Biotransformation of Mogrosides

  • Reuben Wang
  • Chun-Hui Chiu
  • Ting-Jang Lu
  • Yi-Chen Lo
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Mogrosides are natural sweeteners. Previous studies have shown that mogroside extracts exert numerous functions including antioxidation, anti-inflammatory, and blood glucose modulation effects. Chemical structure of mogrosides consists of mogrol and glycosylated sugar moieties linked by β-linkage to the mogrol. The complexities of the mogroside structures hinder the purification or synthesis of mogrosides and result in difficulties for further producing specific mogrosides. In this review, we discuss the available methods, particularly biotransformation, to convert mogrosides. We anticipate providing the whole pictures of mogroside biotransformation.


Mogrosides Biotransformation Chemical modification Enzymatic conversion 


  1. 1.
    Akihisa T, Hayakawa Y, Tokuda H, Banno N, Shimizu N, Suzuki T, Kimura Y (2007) Cucurbitane glycosides from the fruits of Siraitia gros venorii and their inhibitory effects on Epstein-Barr virus activation. J Nat Prod 70(5):783–788CrossRefGoogle Scholar
  2. 2.
    Button JE, Dutton RJ (2012) Cheese microbes. Curr Biol 22(15):R587–R589CrossRefGoogle Scholar
  3. 3.
    Chen Q, Yi X, Yu L, Uang R, Yang J (2005) Study on the variation of mogroside V and flavone glycoside in Luo Han Guo fresh fits in different growth periods. Guangxi Bot 03:274–277Google Scholar
  4. 4.
    Chen XB, Zhuang JJ, Liu JH, Lei M, Ma L, Chen J, Shen X, Hu LH (2011) Potential AMPK activators of cucurbitane triterpenoids from Siraitia grosvenorii Swingle. Bioorg Med Chem 19(19):5776–5781CrossRefGoogle Scholar
  5. 5.
    Chi H, Kim DH, Ji GE (2005) Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. Biol Pharm Bull 28(11):2102–2105CrossRefGoogle Scholar
  6. 6.
    Dai L, Liu C, Zhu Y, Zhang J, Men Y, Zeng Y, Sun Y (2015) Functional characterization of cucurbitadienol synthase and triterpene glycosyltransferase involved in biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol 56(6):1172–1182CrossRefGoogle Scholar
  7. 7.
    Di R, Huang MT, Ho CT (2011) Anti-inflammatory activities of mogrosides from Momordica grosvenori in murine macrophages and a murine ear edema model. J Agric Food Chem 59(13):7474–7481CrossRefGoogle Scholar
  8. 8.
    FDA, U. S. (2010) GRAS notice 000301: Luo Han FruitGoogle Scholar
  9. 9.
    Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349(6252):1095–1100CrossRefGoogle Scholar
  10. 10.
    Gallage NJ, Moller BL (2015) Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant 8(1):40–57CrossRefGoogle Scholar
  11. 11.
    Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425(6959):737–741CrossRefGoogle Scholar
  12. 12.
    Girisuta B, Danon B, Manurung R, Janssen LP, Heeres HJ (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresour Technol 99(17):8367–8375CrossRefGoogle Scholar
  13. 13.
    Jia Z, Yang X (2014) Novel Sweetener ISO-Mogroside V. Application number: 20140170286, United States. Assignee: Givaudan SA (Vernier, CH)Google Scholar
  14. 14.
    Konoshima T, Takasaki M (2002) Cancer-chemopreventive effects of natural sweeteners and related compounds. Pure Appl Chem 74(7):1309–1316CrossRefGoogle Scholar
  15. 15.
    Lee CH (1975) Intense sweeteners from Lo Han Kuo (Momordica grosvenorii). Experientia 31:533CrossRefGoogle Scholar
  16. 16.
    Li DP, Ikeda T, Matsuoka N, Nohara T, Zhang HR, Sakamoto T, Nonaka GI (2006) Cucurbitane glycosides from unripe fruits of Lo Han Kuo (Siraitia grosvenori). Chem Pharm Bull (Tokyo) 54(10):1425–1428CrossRefGoogle Scholar
  17. 17.
    Li DP, Ikeda T, Nohara T, Liu JL, Wen YX, Sakamoto T, Nonaka G (2007) Cucurbitane glycosides from unripe fruits of Siraitia grosvenori. Chem Pharm Bull 55:1082–1086CrossRefGoogle Scholar
  18. 18.
    Makapugay HC, Nanayakkara NPD, Soejarto DD, Kinghorn AD (1985) High-performance liquid chromatographic analysis of the major sweet principle to Lo Han Kuo fruits. J Agric Food Chem 33(3):348–350CrossRefGoogle Scholar
  19. 19.
