA, Modderman J (1998) Erythritol: an interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem Toxicol 36:1139–1174

    Article  CAS  Google Scholar 

  42. Friedman RB (2008) Monosaccharides and polyols in foods. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin/Heidelberg

    Google Scholar 

  43. Bornet FR, Blayo A, Dauchy F, Slama G (1996) Plasma and urine kinetics of erythritol after oral ingestion by healthy humans. Regul Toxicol Pharm 24:S280–S285

    Article  CAS  Google Scholar 

  44. Roberts A, Renwick A (2009) Toxicokinetics. In: Ballantyne B, Marrs TC, Syversen T (eds) General and applied toxicology, vol 1, 3rd edn. Wiley, Chichester

    Google Scholar 

  45. Oku T, Okazaki M (1996) Laxative threshold of sugar alcohol erythritol in human subjects. Nutr Res 16:577–589

    Article  CAS  Google Scholar 

  46. Sentko A, Willibald-Ettle I (2012) Isomalt. In: O’Donnell K, Kearsley MW (eds) Sweeteners and sugar alternatives in food technology. Wiley-Blackwell, West Sussex

    Google Scholar 

  47. Gostner A, Blaut M, Schäffer V, Kozianowski G, Theis S, Klingeberg M, Dombrowski Y, Martin D, Ehrhardt S, Taras D, Schwiertz A, Kleessen B, Lührs H, Schauber J, Dorbath D, Menzel T, Scheppach W (2006) Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br J Nutr 95(1):40–50

    Article  CAS  Google Scholar 

  48. Ballongue J, Schumann C, Quignon P (1997) Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scand J Gastroenterol 222:41–44

    Article  CAS  Google Scholar 

  49. Ghoreishi SM, Shahrestani RG (2009) Innovative strategies for engineering mannitol production. Trends Food Sci Technol 20:263–270

    Article  CAS  Google Scholar 

  50. Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

    Article  CAS  Google Scholar 

  51. Xiao J, Li X, Min X, Sakaguchi E (2013) Mannitol improves absorption and retention of calcium and magnesium in growing rats. Nutrition 29:325–331

    Article  CAS  Google Scholar 

  52. Deis RC, Kearsley MW (2012) Sorbitol and mannitol. In: O’Donnell K, Kearsley MW (eds) Sweeteners and sugar alternatives in food technology. Wiley-Blackwell, West Sussex

    Google Scholar 

  53. Jamieson PR (2012) Sorbitol and mannitol. In: O’Brien Nabors L (ed) Alternative sweeteners. CRC Press, Taylor & Francis Group, Boca Racton

    Google Scholar 

  54. Sheet BS, Artık N, Ayed MA, Abdulaziz OF (2014) Some alternative sweeteners (xylitol, sorbitol, sucralose and stevia): review. Karaelmas Sci Eng J 4(1):63–70

    Article  Google Scholar 

  55. Lee BD, Park MK (2014) Effects and safety of xylitol on middle ear epithelial cells. Int Adv Otol 10:19–24

    Article  Google Scholar 

  56. Park Y-C, Oh EJ, Jo J-H, Jin Y-S, Seo J-H (2016) Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol 37:105–113

    Article  CAS  Google Scholar 

  57. Veiga-da-Cunha M, Santos H, van Schaftingen E (1993) Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol 175:3941–3948

    Article  CAS  Google Scholar 

  58. Stolz P, Biicker G, Hammes WP, Vogel RF (1995) Utilization of electron acceptors by lactobacilli isolated from sourdough. Z Lebensm Unters Forsch 201:91–96

    Article  CAS  Google Scholar 

  59. Richter H, Vlad D, Unden G (2001) Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production. Arch Microbiol 175:26–31

    Article  CAS  Google Scholar 

  60. Embuscado ME, Patil SK (2001) Erythritol. In: Dekker M (ed) Food science and technology, vol 17, Alternative sweeteners, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  61. Lin S-J, Wen C-Y, Wang P-M, Huang J-C, Wei C-L, Chang J-W, Chu W-S (2010) High-level production of erythritol by mutants of osmophilic Moniliella sp. Process Biochem 45:973–979

