Skip to main content

Radionuclide Therapy of Tumors of the Liver and Biliary Tract

Nuclear Oncology

Abstract

The liver represents a frequent site for both primary cancer and metastatic disease, In these circumstances, liver-directed therapies as cytoreduction via surgery or in situ ablative techniques may influence the natural history of the disease progression and improve clinical outcomes.

Radioembolization (RE) is a selective internal radiotherapy technique in which 131I-lipiodol or 90Y microspheres are infused through the hepatic arteries. It is based on the fact that primary and secondary hepatic tumors are vascularized mostly by arterial blood flow whereas the normal liver perfusion is mostly from the portal network. This enables high radiation doses to be delivered, sparing the surrounding non-malignant liver parenchyma.

Although there are some clinical evidences that RE may play an important role in the management of hepatocellular carcinoma of intermediate or advanced stage and in liver-dominant metastatic colorectal cancer and metastatic neuroendocrine tumors, further randomised clinical trials are mandatory to better assess the potential beneficial and harmful outcomes of trans-arterial radioembolisation either as a monotherapy or in combination with other systemic or locoregional therapies.

In this chapter we discuss some technical aspects, patient selection, current clinical evidence, and future directions of radioembolisation for primary and secondary liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

5-FU:

5-Fluorouracil, a chemotherapy agent

68Ga-DOTANOC:

68Ga-DOTA-1-Nal3-octreotide

99mTc-HSA:

99mTc-human serum albumin

99mTc-MAA:

99mTc-macroaggregated albumin

99mTcO4 − :

99mTc-pertechnetate

AFP:

Alpha-fetoprotein, a circulating serum marker of hepatocellular carcinoma (and of testicular germ-cell cancer as well)

Bq:

Becquerel unit

BSA:

Body surface area

CA 19–9:

Carbohydrate antigen 19–9, a tumor-associated serum marker

ce-CT:

Contrast-enhanced x-ray computed tomography

CI:

Confidence interval

CR:

Complete response

CRC:

Colorectal cancer

CT:

X-ray computed tomography

DEB:

Drug-eluting bead

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

EASL:

European Association for the Study of the Liver

ECOG:

Eastern Cooperative Oncology Group

eV:

Electron volt

GBq:

Giga-Becquerel (109 Becquerel)

Gy:

Gray unit (ionizing radiation dose in the International System of Units, corresponding to the absorption of one joule of radiation energy per kilogram of matter)

HCC:

Hepatocellular carcinoma

HDD:

4-Hexadecyl 2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol, a chelating agent

ICC:

Intrahepatic cholangiocarcinoma

IRE:

Irreversible electroporation

keV:

Kiloelectron volt (103 eV)

LSF:

Lung shunt fraction

MBq:

Mega-Becquerel (106 Becquerel)

MeV:

Megaelectron volt (106 eV)

MIP:

Maximum intensity projection

MIRD:

Medical Internal Radiation Dose

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

NET:

Neuroendocrine tumor

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PFS:

Progression-free survival

PR:

Partial response

PVT:

Portal vein thrombosis

RE:

Radioembolization

RECIST:

Response evaluation criteria in solid tumors

RFA:

Radiofrequency ablation

RILD:

Radiation-induced liver diseases

ROI:

Region of interest

SD:

Stable disease

SIRT:

Selective internal radiation therapy

SPECT/CT:

Single-photon emission computed tomography/computed tomography

SUV:

Standardized uptake value

SUVmax :

Standardized uptake value at point of maximum

TACE:

Transcatheter arterial chemoembolization

TARE:

Transarterial radioemobilization

VIPoma:

Neuroendocrine tumor producing vasoactive intestinal peptide

WHO:

World Health Organization

References

  1. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142:1264–73.

    Article  PubMed  PubMed Central  Google Scholar 

  2. van der Pool AE, Damhuis RA, Ijzermans JN, de Wilt JH, Eggermont AM, Kranse R, Verhoef C. Trends in incidence, treatment and survival of patients with stage IV colorectal cancer: a population-based series. Colorectal Dis. 2012;14:56–61.