    Matsumoto K, Kadai R, Ohtani K, Tanaka O (1990) Minor cucurbitane-glycosides from fruits of Siraitia grosvenori (Cucurbitaceae). Chem Pharm Bull 38:2030–2032CrossRefGoogle Scholar
  20. 20.
    Murata Y, Ogawa T, Suzuki YA, Yoshikawa S, Inui H, Sugiura M, Nakano Y (2010) Digestion and absorption of Siraitia grosvenori triterpenoids in the rat. Biosci Biotechnol Biochem 74(3):673–676CrossRefGoogle Scholar
  21. 21.
    Murata Y, Ogawa T, Suzuki YA, Yoshikawa S, Inui H, Sugiura M, Nakano Y (2010) Digestion and absorption of Siraitia grosvenori triterpenoids in the rat. Biosci Biotech Bioch 74(3):673–676CrossRefGoogle Scholar
  22. 22.
    Murata Y, Yoshikawa S, Suzuki YA, Sugiura M, Inui H, Nakano Y (2006) Sweetness characteristics of the triterpene glycosides in Siraitia grosvenori. J Jpn Soc Food Sci Technol-Nippon Shokuhin Kagaku Kogaku Kaishi 53(10):527–533CrossRefGoogle Scholar
  23. 23.
    Nohara T, Li D, Ikeda T, Huang Y, Liu J, Sakamoto T, Nonaka GI (2007) Seasonal variation of mogrosides in Lo Han Kuo (Siraitia grosvenori) fruits. J Nat Med 61(3):307–312CrossRefGoogle Scholar
  24. 24.
    Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30(1):37–44CrossRefGoogle Scholar
  25. 25.
    Qi X, Chen W, Liu L, Yao P, Xie B (2006) Effect of a Siraitia grosvenori extract containing mogrosides on the cellular immune system of type 1 diabetes mellitus mice. Mol Nutr Food Res 50(8):732–738CrossRefGoogle Scholar
  26. 26.
    Qi XY, Chen WJ, Zhang LQ, Xie BJ (2008) Mogrosides extract from Siraitia grosvenori scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice. Nutr Res 28(4):278–284CrossRefGoogle Scholar
  27. 27.
    Rekha CR, Vijayalakshmi G (2010) Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J Appl Microbiol 109(4):1198–1208CrossRefGoogle Scholar
  28. 28.
    Shi DF, Zheng MZ, Wang YM, Liu CM, Chen S (2014) Protective effects and mechanisms of mogroside V on LPS-induced acute lung injury in mice. Pharm Biol 52(6):729–734CrossRefGoogle Scholar
  29. 29.
    Song FF, Qi XY, Chen WJ, Jia WB, Yao P, Nussler AK, Sun XF, Liu LG (2007) Effect of Momordica grosvenori on oxidative stress pathways in renal mitochondria of normal and alloxan-induced diabetic mice. Eur J Nutr 46(2):61–69CrossRefGoogle Scholar
  30. 30.
    Suzuki YA, Tomoda M, Murata Y, Inui H, Sugiura M, Nakano Y (2007) Antidiabetic effect of long-term supplementation with Siraitia grosvenori on the spontaneously diabetic Goto-Kakizaki rat. Br J Nutr 97(4):770–775CrossRefGoogle Scholar
  31. 31.
    Swingle WT (1941) Momordica grosvenori Sp. Nov., the Source of the Chinese Lo Han KuoGoogle Scholar
  32. 32.
    Takasaki M, Konoshima T, Murata Y, Sugiura M, Nishino H, Tokuda H, Matsumoto K, Kasai R, Yamasaki K (2003) Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides, from Momordica grosvenori. Cancer Lett 198(1):37–42CrossRefGoogle Scholar
  33. 33.
    Takemoto T, Arihara S, Nakajima T, Okuhira M (1983) Studies on the constituents of fructus Momordicae. I. On the sweet principle. Yakugaku Zasshi-J Pharm Soc Jpn 103(11):1151–1154CrossRefGoogle Scholar
  34. 34.
    Takemoto T, Arihara S, Nakajima T, Okuhira M (1983) Studies on the constituents of fructus Momordicae. II. Structure of sapogenin. Yakugaku Zasshi-J Pharm Soc Jpn 103(11):1155–1166CrossRefGoogle Scholar
  35. 35.
    Takemoto T, Arihara S, Nakajima T, Okuhira M (1983) Studies on the constituents of fructus Momordicae. III. Structure of mogrosides. Yakugaku Zasshi-J Pharm Soc Jpn 103(11):1167–1173CrossRefGoogle Scholar
  36. 36.
    Tang Q, Ma X, Mo C, Wilson IW, Song C, Zhao H, Yang Y, Fu W, Qiu D (2011) An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics 12(1):343–355CrossRefGoogle Scholar
  37. 37.