    Article  CAS  Google Scholar 

  62. Mirończuk AM, Dobrowolski A, Rakicka M, Rywińska A, Rymowicz W (2015) Newly isolated mutant of Yarrowia lipolytica MK1 as a proper host for efficient erythritol biosynthesis from glycerol. Process Biochem 50:61–68

    Article  CAS  Google Scholar 

  63. Tomaszewska L, Rywińska A, Rymowicz W (2014) High selectivity of erythritol production from glycerol by Yarrowia lipolytica. Biomass Bioenerg 64:309–320

    Article  CAS  Google Scholar 

  64. Yang L-B, Zhan X-B, Zheng Z-Y, Wu J-R, Gao M-J, Lin C-C (2014) A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour Technol 151:120–127

    Article  CAS  Google Scholar 

  65. Sawada K, Taki A, Yamakawa T, Seki M (2009) Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. J Biosci Bioeng 108:385–390

    Article  CAS  Google Scholar 

  66. Ghezelbash GR, Nahvi I, Emamzadeh R (2014) Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica Mutant 49. Curr Microbiol 69:149–157

    Article  CAS  Google Scholar 

  67. Ghezelbash G, Nahvi I, Malekpour A (2014) Erythritol production with minimum by-product using Candida magnoliae mutant. Appl Biochem Microbiol 50:292–296

    Article  CAS  Google Scholar 

  68. Makkee M, Kieboom APG, Van Bekkum H (1985) Production methods of d-mannitol. Starch-Starke 37:136–141

    Article  CAS  Google Scholar 

  69. Song SH, Vieille C (2009) Recent advances in the biological production of mannitol. Appl Microbiol Biotechnol 84:55–62

    Article  CAS  Google Scholar 

  70. Soetaert W, Buchholz K, Vandamme EJ (1995) Production of d-mannitol and d-lactic acid by fermentation with Leuconostoc mesenteroides. Agro Food Ind Hi Tec 6:41–44

    CAS  Google Scholar 

  71. von Weymarn N, Hujanen M, Leisola M (2002) Production of d-mannitol by heterofermentative lactic acid bacteria. Process Biochem 37:1207–1213

    Article  Google Scholar 

  72. Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotech 19:461–467

    Article  CAS  Google Scholar 

  73. Jacobsen JH, Frigaard N-U (2014) Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng 21:60–70

    Article  CAS  Google Scholar 

  74. Ortiz ME, Bleckwedel J, Raya RR, Mozzi F (2013) Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl Microbiol Biotechnol 97:4713–4726

    Article  CAS  Google Scholar 

  75. Ruperez P, Toledano G (2003) Celery by-products as a source of mannitol. Eur Food Res Technol 216:224–226

    Article  CAS  Google Scholar 

  76. Wilson P (2007) Mannitol. In: Wilson R (ed) Sweeteners. Blackwell Publishing/Leatherhead Publishing, Oxford/Surrey, pp 219–225

    Google Scholar 

  77. Lawson P (2007) Sorbitol and sorbitol syrup. In: Wilson R (ed) Sweeteners. Blackwell Publishing/Leatherhead Publishing, Oxford/Surrey, pp 227–238

    Google Scholar 

  78. Kusserow B, Schimpf S, Claus P (2003) Hydrogenation of glucose to sorbitol over nickel and ruthenium catalysts. Adv Synth Catal 345:289–299

    Article  CAS  Google Scholar 

  79. Silveira MM, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408

    Article  CAS  Google Scholar 

  80. Jonas R, Silveira MM (2004) Sorbitol can be produced not only chemically but also biotechnologically. Appl Biochem Biotechnol 118:321–336

    Article  CAS  Google Scholar 

  81. Silveira MM, Wisbeck E, Lemmel C, Erzinger G, da Costa JP, Bertasso M, Jonas R (1999) Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. J Biotechnol 75:99–103

    Article  CAS  Google Scholar 

  82. Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerebezem M, Hugenholtz J, Smid EJ, Hols P (2007) High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl Environ Microbiol 73:1864–1872

    Article  CAS  Google Scholar 

  83. Nigam P, Singh D (1995) Processes for fermentative production of xylitol – a sugar substitute. Process Biochem 30:117–124