    Article  PubMed  Google Scholar 

  3. Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334:693–9.

    Article  CAS  PubMed  Google Scholar 

  4. Ingold JA, Reed GB, Kaplan HS, Bagshaw MA. Radiation hepatitis. Am J Roentgenol Radium Ther Nucl Med. 1965;93:200–8.

    CAS  PubMed  Google Scholar 

  5. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31:1237–48.

    Article  CAS  PubMed  Google Scholar 

  6. Yu H, Burke CT. Comparison of percutaneous ablation technologies in the treatment of malignant liver tumors. Semin Interv Radiol. 2014;31:129–37.

    Article  CAS  Google Scholar 

  7. Stuart K. Chemoembolization in the management of liver tumors. Oncologist. 2003;8:425–37.

    Article  PubMed  Google Scholar 

  8. Geschwind JFH. Chemoembolization for hepatocellular carcinoma: where does the truth lie? J Vasc Interv Radiol. 2002;13:991–4.

    Article  PubMed  Google Scholar 

  9. Varela M, Real MI, Burrel M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46:474–81.

    Article  CAS  PubMed  Google Scholar 

  10. Llovet JM, Real MI, Montana X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359(9319):1734–9.

    Article  PubMed  Google Scholar 

  11. Kettenbach J, Stadler A, Katzler IV, et al. Drug-loaded microspheres for the treatment of liver cancer: review of current results. Cardiovasc Intervent Radiol. 2008;31:468–76.

    Article  PubMed  Google Scholar 

  12. European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer. EASLEORT clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–43.

    Article  Google Scholar 

  13. Salem R, Lewandowski RJ, Atassi B, et al. Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres (TheraSphere): safety, tumor response, and survival. J Vasc Interv Radiol. 2005;16:1627–39.

    Article  PubMed  Google Scholar 

  14. Raoul JL, Bourguet P, Bretagne JF, et al. Hepatic artery injection of I-131-labelled lipiodol. I. Biodistribution study results in patients with hepatocellular carcinoma. Radiology. 1988;168:541–5.

    Article  CAS  PubMed  Google Scholar 

  15. Nakajo M, Kobayashi H, Shimabukuro K, et al. Biodistribution and in vivo kinetics of iodine-131 lipiodol infused via the hepatic artery of patients with hepatic cancers. J Nucl Med. 1988;29:1066–77.

    CAS  PubMed  Google Scholar 

  16. Smits ML, Nijsen JF, van den Bosch MA, Lam MG, Vente MA, Huijbregts JE, et al. Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial. J Exp Clin Cancer Res. 2010;29:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Nowicki ML, Cwikla JB, Sankowski AJ, Shcherbinin S, Grimmes J, Celler A, et al. Initial study of radiological and clinical efficacy radioembolization using 188Re-human serum albumin (HSA) microspheres in patients with progressive, unresectable primary or secondary liver cancers. Med Sci Monit. 2014;20:1353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhattacharya S, Dhillon AP, Winslet MC, et al. Human liver cancer cells and endothelial cells incorporate iodised oil. Br J Cancer. 1996;73:877–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Madsen MT, Park CH, Thakur ML. Dosimetry of iodine-131 ethiodol in the treatment of hepatoma. J Nucl Med. 1988;29:1038–44.

    CAS  PubMed  Google Scholar 

  20. Monsieurs MA, Bacher K, Brans B, et al. Patient dosimetry for 131I-lipiodol therapy. Eur J Nucl Med Mol Imaging. 2003;30:554–61.

    Article  CAS  PubMed  Google Scholar 

  21. Bhattacharya S, Novell JR, Dusheiko GM, Hilson AJ, Dick R, Hobbs KE. Epirubicin-lipiodol chemotherapy versus 131iodine-lipiodol radiotherapy in the treatment of unresectable hepatocellular carcinoma. Cancer. 1995;76:2202–10.