    Tang SQ, Bin XY, Peng YT, Zhou JY, Wang L, Zhong Y (2007) Assessment of genetic diversity in cultivars and wild accessions of Luohanguo (Siraitia grosvenorii [Swingle] A. M. Lu et Z. Y. Zhang), a species with edible and medicinal sweet fruits endemic to southern China, using RAPD and AFLP markers. Genet Resour Crop Evol 54(5):1053–1061CrossRefGoogle Scholar
  38. 38.
    Ukiya M, Akihisa O, Tokuda H, Toriumi M, Mukainaka T, Banno N, Kimura Y, Hasegawa J, Nishino H (2002) Inhibitory effects of cucurbitane glycosides and other triterpenoids from the fruit of Momordica grosvenori on Epstein-Barr virus early antigen induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate. J Agric Food Chem 50(23):6710–6715CrossRefGoogle Scholar
  39. 39.
    Wang P, Wei Y, Fan Y, Liu Q, Wei W, Yang C, Zhang L, Zhao G, Yue J, Yan X, Zhou Z (2015) Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Metab Eng 29:97–105CrossRefGoogle Scholar
  40. 40.
    Xia Y, Rivero-Huguet ME, Hughes BH, Marshall WD (2008) Isolation of the sweet components from Siraitia grosvenorii. Food Chem 107(3):1022–1028CrossRefGoogle Scholar
  41. 41.
    Xiong MJ, Tang Q, Ma XJ (2011) Biosynthesis of triterpene glycoside in Lo Han Kuo. Acad J Guangdong Coll Pharm 05:543–548Google Scholar
  42. 42.
    Xu F, Li DP, Huang ZC, Lu FL, Wang L, Huang YL, Wang RF, Liu GX, Shang MY, Cai SQ (2015) Exploring in vitro, in vivo metabolism of mogroside V and distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MSn. J Pharm Biomed Anal 115:418–430CrossRefGoogle Scholar
  43. 43.
    Yan X, Fan Y, Wei W, Wang P, Liu Q, Wei Y, Zhang L, Zhao G, Yue J, Zhou Z (2014) Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res 24(6):770–773CrossRefGoogle Scholar
  44. 44.
    Yan XW, Zhang JY (2007) NMR structural elucidation of mogrol and its glycosides. Chin J Magn Reson 03:249–260Google Scholar
  45. 45.
    Yang XD, Yang YY, Ouyang DS, Yang GP (2015) A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 100:208–220CrossRefGoogle Scholar
  46. 46.
    Zhang J, Dai L, Yang J, Liu C, Men Y, Zeng Y, Cai Y, Zhu Y, Sun Y (2016) Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol 57(5):1000–1007CrossRefGoogle Scholar
  47. 47.
    Zhang JY, Yang XW (2003) Assignments of 1H and 13C NMR signals of mogroside IVa. J Chin Pharm Sci 04:196–200Google Scholar
  48. 48.
    Zhou YPSP, Hoffman Estates, IL, 60192, US), ARMENTROUT, Richard W. (5450 Prairie Stone Parkway, Hoffman Estates, IL, 60192, US), WOODYER, Ryan D (5450 Prairie Stone Parkway, Hoffman Estates, IL, 60192, US), BRIDGES, John R (5450 Prairie Stone Parkway, Hoffman Estates, IL, 60192, US), SCHUNK, Timothy C (5450 Prairie Stone Parkway, Hoffman Estates, IL, 60192, US), FLETCHER, Joshua N (5450 Prairie Stone Parkway, Hoffman Estates, IL, 60192, US) (2014) Redistribution of mogrol glycoside content. TATE & LYLE INGREDIENTS AMERICAS, LLC (5450 Prairie Stone Parkway, Hoffman Estates, IL, 60192, US)Google Scholar
  49. 49.
    Chiu C-H, Wang R, Lee C-C, Lo Y-C, Lu T-J (2013) Biotransformation of mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae. J Agric Food Chem 61:7127–7134Google Scholar
  50. 50.
    Yang XW, Zhang J-Y, Xu W (2008) Biotransformation of mogroside III by human intestinal bacteria. J Peking Univ Health Sci 39(6):657–662Google Scholar
  51. 51.
    Zhou Y, Armentrout RW, Woodyer DR, Bridges JR, Schunk TC, Fletcher JN (2014) Redistribution of mogrol glycoside content. Application number: WO/2014/150127. Assignee: Tate & Lyle Ingredients Americas, LLCGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Reuben Wang
    • 1
  • Chun-Hui Chiu
    • 2
  • Ting-Jang Lu
    • 1
  • Yi-Chen Lo
    • 1
  1. 1.Institute of Food Science and TechnologyNational Taiwan UniversityTaipei, TaiwanRepublic of China
  2. 2.Chang Gung University of Science and TechnologyTaoyuan CityTaiwan (R.O.C.)

Personalised recommendations