    CAS  Google Scholar 

  84. Zhang J, Geng A, Yao C, Lu Y, Li Q (2012) Xylitol production from d-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol 105:134–141

    Article  CAS  Google Scholar 

  85. Granstrӧm TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74:277–281

    Article  CAS  Google Scholar 

  86. Zakaria A (2001) Production of natural and rare pentoses using microorganisms and their enzymes. Electron J Biotechnol 4:103–111

    Google Scholar 

  87. Pourmir A, Noor-Mohammadi S, Johannes TW (2013) Production of xylitol by recombinant microalgae. J Biotechnol 165(3–4):178–183

    Article  CAS  Google Scholar 

  88. Hirabayashi S, Wang J, Kawagishi H, Hirai H (2015) Improving xylitol production through recombinant expression of xylose reductase in the white-rot fungus Phanerochaete sordida YK-624. J Biosci Bioeng 120:6–8

    Article  CAS  Google Scholar 

  89. Kim SM, Choi BY, Ryu YS, Jung SH, Park JM, Kim G-H, Lee SK (2015) Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Metab Eng 30:141–148

    Article  CAS  Google Scholar 

  90. Tada K, Horiuchi J, Kanno T, Kobayashi M (2004) Microbial xylitol production from corn cobs using Candida magnoliae. J Biosci Bioeng 98:228–230

    Article  CAS  Google Scholar 

  91. Latif F, Rajoka MI (2001) Production of ethanol and xylitol from corn cobs by yeasts. Bioresour Technol 77:57–63

    Article  CAS  Google Scholar 

  92. Buhner J, Agblevor FA (2004) Effect of detoxification of dilute- acid corn fiber hydrolysate on xylitol production. Appl Biochem Biotechnol 119:13–30

    Article  CAS  Google Scholar 

  93. Dominguez JM, Gong CS, Tsao GT (1996) Pretreatment of sugar cane bagasse hemicellulose hydrolysate for xylitol production by yeast. Appl Biochem Biotechnol 57–58:49–56

    Article  Google Scholar 

  94. Santos JC, Pinto IR, Carvalho W, Mancilha IM, Felipe MG, Silva SS (2005) Sugarcane bagasse as raw material and immobilization support for xylitol production. Appl Biochem Biotechnol 121–124:673–683

    Article  Google Scholar 

  95. Wheeler ML, Pi-Sunyer X (2008) Carbohydrate issues. Type and amount. J Am Diet Assoc 108:S34–S39

    Article  CAS  Google Scholar 

  96. Nakamura S (2005) Bioavailability of cellobiose and other non-digestible and/or nonabsorbable sugar substitutes and related topics. Nutrition 21:1158–1159

    Article  Google Scholar 

  97. Holub I, Gostner A, Hessdorfer S, This S, Bender G, Willinger B, Schauber J, Melcher R, Allolio B, Scheppach W (2009) Improved metabolic control after 12-week dietary intervention with low glycaemic isomalt in patients with type 2 diabetes mellitus. Horm Metab Res 41(12):886–892

    Article  CAS  Google Scholar 

  98. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    Article  CAS  Google Scholar 

  99. Blanc P, Daures JP, Rouillon JM, Peray P, Pierrugues R, Larrey D, Gremy F, Michel H (1992) Lactitol or lactulose in the treatment of chronic hepatic encephalopathy: results of a meta-analysis. Hepatology (Baltimore) 15:222–228

    Article  CAS  Google Scholar 

  100. Mäkinen KK, Saag M, Isotupa KP, Olak J, Nõmmela R, Söderling E, Mäkinen PL (2005) Similarity of the effects of erythritol and xylitol on some risk factors of dental caries. Caries Res 39(3):207–215

    Article  CAS  Google Scholar 

  101. Söderling E, Isokangas P, Pienihakkinen K, Tenovuo J, Alanen P (2001) Influence of maternal xylitol consumption on mother-child transmission of mutans streptococci: 6-year-follow-up. Caries Res 35:173–177

    Article  Google Scholar 

  102. Nakai Y, Shinga-Ishihara C, Kaji M, Moriya K, Murakami-Yamanaka K, Takimura M (2010) Xylitol gum and maternal transmission of mutans streptococci. J Dent Res 89(1):56–60