    Article  CAS  PubMed  Google Scholar 

  22. Yoo HS, Park CH, Lee JT, et al. Small hepatocellular carcinoma: high dose internal radiation therapy with superselective intra-arterial injection of I-131-labeled Lipiodol. Cancer Chemother Pharmacol. 1994;33:S128–33.

    Article  PubMed  Google Scholar 

  23. Leung WT, Lau WY, Ho S, et al. Selective internal radiation therapy with intra-arterial iodine-131-lipiodol in inoperable hepatocellular carcinoma. J Nucl Med. 1994;35:1313–8.

    CAS  PubMed  Google Scholar 

  24. Raoul JL, Guyader D, Bretagne JF, et al. Randomized controlled trial for hepatocellular carcinoma with portal vein thrombosis: intra-arterial iodine-131-iodized oil versus medical support. J Nucl Med. 1994;35:1782–7.

    CAS  PubMed  Google Scholar 

  25. Boucher E, Garin E, Guillygomac’h A, Olivie D, Boudjema K, Raoul JL. Intra-arterial injection of iodine-131-labeled lipiodol for treatment of hepatocellular carcinoma. Radiother Oncol. 2007;82:76–82.

    Article  CAS  PubMed  Google Scholar 

  26. Partensky C, Sassolas G, Henry L, Paliard P, Maddern GJ. Intra-arterial iodine 131-labeled lipiodol as adjuvant therapy after curative liver resection for hepatocellular carcinoma: a phase 2 clinical study. Arch Surg. 2000;135:1298–300.

    Article  CAS  PubMed  Google Scholar 

  27. Lau WY, Lai EC, Leung TW, Yu SC. Adjuvant intra-arterial iodine-131-labeled lipiodol for resectable hepatocellular carcinoma: a prospective randomized trial-update on 5-year and 10-year survival. Ann Surg. 2008;247:43–8.

    Article  PubMed  Google Scholar 

  28. Lee YS, Jeong JM, Kim YJ, et al. Synthesis of 188Re-labelled long chain alkyl diaminedithiol for therapy of liver cancer. Nucl Med Commun. 2002;23:237–42.

    Article  CAS  PubMed  Google Scholar 

  29. De Ruyck K, Lambert B, Bacher K, et al. Biologic dosimetry of 188Re-HDD/lipiodol versus 131I-lipiodol therapy in patients with hepatocellular carcinoma. J Nucl Med. 2004;45:612–8.

    PubMed  Google Scholar 

  30. Kumar A, Srivastava DN, Chau TT, et al. Inoperable hepatocellular carcinoma: transarterial 188Re HDD-labeled iodized oil for treatment. Prospective multicenter clinical trial. Radiology. 2007;243:509–19.

    Article  PubMed  Google Scholar 

  31. Sato K, Lewandowski RJ, Bui JT, et al. Treatment of unresectable primary and metastatic liver cancer with yttrium-90 microspheres (TheraSphere): assessment of hepatic arterial embolization. Cardiovasc Intervent Radiol. 2006;29:522–9.

    Article  PubMed  Google Scholar 

  32. Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: technical and methodologic considerations. J Vasc Interv Radiol. 2006;17:1251–78.

    Article  PubMed  Google Scholar 

  33. Hamami ME, Poeppel TD, Müller S, Heusner T, Bockisch A, Hilgard P, Antoch G. SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer. J Nucl Med. 2009;50:688–92.

    Article  CAS  PubMed  Google Scholar 

  34. Grosser OS, Rufi J, Kupitz D, Pethe A, Ulrich G, Genseke P, et al. Pharmacokinetics of 99mTc-MAA- and 99mTc-HSA microspheres used in preradioembolization dosimetry: influence on the liver–lung shunt. J Nucl Med. 2016;57:925–7.

    Article  PubMed  Google Scholar 

  35. Sabet A, Ahmadzadehfar H, Muckle M, Haslerud T, Wilhelm K, Biersack HJ, et al. Significance of oral administration of sodium perchlorate in planning liver-directed radioembolisation. J Nucl Med. 2011;52:1063–7.