    Article  CAS  Google Scholar 

  103. Milgrom P, Zero DT, Tanzer JM (2009) An examination of the advances in science technology of prevention of tooth decay in young children since the Surgeon General’s Report on Oral Health. Acad Pediatr 9:404–409

    Article  Google Scholar 

  104. Söderling E (2009) Controversies around Xylitol. Eur J Dent 3(2):81–82

    Google Scholar 

  105. Söderling E (2009) Xylitol, mutans streptococci, and dental plaque. Adv Dent 21:74–78

    Google Scholar 

  106. Boileau A, Fry JC, Murray R (2012) A new calorie-free sugar substitute from the leaf of the stevia plant arrives in the UK. Nutr Bull 37(1):47–50

    Article  Google Scholar 

  107. Mäkinen KK (2011) Sugar alcohol sweeteners as alternatives to sugar with special consideration of xylitol. Med Princ Pract 20:303–320

    Article  Google Scholar 

  108. Livesey G (2012) Glycaemic responses and toleration. In: O’Donnell K, Kearsley MW (eds) Sweeteners and sugar alternatives in food technology. Wiley-Blackwell, West Sussex

    Google Scholar 

  109. Runnel R, Mäkinen KK, Honkala S, Olak J, Mäkinen P-L, Nõmmela R, Vahlberg T, Honkala E, Saag M (2013) Effect of three-year consumption of erythritol, xylitol and sorbitol candies on various plaque and salivary caries-related variables. J Dent 41:1236–1244

    Article  CAS  Google Scholar 

  110. Kim Y, Park SC, Wolf BW, Hertzler SR (2011) Combination of erythritol and fructose increases gastrointestinal symptoms in healthy adults. Nutr Res 31:836–841

    Article  CAS  Google Scholar 

  111. Ferguson T, Sentko A, Willibald-Ettle I (2007) Isomalt. In: Wilson R (ed) Sweeteners. Blackwell Publishing/Leatherhead Publishing, Oxford/Surrey, pp 167–177

    Google Scholar 

  112. Takatsuka T, Exterkate RAM, ten Cate JM (2008) Effects of isomalt on enamel de-and remineralization, a combined in vitro pH-cycling model and in situ study. Clin Oral Invest 12:173–177

    Article  Google Scholar 

  113. FAO-WHO Food Standards. Codex Alimentarius. GSFA Online. Isomalt http://www.codexalimentarius.net/gsfaonline/additives/details.html?id=180. Accessed 7 Nov 2015

  114. Finney M, Smullen J, Foster HA, Brokx S, Storey DM (2007) Effects of low doses of lactitol on faecal microflora, pH, short chain fatty acids and gastrointestinal symptomology. Eur J Nutr 46:307–314

    Article  CAS  Google Scholar 

  115. Ouwenhand AC, Tiihonen K, Saarinen M, Putaala H, Rautonen N (2009) Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters. Br J Nutr 101:367–375

    Article  CAS  Google Scholar 

  116. Chen C, Li L, Wu Z, Chen H, Fu S (2007) Effects of lactitol on intestinal microflora and plasma endotoxin in patients with chronic viral hepatitis. J Infect 54:98–102

    Article  Google Scholar 

  117. Mas A, Rodes J, Sunyer L, Rodrigo L, Planas R, Vargas V, Castells L, Rodríguez-Martínez D, Fernández-Rodríguez C, Coll I, Pardo A (2003) Comparison of rifaximin and lactitol in the treatment of acute hepatic encephalopathy: results of a randomized, double-blind, double-dummy, controlled clinical trial. J Hepatol 38:51–58

    Article  CAS  Google Scholar 

  118. Salerno F, Moser P, Maggi A, Vitaliani G, Benetti G (1994) Effects of long-term administration of low-dose lactitol in patients with cirrhosis but without overt encephalopathy. J Hepatol 21:1092–1096

    Article  CAS  Google Scholar 

  119. Cammà C, Fiorello F, Tinè F, Marchesini G, Fabbri A, Pagliaro L (1993) Lactitol in treatment of chronic hepatic encephalopathy. A meta-analysis. Dig Dis Sci 38:916–922

    Article  Google Scholar 

  120. Morillas RM, Sala M, Planas R (2014) Prevention of hepatic encephalopathy. Med Clin 142:512–514

    Article  Google Scholar 

  121. FAO-WHO Food Standards. Codex Alimentarius. GSFA Online. Lactitol http://www.codexalimentarius.net/gsfaonline/additives/details.html?id=156. Accessed 7 Nov 2015

  122. Kummel KF, Brokx S (2001) Lactitol as a functional prebiotic. Cereal Food World 46:424–429

    CAS  Google Scholar 

  123. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  Google Scholar 

  124. FAO-WHO Food Standards. Codex Alimentarius. GSFA Online. Maltitol. http://www.codexalimentarius.net/gsfaonline/additives/details.html?id=159. Accessed 7 Nov 2015

  125. Respondek F, Hilpipre C, Chauveau P, Cazaubiel M, Gendre D, Maudet C, Wagner A (2014) Digestive tolerance and postprandial glycaemic and insulinaemic responses after consumption of dairy desserts containing maltitol and fructo-oligosaccharides in adults. Eur J Clin Nutr 68(5):575–580

    Article  CAS  Google Scholar 

  126. Gombás Á, Szabó-Révész P, Regdon G, Erӧs I (2003) Study of thermal behaviour of sugar alcohols. J Therm Anal Calorim 73:615–621

    Article  Google Scholar 

  127. Wang J, Kim YM, Rhee HS, Lee MW, Park JM (2013) Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3. Bioresour Technol 135:199–206

    Article  CAS  Google Scholar 

  128. Shawkat H, Westwood M-M, Mortimer A (2012) Mannitol: a review of its clinical uses. CEACCP 12:82–85

    Google Scholar 

  129. Monedero V, Pérez-Martínez G, Yebra MJ (2010) Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl Microbiol Biotechnol 86:1003–1015

    Article  CAS  Google Scholar 

  130. Saha BC, Racine FM (2010) Effects of pH and corn steep liquor variability on mannitol production by Lactobacillus intermedius NRRL B-3693. Appl Microbiol Biotechnol 87:553–560

    Article  CAS  Google Scholar 

  131. Gaspar P, Neves AR, Ramos A, Gasson MJ, Shearman CA, Santos H (2004) Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Appl Environ Microbiol 70:1466–1474

    Article  CAS  Google Scholar 

  132. Daviskas E, Anderson SD, Eberl S, Young IH (2010) Beneficial effect of inhaled mannitol and cough in asthmatics with mucociliary dysfunction. Respir Med 104:1645–1653

    Article  Google Scholar 

  133. Daviskas E, Anderson SD, Young IH (2010) Effect of mannitol and repetitive coughing on the sputum properties in bronchiectasis. Respir Med 104:371–377

    Article  Google Scholar 

  134. Kalimeris K, Nikolakopoulos N, Riga M, Christodoulaki K, Moulakakis KG, Dima C, Papasideris C, Sidiropoulou T, Kostopanagiotou G, Pandazi A (2014) Mannitol and renal dysfunction after endovascular aortic aneurysm repair procedures: a randomized trial. J Cardiothorac Vasc Anesth 28(4):966–971

    Article  CAS  Google Scholar 

  135. Le AS, Mulderrig KB (2001) Sorbitol and mannitol. In: Nabors LO (ed) Alternative sweeteners, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  136. Basu S, Shivhare US (2013) Rheological, textural, microstructural, and sensory properties of sorbitol-substituted mango jam. Food Bioprocess Technol 6:1401–1413

    Article  CAS  Google Scholar 

  137. Budavari S, O’Neil M, Smith A, Heckelman PE, Kinneary JF (1996) The Merck index. An encyclopedia of chemicals, drugs, and biologicals. Merck, Whitehouse Station, pp 1490–1491

    Google Scholar 

  138. Söderling E, Hirvonen A, Karjalainen S, Fontana M, Catt D, Seppä L (2011) The effect of xylitol on the composition of the oral flora: a pilot study. Eur J Dent 5:24–31

    Google Scholar 

  139. Söderling EM, Ekman TC, Taipale TJ (2008) Growth inhibition of Streptococcus mutans with low xylitol concentrations. Curr Microbiol 56:382–385