    Article  PubMed  Google Scholar 

  36. Dale RG. Dose-rate effects in targeted radiotherapy. Phys Med Biol. 1996;41:1871–84.

    Article  CAS  PubMed  Google Scholar 

  37. Ho S, Lau WY, Leung TW, Chan M, Chan KW, Lee WY, et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumors. Eur J Nucl Med. 1996;23:947–52.

    Article  CAS  PubMed  Google Scholar 

  38. Kennedy AS, Dezarn WA, McNeillie P, Overton C, England M, Sailer SL. Fractionation, dose selection, and response of hepatic metastases of neuroendocrine tumors after 90Y-microsphere brachytherapy. Brachytheraphy. 2006;5:103–4.

    Google Scholar 

  39. Kennedy AS, Dezarn WA, McNeillie P, Overton C, England M, Sailer SL. Dose selection of resin 90Y-micrspheres for liver brachytherapy: a single center review. Brachytheraphy. 2006;5:104.

    Google Scholar 

  40. Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eyden M, et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolisation therapy with yttrium-90 labeled resin microspheres. Phys Med Biol. 2008;53:6591–693.

    Article  PubMed  Google Scholar 

  41. Jiang M, Fischman A, Nowakowski FS, et al. Segmental perfusion differences on paired Tc-99m macroaggregated albumin (MAA) hepatic perfusion imaging and yttrium-90 (Y-90) bremsstrahlung imaging studies in SIR-sphere radioembolization: associations with angiography. J Nucl Med Radiat Ther. 2012;3:122.

    Article  CAS  Google Scholar 

  42. Wondergem M, Smits MLJ, Elschot M, de Jong HWAM, Verkooijen HM, van den Bosch MAAJ, Nijsen JFW, Lam MGEH. 99mTc-Macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med. 2013;54:1294–301.

    Article  CAS  PubMed  Google Scholar 

  43. Lau WY, Sangro B, Chen PJ, Cheng SQ, Chow P, Lee RC, et al. Treatment for hepatocellular carcinoma with portal vein tumor thrombosis: the emerging role for radioembolization using yttrium-90. Oncology. 2013;84:311–8.

    Article  CAS  PubMed  Google Scholar 

  44. Garin E, Lenoir L, Rolland Y, Edeline J, Mesbah H, Laffont S, et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med. 2012;53:255–63.

    Article  CAS  PubMed  Google Scholar 

  45. Mazzaferro V, Sposito C, Bhoori S, Romito R, Chiesa C, Morosi C, et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: a phase 2 study. Hepatology. 2013;57:1826–37.

    Article  CAS  PubMed  Google Scholar 

  46. Ahmadzadehfar H, Muckle M, Sabet A, Wilhelm K, Kuhl C, Biermann K, et al. The significance of bremsstrahlung SPECT/CT after yttrium-90 radioembolisation treatment in the prediction of extrahepatic side effects. Eur J Nucl Med Mol Imaging. 2011;39:309–15.

    Article  CAS  Google Scholar 

  47. Lhommel R, Goffette P, del Eynde V, Jamar F, Pauwels S, Bilbao JI, et al. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging. 2009;36:1696.

    Article  PubMed  Google Scholar 

  48. Lhommel R, van Elmbt L, Goffette P, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-spheres. Eur J Nucl Med Mol Imaging. 2010;37:1654–62.

    Article  PubMed  Google Scholar 

  49. Kao YH, Tan EH, Lim KY, Eng CE, Goh SW. Yttrium-90 internal pair production imaging using first generation PET/CT provides high resolution images for qualitative diagnostic purposes. Br J Radiol. 2012;85:1018–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wright CL, Zhang J, Tweedle MF, Knopp MV, Hall NC. Theranostic imaging of yttrium-90. Biomed Res Int. 2015;2015:481279.

    PubMed  PubMed Central  Google Scholar 

  51. Gnesin S, Canetti L, Adib S, Cherbuin N, Silva-Monteiro M, Bize P, et al. Partition model based 99mTc-MAA SPECT/CT predictive dosimetry compared to 90Y TOF PET/CT post treatment dosimetry in radioembolisation of hepatocellular carcinoma: a quantitative agreement comparison. J Nucl Med. 2016 Jun 15 [Epub ahead of print].

    Google Scholar 

  52. Riaz A, Memon K, Miller FH, et al. Role of the EASL, RECIST, and WHO response guidelines alone or in combination for hepatocellular carcinoma: radiologic-pathologic correlation. J Hepatol. 2011;54:695–704.

    Article  PubMed  Google Scholar 

  53. Wong CY, Qing F, Savin M, et al. Reduction of metastatic load to liver after intraarterial hepatic yttrium-90 radioembolization as evaluated by [18F]fluorodeoxyglucose positron emission tomographic imaging. J Vasc Interv Radiol. 2005;16:1101–6.

    Article  PubMed  Google Scholar 

  54. Miller FH, Keppke AL, Reddy D, Huang J, Jin J, Mulcahy MF, Salem R. Response of liver metastases after treatment with yttrium-90 microspheres: role of size, necrosis, and PET. AJR Am J Roentgenol. 2007;188:776–83.

    Article  PubMed  Google Scholar 

  55. Haug AR, Heinemann V, Bruns CJ, Hoffmann R, Jakobs T, Bartenstein P, Hacker M. 18F-FDG PET independently predicts survival in patients with cholangiocellular carcinoma treated with 90Y microspheres. Eur J Nucl Med Mol Imaging. 2011;38:1037–45.

    Article  CAS  PubMed  Google Scholar 

  56. Sabet A, Ahmadzadehfar H, Bruhman J, Sabet A, Meyer C, Wasmuth JC, et al. Survival in patients with hepatocellular carcinoma treated with 90Y-microsphere radioembolization. Prediction by 18F-FDG PET. Nuklearmedizin. 2014;53:39–45.

    Article  CAS  PubMed  Google Scholar 

  57. Hartenbach M, Weber S, Albert NL, Hartenbach S, Hirtl A, Zacherl MJ, et al. Evaluating treatment response of radioembolization in intermediate-stage hepatocellular carcinoma patients using 18F-fluoroethylcholine PET/CT. J Nucl Med. 2015;56:1661–6.

    Article  CAS  PubMed  Google Scholar 

  58. Zerizer I, Al-Nahhas A, Towey D, Tait P, Ariff B, Wasan H, et al. The role of early 18F-FDG PET/CT in prediction of progression-free survival after 90Y radioembolization: comparison with RECIST and tumour density criteria. Eur J Nucl Med Mol Imaging. 2012;39:1391–9.

    Article  CAS  PubMed  Google Scholar 

  59. Sabet A, Meyer C, Aouf A, Sabet A, Ghamari S, Pieper CC, et al. Early post-treatment FDG PET predicts survival after 90Y microsphere radioembolization in liver-dominant metastatic colorectal cancer. Eur J Nucl Med Mol Imaging. 2015;42:370–6.

    Article  CAS  PubMed  Google Scholar 

  60. Haug AR, Tiega Donfack BP, Trumm C, Zech CJ, Michl M, Laubender RP, et al. 18F-FDG PET/CT predicts survival after radioembolization of hepatic metastases from breast cancer. J Nucl Med. 2012;53:371–7.

    Article  CAS  PubMed  Google Scholar 

  61. Filippi L, Scopinaro F, Pelle G, Cianni R, Salvatori R, Schillaci O, et al. Molecular response assessed by 68Ga-DOTANOC and survival after 90Y microsphere therapy in patients with liver metastases from neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2016;43:432–40.

    Article  CAS  PubMed  Google Scholar 

  62. Fidelman N, Kerlan Jr RK. Transarterial chemoembolization and 90Y radioembolization for hepatocellular carcinoma: review of current applications beyond intermediate-stage disease. AJR Am J Roentgenol. 2015;205:742–52.

    Article  PubMed  Google Scholar 

  63. Braat AJ, Huijbregts JE, Molenaar IQ, Borel Rinkes IH, van den Bosch MA, Lam MG. Hepatic radioembolization as a bridge to liver surgery. Front Oncol. 2014;4:199.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lewandowski RJ, Donahue L, Chokechanachaisakul A, Kulik L, Mouli S, Caicedo J, et al. 90Y radiation lobectomy: outcomes following surgical resection in patients with hepatic tumors and small future liver remnant volumes. J Surg Oncol. 2016;114:99–105.

    Article  PubMed  Google Scholar 

  65. Teo JY, Allen Jr JC, Ng DC, Choo SP, Tai DW, Chang JP, et al. A systematic review of contralateral liver lobe hypertrophy after unilobar selective internal radiation therapy with Y90. HPB (Oxford). 2016;18:7–12.

    Article  Google Scholar 

  66. Johnson GE, Monsky WL, Valji K, Hippe DS, Padia SA. Yttrium-90 radioembolization as a salvage treatment following chemoembolization for hepatocellular carcinoma. J Vasc Interv Radiol. 2016;27:1123–9.

    Article  PubMed  Google Scholar 

  67. Chow PK, Poon DY, Khin MW, Singh H, Han HS, Goh AS, Asia-Pacific Hepatocellular Carcinoma Trials Group, et al. Multicenter phase II study of sequential radioembolization-sorafenib therapy for inoperable hepatocellular carcinoma. PLoS One. 2014;9(3), e90909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kulik L, Vouche M, Koppe S, Lewandowski RJ, Mulcahy MF, Ganger D, et al. Prospective randomized pilot study of Y90 +/− sorafenib as bridge to transplantation in hepatocellular carcinoma. J Hepatol. 2014;61:309–17.

    Article  CAS  PubMed  Google Scholar 

  69. Ricke J, Bulla K, Kolligs F, Peck-Radosavljevic M, Reimer P, Sangro B, et al. Safety and toxicity of radioembolization plus Sorafenib in advanced hepatocellular carcinoma: analysis of the European multicentre trial SORAMIC. Liver Int. 2015;35:620–6.

    Article  CAS  PubMed  Google Scholar 

  70. Lorenzin D, Pravisani R, Leo CA, Bugiantella W, Soardo G, Carnelutti A, et al. Complete remission of unresectable hepatocellular carcinoma after combined sorafenib and adjuvant yttrium-90 radioembolization. Cancer Biother Radiopharm. 2016;31:65–9.

    Article  CAS  PubMed  Google Scholar 

  71. Sangha BS, Nimeiri H, Hickey R, Salem R, Lewandowski RJ. Radioembolization as a treatment strategy for metastatic colorectal cancer to the liver: what can we learn from the SIRFLOX trial? Curr Treat Options Oncol. 2016;17:26.

    Article  PubMed  Google Scholar 

  72. Dutton SJ, Kenealy N, Love SB, Wasan HS, Sharma RA, FOXFIRE Protocol Development Group and the NCRI Colorectal Clinical Study Group. FOXFIRE protocol: an open-label, randomised, phase III trial of 5-fluorouracil, oxaliplatin and folinic acid (OxMdG) with or without interventional selective internal radiation therapy (SIRT) as first-line treatment for patients with unresectable liver-only or liver-dominant metastatic colorectal cancer. BMC Cancer. 2014;14:497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Geschwind JF, Salem R, Carr BI, et al. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma. Gastroenterology. 2004;127:S194–205.

    Article  CAS  PubMed  Google Scholar 

  74. Salem R, Lewandowsky RJ, Mulcahy MF, et al. Radioembolisation for hepatocellular carcinoma using Yttrium-90 microspheres. a comprehensive report of long term outcomes. Gastroenterology. 2010;138:52–64.

    Article  CAS  PubMed  Google Scholar 

  75. Kulik LM, Atassi B, van Holsbeeck L, et al. Yttrium-90 microspheres (TheraSphere®) treatment of unresectable hepatocellular carcinoma: downstaging to resection, RFA and bridge to transplantation. J Surg Oncol. 2006;94:572–86.

    Article  CAS  PubMed  Google Scholar 

  76. Tohme S, Sukato D, Chen HW, Amesur N, Zajko AB, Humar A, et al. Yttrium-90 radioembolization as a bridge to liver transplantation: a single-institution experience. J Vasc Interv Radiol. 2013;24:1632–8.

    Article  PubMed  Google Scholar 

  77. Abdelfattah MR, Al-Sebayel M, Broering D, Alsuhaibani H. Radioembolization using yttrium-90 microspheres as bridging and downstaging treatment for unresectable hepatocellular carcinoma before liver transplantation: initial single-center experience. Transplant Proc. 2015;47:408–11.

    Article  CAS  PubMed  Google Scholar 

  78. Kulik LM, Carr BI, Mulcahy MF, et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology. 2007;41:71–81.

    Article  Google Scholar 

  79. Ibrahim SM, Mulcahy MF, Lewandowski RJ, et al. Treatment of unresectable cholangiocarcinoma using yttrium-90 microspheres: results from a pilot study. Cancer. 2008;113:2119–28.

    Article  CAS  PubMed  Google Scholar 

  80. Al-Adra DP, Gill RS, Axford SJ, Shi X, Kneteman N, Liau SS. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis. Eur J Surg Oncol. 2015;41:120–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rayar M, Sulpice L, Edeline J, Garin E, Levi Sandri GB, Meunier B, et al. Intra-arterial yttrium-90 radioembolization combined with systemic chemotherapy is a promising method for downstaging unresectable huge intrahepatic cholangiocarcinoma to surgical treatment. Ann Surg Oncol. 2015;22:3102–8.

    Article  CAS  PubMed  Google Scholar 

  82. Boehm LM, Jayakrishnan TT, Miura JT, Zacharias AJ, Johnston FM, Turaga KK, et al. Comparative effectiveness of hepatic artery based therapies for unresectable intrahepatic cholangiocarcinoma. J Surg Oncol. 2015;111:213–20.

    Article  PubMed  Google Scholar 

  83. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273–81.

    Article  CAS  PubMed  Google Scholar 

  84. Welsh JS, Kennedy AS, Thomadsen B. Selective internal radiation therapy (SIRT) for liver metastases secondary to colorectal adenocarcinoma. Int J Radiat Oncol Biol Phys. 2006;66:S62–73.

    Article  CAS  PubMed  Google Scholar 

  85. Wong CY, Salem R, Raman S, Gates VL, Dworkin HJ. Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG PET: a comparison with CT or MRI. Eur J Nucl Med Mol Imaging. 2002;29:815–20.

    Article  CAS  PubMed  Google Scholar 

  86. Van den Eynde M, Flamen P, El Nakadi I, Liberale G, Delatte P, Larsimont D, Hendlisz A. Inducing resectability of chemotherapy refractory colorectal liver metastasis by radioembolization with yttrium-90 microspheres. Clin Nucl Med. 2008;33:697–9.

    Article  PubMed  Google Scholar 

  87. Gray B, Van Hazel G, Hope M, et al. Randomised trial of SIR-spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol. 2001;12:1711–20.

    Article  CAS  PubMed  Google Scholar 

  88. Goin JE, Dancey JE, Hermann GA, Sickles CJ, Roberts CA, MacDonald JS. Treatment of unresectable metastatic colorectal carcinoma to the liver with intrahepatic Y-90 microspheres: a dose-ranging study. World J Nucl Med. 2003;2:216–25.

    Google Scholar 

  89. Van Hazel G, Blackwell A, Anderson J, Price D, Moroz P, Bower G, Cardaci G, Gray B. Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol. 2004;88:78–85.

    Article  PubMed  CAS  Google Scholar 

  90. Sharma RA, Van Hazel GA, Morgan B, Berry DP, Blanshard K, Price D, Bower G, et al. Radioembolization of liver metastases from colorectal cancer using yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J Clin Oncol. 2007;25:1099–106.

    Article  CAS  PubMed  Google Scholar 

  91. van Hazel GA, Pavlakis N, Goldstein D, Olver IN, Tapner MJ, Price D, et al. Treatment of fluorouracil-refractory patients with liver metastases from colorectal cancer by using yttrium-90 resin microspheres plus concomitant systemic irinotecan chemotherapy. J Clin Oncol. 2009;27:4089–95.

    Article  PubMed  CAS  Google Scholar 

  92. Gibbs P, Heinemann V, Sharma NK, Findlay MPN, Ricke J, Gebski V, SIRFLOX Study Group, et al. SIRFLOX: randomized phase III trial comparing firstline mFOLFOX6 ± bevacizumab (bev) versus mFOLFOX6 + selective internal radiation therapy (SIRT) ± bev in patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol. 2015;33(Suppl):3502.

    Google Scholar 

  93. Hong K, McBride JD, Georgiades CS, et al. Salvage therapy for liver-dominant colorectal metastatic adenocarcinoma: comparison between transcatheter arterial chemoembolization versus yttrium-90 radioembolization. J Vasc Interv Radiol. 2009;20:360–7.

    Article  PubMed  Google Scholar 

  94. Saxena A, Bester L, Shan L, Perera M, Gibbs P, Meteling B, et al. A systematic review on the safety and efficacy of yttrium-90 radioembolization for unresectable, chemorefractory colorectal cancer liver metastases. J Cancer Res Clin Oncol. 2014;140:537–47.

    Article  CAS  PubMed  Google Scholar 

  95. Kennedy AS, Ball D, Cohen SJ, Cohn M, Coldwell DM, Drooz A, et al. Multicenter evaluation of the safety and efficacy of radioembolization in patients with unresectable colorectal liver metastases selected as candidates for 90Y resin microspheres. J Gastrointest Oncol. 2015;6:134–42.

    PubMed  PubMed Central  Google Scholar 

  96. Rhee TK, Lewandowski RJ, Liu DM, et al. 90Y radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience. Ann Surg. 2008;247:1029–35.

    Article  PubMed  Google Scholar 

  97. Kennedy AS, Dezarn WA, McNeillie P, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in patients. Am J Clin Oncol. 2008;31:271–9.

    Article  PubMed  Google Scholar 

  98. Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38:1393–406.

    Article  CAS  PubMed  Google Scholar 

  99. Shepherd FA, Rotstein LE, Houle S, Yip TC, Paul K, Sniderman KW. A phase I dose escalation trial of yttrium-90 microspheres in the treatment of primary hepatocellular carcinoma. Cancer. 1992;70:2250–4.

    Article  CAS  PubMed  Google Scholar 

  100. Yan ZP, Lin G, Zhao HY, Dong YH. An experimental study and clinical pilot trials on yttrium-90 glass microspheres through the hepatic artery for treatment of primary liver cancer. Cancer. 1993;72:3210–5.

    Article  CAS  PubMed  Google Scholar 

  101. Lau WY, Leung WT, Ho S, Cotton LA, Ensminger WD, Shapiro B. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer. 1994;70:994–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Andrews JC, Walker SC, Ackermann RJ, Cotton LA, Ensminger WD, Shapiro B. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med. 1994;35:1637–44.

    CAS  PubMed  Google Scholar 

  103. Mahnken AH. Current status of transarterial radioembolization. World J Radiol. 2016;8:449–59.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Boni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Boni, G., Guidoccio, F., Volterrani, D., Mariani, G. (2016). Radionuclide Therapy of Tumors of the Liver and Biliary Tract. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Radionuclide Therapy of Tumors of the Liver and Biliary Tract
    Published:
    05 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_51-2

  2. Original

    Radionuclide Therapy of Tumors of the Liver and Biliary Tract
    Published:
    05 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_51-1