    Article  CAS  Google Scholar 

  140. Lee SH, Choi BK, Kim YJ (2012) The cariogenic characters of xylitol-resistant and xylitol-sensitive Streptococcus mutans in biofilm formation with salivary bacteria. Arch Oral Biol 57:697–703

    Article  CAS  Google Scholar 

  141. Misra S, Raghuwanshi S, Gupta cP, Saxena RK (2012) Examine growth inhibition pattern and lactic acid production in Streptococcus mutans using different concentrations of xylitol produced from Candida tropicalis by fermentation. Anaerobe 18:273–279

    Article  CAS  Google Scholar 

  142. ElSalhy M, Sayed Zahid I, Honkala E (2012) Effects of xylitol mouthrinse on Streptococcus mutans. J Dent 40:1151–1154

    Article  CAS  Google Scholar 

  143. Tanzer JM (1995) Xylitol chewing gum and dental caries. Int Dent J 45:65–76

    CAS  Google Scholar 

  144. Bahador A, Lesan S, Kashi N (2012) Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial. Iran J Microbiol 4:75–81

    CAS  Google Scholar 

  145. Ship JA, McCutcheon JA, Spivakovsky S, Kerr AR (2007) Safety and effectiveness of topical dry mouth products containing olive oil, betaine, and xylitol in reducing xerostomia for polypharmacy-induced dry mouth. J Oral Rehabil 34(10):724–732

    Article  CAS  Google Scholar 

  146. Vernacchio L, Vezina RM, Mitchell AA (2007) Tolerability of oral xylitol solution in young children: implications for otitis media prophylaxis. Int J Pediatr Otorhinolaryngol 71:89–94

    Article  Google Scholar 

  147. Nyyssölä A, Pihlajaniemi A, Palva A, von Weymarn N, Leisola M (2005) Production of xylitol from d-xylose by recombinant Lactococcus lactis. J Biotechnol 118:55–66

    Article  CAS  Google Scholar 

  148. Uhari M, Tapiainen T, Kontiokari T (2000) Xylitol is preventing acute otitis media. Vaccine 19:144–147

    Article  Google Scholar 

  149. Kaivosoja SM, Mattila PT, Knuuttila MLE (2008) Dietary xylitol protects against the imbalance in bone metabolism during the early phase of collages type II- induced arthritis in dark agouti rats. Metab Clin Exp 57(8):1052–1055

    Article  CAS  Google Scholar 

  150. Georgieff M, Moldawer LL, Bistrian BR, Blackburn GL (1985) Xylitol, an energy source for intra-venous nutrition after trauma. J Parenter Enteral Nutr 9:199–209

    Article  CAS  Google Scholar 

  151. Sood C, Khan S, O’Brien PJ (1997) Phenylenediamine induced hepatocytes cytotoxicity redox. Cycling mediated oxidative stress without oxygen activation. Biochim Biophys Acta 1335:343–352

    Article  CAS  Google Scholar 

  152. Faraji H, Lindsay RC (2004) Characterization of antioxidant activity of sugars and polyhydric alcohols in fish oil emulsions. J Agric Food Chem 52:7164–7171

    Article  CAS  Google Scholar 

  153. Kwon NH, Kim SH, Kim JY, Lim JY, Kim JM, Jung WK, Park KT, Bae WK, Noh KM, Choi JW, Hur J, Park YH (2003) Antimicrobial performance of alkaline ionic fluid (GC-100X) and its ability to remove Escherichia coli O157:H7 from the surface of tomatoes. J Food Prot 66:1604–1610

    Article  CAS  Google Scholar 

  154. Nabors L, Hedrick T (2012) Sugar reduction with polyols. IFT 66(9) http://www.ift.org/Food-Technology/Past-Issues/2012/September/Features/Sugar-Reduction-with-Polyols.aspx?view=print&page=viewall

  155. Nguyen PTN, Ulrich J (2015) Sugar alcohols – multifunctional agents in the freeze casting process of foods. J Food Eng 153:1–7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Grembecka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Grembecka, M. (2016). Sugar Alcohols as Sugar Substitutes in Food Industry. In: Merillon, JM., Ramawat, K. (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-26478-3_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26478-3_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26478-3

  • Online ISBN: 978-3-319-26478-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics