Skip to main content

Diagnostic Applications of Nuclear Medicine: Neuroendocrine Tumors

  • 418 Accesses

Abstract

Neuroendocrine tumors (NETs) originate from neuroendocrine cells ubiquitously distributed throughout the body and occur mainly in the gastrointestinal and bronchopulmonary system. They are rare, are mostly sporadic, and comprise 0.66% of all neoplasia. Their incidence/prevalence is increasing based upon more sophisticated diagnostic strategies. Despite the majority being indolent, they are frequently metastatic at diagnosis. As a consequence their prognosis is often limited.

The European Neuroendocrine Tumor Society (ENETS) diagnostic and prognostic stratification criteria are based on histological typing, differentiation, grading (Ki67), and TNM staging. Although the general application of Ki67 is controversial, it remains embedded in therapeutic decision-making pending the implementation of molecular stratification systems.

Surgery is the only curative option. It is however effective in ~20% given the metastatic status of most lesions. Other therapeutic options include somatostatin analogs, interferon, “targeted” drugs, and peptide receptor radionuclide radiotherapy (PRRT).

NETs present a diagnostic and therapeutic challenge as their clinical presentation is protean, nonspecific, and late with hepatic metastases often present. Imaging plays a fundamental role in diagnosis, staging, treatment selection, and follow-up. Current modalities include morphologic techniques (CT, MRI), transabdominal ultrasound (US), and endoscopic (EUS) and intraoperative US (IOUS). Molecular imaging includes scintigraphy (111In-pentetreotide or 99mTc-HYNIC-Tyr3-octreotide), and, more recently, PET with 68Ga-labeled somatostatin analogs (SSA), 18F-DOPA and [11C]5-HTP; catecholamine metabolism is usually imaged with 123I-metaiodobenzylguanidine. [18F]FDG PET/CT has a prognostic role. A role for somatostatin receptor antagonists (better target/background ratio) as theranostics is currently proposed.

The major unmet needs are the development of more inclusive criteria for therapy monitoring, the validation of the recent PET techniques, and the integration of molecular biologic and metabolic information.

This is a preview of subscription content, log in via an institution.

Abbreviations

[11C]5-HTTP:

[11C]5-Hydroxytryptophan

18F-DOPA:

2-18F-Fluoro-l-3,4-dihydroxyphenylalanine

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

5-HIAA:

5-Hydroxyindoleacetic acid, an end-metabolite of serotonin

5-HT:

5-Hydroxytriptamin, also known as serotonin

AADC:

Aromatic L-amino acid decarboxylase

AC:

Atypical carcinoid

ACTH:

Adrenocorticotropin hormone

AJCC:

American Joint Committee on Cancer

APUD:

Amine precursor uptake and decarboxylation

AUC:

Area under the curve

BP:

Bronchopulmonary

CEUS:

Contrast-enhanced ultrasonography

CgA:

Chromogranin A, a tumor-associated marker for neuroendocrine tumors

CT:

X-ray computed tomography

CTC:

Circulating tumor cell

CTGF:

Connective tissue growth factor, also known as CCN2

DOTA:

2-(4-Isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (macrocyclic coupling agent to label compounds of biological interest with metal radionuclides)

DOTANOC:

DOTA-Nal3-octreotide

DOTATATE:

DOTA-Tyr3-Thr8-octreotide

DOTATOC:

DOTA-Tyr3-octreotide

DTPA:

Diethylenetriaminepentaacetic acid

DWI:

Diffusion-weighted magnetic resonance imaging, an MR technique used to detect changes in the distribution of water molecules in selected regions

EANM:

European Association of Nuclear Medicine

EC:

Enterochromaffin

ECL:

Enterochromaffin-like

EDDA:

Ethylenediamine-N,N'-bis(2-hydroxyphenyl)acetic acid

ENETS:

European Neuroendocrine Tumor Society

EPAS1:

Gene encoding for the hypoxia-inducible factor 2-alpha (HIF-2α); the gene is also known as HIF2A

EUS:

Endoscopic ultrasonography

FNAC:

Fine needle aspiration cytology

FSH:

Follicle-stimulating hormone

GEP:

Originated in the gastroenteropancreatic tract

GH-RH:

Growth-hormone releasing hormone

GH:

Growth hormone

GIST:

Gastrointestinal stromal tumor

GLP:

Exendin, a glucagon-like protein

HPF:

High-power field in optical microscopy

HYNIC:

Hydrazidonicotinic acid/Hydrazinonicotinamide

IOUS:

Intraoperative ultrasonography

LCNEC:

Large-cell neuroendocrine carcinoma

LH:

Luteinizing hormone

M:

Metastasis status according to the AJCC/UICC TNM staging system

MAX:

Gene encoding for the myc-associated factor X

MDCT:

Multi-detector X-ray computed tomography

MEN:

Multiple endocrine neoplasia

MIBG:

meta-Iodobenzylguanidine

MRI:

Magnetic resonance imaging

N:

Lymph node status according to the AJCC/UICC TNM staging system

NE:

Neuroendocrine

NEN:

Neuroendocrine neoplasia

NET:

Neuroendocrine tumor

NF1:

Gene encoding for neurofibromin

NIH:

United States National Institutes of Health

NKA:

Gene encoding for Na+/K+ ATPase

NSE:

Neuron-specific enolase

OS:

Overall survival

p53:

Tumor protein p53, also known as cellular tumor antigen p53, phosphoprotein p53, tumor suppressor p53, antigen NY-CO-13, or transformation-related protein 53 (TRP53)

PCC:

Pheochromocytoma

PCR:

Polymerase chain reaction

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomograhy

PFS:

Progression-free survival

PGL:

Paraganglioma

PPGL:

Pheochromocytoma and paraganglioma

PRRT:

Peptide receptor radionuclide therapy

PTH-RP:

Parathyroid-hormone related protein

PTH:

Parathyroid hormone

qPCR:

Quantitative PCR

RECIST:

Response evaluation criteria in solid tumors

RET:

Proto-oncogene encoding for a receptor tyrosine kinase

SCLC:

Small-cell lung cancer

SDHB:

Gene encoding for succinate dehydrogenase B

SDHD:

Gene encoding for succinate dehydrogenase D

SEER:

Surveillance, Epidemiology, and End Results, a tumor registry of the National Institutes of Health

SIADH:

Syndrome of inappropriate antidiuretic hormone secretion

SNMMI:

Society of Nuclear Medicine and Molecular Imaging

SPECT:

Single-photon computed tomography

SPECT/CT:

Single-photon computed tomography/Computed tomography

SRS:

Somatostatin receptor scintigraphy

SSA:

Somatostatin analog

SSTR:

Somatostatin receptor

SUV:

Standardized uptake value

SUVmax :

Standardized uptake value at point of maximum

T:

Tumor status according to the AJCC/UICC TNM staging system

TC:

Typical carcinoid

TMEM127:

Gene encoding for a protein that acts as a tumor suppressor

TNM:

AJCC/UICC staging system based on parameters “T” (tumor status), “N” (lymph node status), and “M” (distant metastasis status)

TSC:

Gene encoding for the tuberous sclerosis factor, also known as hamartin

TSH:

Thyroid stimulating hormone

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

US:

Ultrasonography

VHL:

von Hippel-Lindau

VIP:

Vasoactive intestinal peptide

VMAT:

Gene encoding for the vesicular monoamine transporter

WDHA:

A syndrome characterized by watery diarrhea, hypokalemia, and achlorhydria

WHO:

World Health Organization

References

  1. Clark OH, Benson 3rd AB, Berlin JD, Choti MA, Doherty GM, Engstrom PF, et al. NCCN clinical practice guidelines in oncology: neuroendocrine tumors. J Natl Compr Cancer Netw: JNCCN. 2009;7(7):712–47.

    Article  CAS  PubMed  Google Scholar 

  2. Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9(1):61–72.

    Article  CAS  PubMed  Google Scholar 

  3. Duque M, Modlin IM, Gupta A, Saif MW. Biomarkers in neuroendocrine tumors. JOP: J Pancreas. 2013;14(4):372–6.

    Google Scholar 

  4. Modlin IM, Drozdov I, Kidd M. The identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood. PLoS ONE. 2013;8(5):e63364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kidd M, Drozdov I, Modlin I. Blood and tissue NET gene cluster analysis correlate, define Hallmarks and predict disease status. Endocr Relat Cancer. 2015;22(4):561–75.

    Article  CAS  PubMed  Google Scholar 

  6. Wild D, Fani M, Fischer R, Del Pozzo L, Kaul F, Krebs S, et al. Comparison of somatostatin receptor agonist and antagonist for Peptide receptor radionuclide therapy: a pilot study. J Nucl Med. 2014;55(8):1248–52.

    Article  CAS  PubMed  Google Scholar 

  7. Modlin IM, Latich I, Zikusoka M, Kidd M, Eick G, Chan AK. Gastrointestinal carcinoids: the evolution of diagnostic strategies. J Clin Gastroenterol. 2006;40(7):572–82.

    Article  PubMed  Google Scholar 

  8. Gotthardt M, Dirkmorfeld LM, Wied MU, Rinke A, Behe MP, Schlieck A, et al. Influence of somatostatin receptor scintigraphy and CT/MRI on the clinical management of patients with gastrointestinal neuroendocrine tumors: an analysis in 188 patients. Digestion. 2003;68(2–3):80–5.

    CAS  PubMed  Google Scholar 

  9. Oberg K. Diagnostic work-up of gastroenteropancreatic neuroendocrine tumors. Clinics (Sao Paulo). 2012;67 Suppl 1:109–12.

    Article  Google Scholar 

  10. Sundin A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol. 2012;26(6):803–18.

    Article  PubMed  Google Scholar 

  11. Bodei L, Sundin A, Kidd M, Prasad V, Modlin IM. The status of neuroendocrine tumor imaging: from darkness to light? Neuroendocrinology. 2015;101(1):1–17.

    Google Scholar 

  12. Langley K. The neuroendocrine concept today. Ann N Y Acad Sci. 1994;733:1–17.

    Article  CAS  PubMed  Google Scholar 

  13. Pearse AG. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem. 1969;17(5):303–13.

    Article  CAS  PubMed  Google Scholar 

  14. Kloppel G. Oberndorfer and his successors: from carcinoid to neuroendocrine carcinoma. Endocr Pathol. 2007;18(3):141–4.

    Article  PubMed  Google Scholar 

  15. Polak JM, Bloom SR. The diffuse neuroendocrine system. Studies of this newly discovered controlling system in health and disease. J Histochem Cytochem. 1979;27(10):1398–400.

    Article  CAS  PubMed  Google Scholar 

  16. Rehfeld JF. The new biology of gastrointestinal hormones. Physiol Rev. 1998;78(4):1087–108.

    CAS  PubMed  Google Scholar 

  17. Polak JM, Bloom SR. Regulatory peptides of the gastrointestinal and respiratory tracts. Arch Int Pharmacodyn Ther. 1986;280(2 Suppl):16–49.

    CAS  PubMed  Google Scholar 

  18. Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology. 2008;135(5):1469–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97(4):934–59.

    Article  PubMed  Google Scholar 

  20. The US National Cancer Institute, Surveillance Epidemiology and End Results (SEER) data base, 1973–2004. http://seer.cancer.gov/

  21. Modlin IM, Champaneria MC, Chan AK, Kidd M. A three-decade analysis of 3,911 small intestinal neuroendocrine tumors: the rapid pace of no progress. Am J Gastroenterol. 2007;102(7):1464–73.

    Article  PubMed  Google Scholar 

  22. Berge T, Linell F. Carcinoid tumours. Frequency in a defined population during a 12-year period. Acta Pathol Microbiol Scand A Pathol. 1976;84(4):322–30.

    CAS  Google Scholar 

  23. Gustafsson BI, Kidd M, Modlin IM. Neuroendocrine tumors of the diffuse neuroendocrine system. Curr Opin Oncol. 2008;20(1):1–12.

    Article  PubMed  Google Scholar 

  24. Beard CM, Sheps SG, Kurland LT, Carney JA, Lie JT. Occurrence of pheochromocytoma in Rochester, Minnesota, 1950 through 1979. Mayo Clin Proc. 1983;58(12):802–4.

    CAS  PubMed  Google Scholar 

  25. Mittendorf EA, Evans DB, Lee JE, Perrier ND. Pheochromocytoma: advances in genetics, diagnosis, localization, and treatment. Hematol Oncol Clin North Am. 2007;21(3):509–25.

    Article  PubMed  Google Scholar 

  26. Williams ED, Sandler M. The classification of carcinoid tum ours. Lancet. 1963;1(7275):238–9.

    Article  CAS  PubMed  Google Scholar 

  27. DeLellis R, Lloyd R, Heitz P, editors EC. World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press; 2004.

    Google Scholar 

  28. Rorstad O. Prognostic indicators for carcinoid neuroendocrine tumors of the gastrointestinal tract. J Surg Oncol. 2005;89(3):151–60.

    Article  PubMed  Google Scholar 

  29. Hotta K, Shimoda T, Nakanishi Y, Saito D. Usefulness of Ki-67 for predicting the metastatic potential of rectal carcinoids. Pathol Int. 2006;56(10):591–6.

    Article  PubMed  Google Scholar 

  30. Ruszniewski P, Delle Fave G, Cadiot G, Komminoth P, Chung D, Kos-Kudla B, et al. Well-differentiated gastric tumors/carcinomas. Neuroendocrinology. 2006;84(3):158–64.

    Article  CAS  PubMed  Google Scholar 

  31. Rindi G, Kloppel G, Couvelard A, Komminoth P, Korner M, Lopes JM, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch Int J Pathol. 2007;451(4):757–62.

    Article  CAS  Google Scholar 

  32. Rindi G. The ENETS guidelines: the new TNM classification system. Tumori. 2010;96(5):806–9.

    PubMed  Google Scholar 

  33. Bosman FT. WHO classification of tumours of the digestive system. 4th ed. Lyon: IARC Press; 2010.

    Google Scholar 

  34. Kloppel G, Couvelard A, Perren A, Komminoth P, McNicol AM, Nilsson O, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: towards a standardized approach to the diagnosis of gastroenteropancreatic neuroendocrine tumors and their prognostic stratification. Neuroendocrinology. 2009;90(2):162–6.

    Article  PubMed  CAS  Google Scholar 

  35. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311–22.

    Article  CAS  PubMed  Google Scholar 

  36. MacCallum DE, Hall PA. The location of pKi67 in the outer dense fibrillary compartment of the nucleolus points to a role in ribosome biogenesis during the cell division cycle. J Pathol. 2000;190(5):537–44.

    Article  CAS  PubMed  Google Scholar 

  37. Klimstra DS, Modlin IR, Adsay NV, Chetty R, Deshpande V, Gonen M, et al. Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set. Am J Surg Pathol. 2010;34(3):300–13.

    Article  PubMed  Google Scholar 

  38. Bajetta E, Catena L, Procopio G, Bichisao E, Ferrari L, Della Torre S, et al. Is the new WHO classification of neuroendocrine tumours useful for selecting an appropriate treatment? Ann Oncol. 2005;16(8):1374–80. doi:10.1093/annonc/mdi258.

    Article  CAS  PubMed  Google Scholar 

  39. Beasley MB, Brambilla E, Travis WD. The 2004 World Health Organization classification of lung tumors. Semin Roentgenol. 2005;40(2):90–7.

    Article  PubMed  Google Scholar 

  40. Travis WD, Colby TV, Corrin B, Shimosato Y, Brambilla E. Histological classification of lung and pleural tumours, Histological typing of lung and pleural tumours. Berlin/Heidelberg: Springer; 1999. p. 21–4.

    Book  Google Scholar 

  41. Rindi G, Klersy C, Inzani F, Fellegara G, Ampollini L, Ardizzoni A, et al. Grading the neuroendocrine tumors of the lung: an evidence-based proposal. Endocr Relat Cancer. 2014;21(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  42. Caplin ME, Baudin E, Ferolla P, Filosso P, Garcia-Yuste M, Lim E, et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann Oncol. 2015;26(8):1604–20.

    Article  CAS  PubMed  Google Scholar 

  43. Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol. 2015;11(2):101–11.

    Article  CAS  PubMed  Google Scholar 

  44. Goldstein RE, O’Neill Jr JA, Holcomb 3rd GW, Morgan 3rd WM, Neblett 3rd WW, Oates JA, et al. Clinical experience over 48 years with pheochromocytoma. Ann Surg. 1999;229(6):755–64. discussion 64–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu D, Tischler AS, Lloyd RV, DeLellis RA, de Krijger R, van Nederveen F, et al. Observer variation in the application of the pheochromocytoma of the Adrenal Gland Scaled Score. Am J Surg Pathol. 2009;33(4):599–608.

    Article  PubMed  Google Scholar 

  46. Ilias I, Pacak K. A clinical overview of pheochromocytomas/paragangliomas and carcinoid tumors. Nucl Med Biol. 2008;35 Suppl 1:S27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Benn DE, Robinson BG, Clifton-Bligh RJ. 15 years of paraganglioma: clinical manifestations of paraganglioma syndromes types 1–5. Endocr Relat Cancer. 2015;22(4):T91–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, Chabre O, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol. 2005;23(34):8812–8.

    Article  CAS  PubMed  Google Scholar 

  49. Brouwers FM, Eisenhofer G, Tao JJ, Kant JA, Adams KT, Linehan WM, et al. High frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing. J Clin Endocrinol Metab. 2006;91(11):4505–9.

    Article  CAS  PubMed  Google Scholar 

  50. Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB. The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer. 2007;14(3):569–85.

    Article  CAS  PubMed  Google Scholar 

  51. Elder EE, Elder G, Larsson C. Pheochromocytoma and functional paraganglioma syndrome: no longer the 10% tumor. J Surg Oncol. 2005;89(3):193–201.

    Article  PubMed  Google Scholar 

  52. Faiss S, Scherübl H, Riecken EO, Wiedenmann B. Drug therapy in metastatic neuroendocrine tumors of the gastroenteropancreatic system. In: Kreuser E-D, Schlag PM, editors. New perspectives in molecular and clinical management of gastrointestinal tumors. Berlin/Heidelberg: Springer; 1996. p. 193–207.

    Chapter  Google Scholar 

  53. Sundin A, Vullierme MP, Kaltsas G, Plockinger U, Mallorca Consensus Conference Participants, European Neuroendocrine Tumor Society. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological examinations. Neuroendocrinology. 2009;90(2):167–83.

    Article  CAS  PubMed  Google Scholar 

  54. Pahlavan PS, Kanthan R. Goblet cell carcinoid of the appendix. World J Surg Oncol. 2005;3:36.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Daddi N, Urbani M, Semeraro A, Capozzi R, Scarpelli G, Avenia N, et al. Surgical treatment of well differentiated neuroendocrine tumours of the lung. G Chir. 2008;29(5):246–9.

    CAS  PubMed  Google Scholar 

  56. Ferolla P, Faggiano A, Avenia N, Milone F, Masone S, Giampaglia F, et al. Epidemiology of non-gastroenteropancreatic (neuro)endocrine tumours. Clin Endocrinol. 2007;66(1):1–6.

    CAS  Google Scholar 

  57. Fink G, Krelbaum T, Yellin A, Bendayan D, Saute M, Glazer M, et al. Pulmonary carcinoid: presentation, diagnosis, and outcome in 142 cases in Israel and review of 640 cases from the literature. Chest. 2001;119(6):1647–51.

    Article  CAS  PubMed  Google Scholar 

  58. Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Phaeochromocytoma. Lancet. 2005;366(9486):665–75.

    Article  PubMed  Google Scholar 

  59. Oberg K. Circulating biomarkers in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer. 2011;18 Suppl 1:S17–25.

    Article  CAS  PubMed  Google Scholar 

  60. Modlin IM, Kidd M, Bodei L, Drozdov I, Aslanian H. The clinical utility of a novel blood-based multi-transcriptome assay for the diagnosis of neuroendocrine tumors of the gastrointestinal tract. Am J Gastroenterol. 2015;110(8):1223–32.

    Article  CAS  PubMed  Google Scholar 

  61. Modlin IM, Gustafsson BI, Moss SF, Pavel M, Tsolakis AV, Kidd M. Chromogranin A – biological function and clinical utility in neuro endocrine tumor disease. Ann Surg Oncol. 2010;17(9):2427–43.

    Article  PubMed  Google Scholar 

  62. Nobels FR, Kwekkeboom DJ, Coopmans W, Schoenmakers CH, Lindemans J, De Herder WW, et al. Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-specific enolase and the alpha-subunit of glycoprotein hormones. J Clin Endocrinol Metab. 1997;82(8):2622–8.

    CAS  PubMed  Google Scholar 

  63. Oberg K, Modlin IM, de Herder WW, Pavel M, Klimstra DS, Frilling A, et al. Biomarkers for neuroendocrine tumor disease: a Delphic Consensus assessment of multianalytes, genomics, circulating cells and monoanalytes. Lancet Oncol. 2015;16(9):e435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kidd M, Drozdov I, Modlin I. Blood and tissue neuroendocrine tumor gene cluster analysis correlate, define hallmarks and predict disease status. Endocr Relat Cancer. 2015;22(4):561–75.

    Article  CAS  PubMed  Google Scholar 

  65. Walenkamp A, Crespo G, Fierro Maya F, Fossmark R, Igaz P, Rinke A, et al. Hallmarks of gastrointestinal neuroendocrine tumours: implications for treatment. Endocr Relat Cancer. 2014;21(6):R445–60.

    Article  PubMed  CAS  Google Scholar 

  66. Li SC, Essaghir A, Martijn C, Lloyd RV, Demoulin JB, Oberg K, et al. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod Pathol. 2013;26(5):685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Modlin I, Kidd M, Drozdov I, Aslanian H, Alaimo D, Callahan S et al., editors. A PCR-Based multigene transcript analysis blood test outperforms Chromogranin A in the detection of gastrointestinal and pancreatic neuroendocrine tumors and is unaffected by PPI use or hypertension. Neuroendocrinology: Karger Allschwilerstrasse 10, CH-4009, Basel, Switzerland; 2014.

    Google Scholar 

  68. Modlin IM, Frilling A, Salem RR, Alaimo D, Drymousis P, Wasan HS, et al. Blood measurement of neuroendocrine gene transcripts defines the effectiveness of operative resection and ablation strategies. Surgery. 2016;159(1):336–47.

    Article  PubMed  Google Scholar 

  69. Cwikla JB, Bodei L, Kolasinska-Cwikla A, Sankowski A, Modlin IM, Kidd M. Circulating transcript analysis (NETest) in GEP-NETs treated with somatostatin analogs defines therapy. J Clin Endocrinol Metab. 2015; jc20152792.

    Google Scholar 

  70. Bodei L, Kidd M, Modlin IM, Prasad V, Severi S, Ambrosini V, et al. Gene transcript analysis blood values correlate with Ga-DOTA-somatostatin analog (SSA) PET/CT imaging in neuroendocrine tumors and can define disease status. Eur J Nucl Med Mol Imaging. 2016;43(5):839–51.

    Article  CAS  PubMed  Google Scholar 

  71. Pavel M, Jann H, Prasad V, Drozdov I, Modlin IM, Kidd M. NET blood transcript analysis defines the crossing of the clinical rubicon: when stable disease becomes progressive. Neuroendocrinology. 2017;104(2):170–182.

    Google Scholar 

  72. Grossman A, Pacak K, Sawka A, Lenders JW, Harlander D, Peaston RT, et al. Biochemical diagnosis and localization of pheochromocytoma: can we reach a consensus? Ann N Y Acad Sci. 2006;1073:332–47.

    Article  CAS  PubMed  Google Scholar 

  73. Boomsma F, Bhaggoe UM, Man in ‘t Veld AJ, Schalekamp MADH. Sensitivity and specificity of a new ELISA method for determination of chromogranin A in the diagnosis of pheochromocytoma and neuroblastoma. Clin Chim Acta. 1995;239(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  74. Eisenhofer G, Goldstein DS, Walther MM, Friberg P, Lenders JW, Keiser HR, et al. Biochemical diagnosis of pheochromocytoma: how to distinguish true- from false-positive test results. J Clin Endocrinol Metab. 2003;88(6):2656–66.

    Article  CAS  PubMed  Google Scholar 

  75. Darr R, Pamporaki C, Peitzsch M, Miehle K, Prejbisz A, Peczkowska M, et al. Biochemical diagnosis of phaeochromocytoma using plasma-free normetanephrine, metanephrine and methoxytyramine: importance of supine sampling under fasting conditions. Clin Endocrinol. 2014;80(4):478–86.

    Article  CAS  Google Scholar 

  76. Ichikawa T, Peterson MS, Federle MP, Baron RL, Haradome H, Kawamori Y, et al. Islet cell tumor of the pancreas: biphasic CT versus MR imaging in tumor detection. Radiology. 2000;216(1):163–71.

    Article  CAS  PubMed  Google Scholar 

  77. Rappeport ED, Hansen CP, Kjaer A, Knigge U. Multidetector computed tomography and neuroendocrine pancreaticoduodenal tumors. Acta Radiol. 2006;47(3):248–56.

    Article  CAS  PubMed  Google Scholar 

  78. Sahani DV, Bonaffini PA, Fernandez-Del Castillo C, Blake MA. Gastroenteropancreatic neuroendocrine tumors: role of imaging in diagnosis and management. Radiology. 2013;266(1):38–61.

    Article  PubMed  Google Scholar 

  79. Khashab MA, Yong E, Lennon AM, Shin EJ, Amateau S, Hruban RH, et al. EUS is still superior to multidetector computerized tomography for detection of pancreatic neuroendocrine tumors. Gastrointest Endosc. 2011;73(4):691–6.

    Article  PubMed  Google Scholar 

  80. Johanssen S, Boivin M, Lochs H, Voderholzer W. The yield of wireless capsule endoscopy in the detection of neuroendocrine tumors in comparison with CT enteroclysis. Gastrointest Endosc. 2006;63(4):660–5.

    Article  PubMed  Google Scholar 

  81. Kamaoui I, De-Luca V, Ficarelli S, Mennesson N, Lombard-Bohas C, Pilleul F. Value of CT enteroclysis in suspected small-bowel carcinoid tumors. AJR Am J Roentgenol. 2010;194(3):629–33.

    Article  PubMed  Google Scholar 

  82. Van Weyenberg SJ, Meijerink MR, Jacobs MA, Van der Peet DL, Van Kuijk C, Mulder CJ, et al. MR enteroclysis in the diagnosis of small-bowel neoplasms. Radiology. 2010;254(3):765–73.

    Article  PubMed  Google Scholar 

  83. Masselli G, Polettini E, Casciani E, Bertini L, Vecchioli A, Gualdi G. Small-bowel neoplasms: prospective evaluation of MR enteroclysis. Radiology. 2009;251(3):743–50.

    Article  PubMed  Google Scholar 

  84. Buetow PC, Parrino TV, Buck JL, Pantongrag-Brown L, Ros PR, Dachman AH, et al. Islet cell tumors of the pancreas: pathologic-imaging correlation among size, necrosis and cysts, calcification, malignant behavior, and functional status. AJR Am J Roentgenol. 1995;165(5):1175–9.

    Article  CAS  PubMed  Google Scholar 

  85. Kim SH, Lee JM, Lee JY, Han JK, Choi BI. Contrast-enhanced sonography of intrapancreatic accessory spleen in six patients. AJR Am J Roentgenol. 2007;188(2):422–8.

    Article  PubMed  Google Scholar 

  86. Buckley JA, Jones B, Fishman EK. Small bowel cancer. Imaging features and staging. Radiol Clin North Am. 1997;35(2):381–402.

    CAS  PubMed  Google Scholar 

  87. Horton KM, Kamel I, Hofmann L, Fishman EK. Carcinoid tumors of the small bowel: a multitechnique imaging approach. AJR Am J Roentgenol. 2004;182(3):559–67.

    Article  PubMed  Google Scholar 

  88. Seigel RS, Kuhns LR, Borlaza GS, McCormick TL, Simmons JL. Computed tomography and angiography in ileal carcinoid tumor and retractile mesenteritis. Radiology. 1980;134(2):437–40.

    Article  CAS  PubMed  Google Scholar 

  89. Ilias I, Pacak K. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab. 2004;89(2):479–91.

    Article  CAS  PubMed  Google Scholar 

  90. Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17(1):R53–73.

    Article  CAS  PubMed  Google Scholar 

  91. Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  92. Orlefors H, Sundin A, Garske U, Juhlin C, Oberg K, Skogseid B, et al. Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab. 2005;90(6):3392–400.

    Article  CAS  PubMed  Google Scholar 

  93. Koopmans KP, de Vries EG, Kema IP, Elsinga PH, Neels OC, Sluiter WJ, et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol. 2006;7(9):728–34.

    Article  CAS  PubMed  Google Scholar 

  94. Wafelman AR, Hoefnagel CA, Maes RA, Beijnen JH. Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interactions, cytotoxicity and dosimetry. Eur J Nucl Med. 1994;21(6):545–59.

    Article  CAS  PubMed  Google Scholar 

  95. Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;13(7):513–21.

    Article  CAS  PubMed  Google Scholar 

  96. Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, et al. 131I/123I-metaiodobenzylguanidine (MIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2003;30(12):Bp132–9.

    PubMed  Google Scholar 

  97. Mankoff DA, Eary JF, Link JM, Muzi M, Rajendran JG, Spence AM, et al. Tumor-specific positron emission tomography imaging in patients: [18F] fluorodeoxyglucose and beyond. Clin Cancer Res. 2007;13(12):3460–9.

    Article  CAS  PubMed  Google Scholar 

  98. Gibril F, Reynolds JC, Doppman JL, Chen CC, Venzon DJ, Termanini B, et al. Somatostatin receptor scintigraphy: its sensitivity compared with that of other imaging methods in detecting primary and metastatic gastrinomas. A prospective study. Ann Intern Med. 1996;125(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  99. Chiti A, Fanti S, Savelli G, Romeo A, Bellanova B, Rodari M, et al. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. Eur J Nucl Med. 1998;25(10):1396–403.

    Article  CAS  PubMed  Google Scholar 

  100. Krausz Y, Keidar Z, Kogan I, Even-Sapir E, Bar-Shalom R, Engel A, et al. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumours. Clin Endocrinol. 2003;59(5):565–73.

    Article  Google Scholar 

  101. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20(8):716–31.

    Article  CAS  PubMed  Google Scholar 

  102. Parisella MG, Chianelli M, D’Alessandria C, Todino V, Mikolajczak R, Papini E, et al. Clinical indications to the use of 99mTc-EDDA/HYNIC-TOC to detect somatostatin receptor-positive neuroendocrine tumors. Q J Nucl Med Mol Imaging. 2012;56(1):90–8.

    CAS  PubMed  Google Scholar 

  103. Teunissen JJ, Kwekkeboom DJ, Valkema R, Krenning EP. Nuclear medicine techniques for the imaging and treatment of neuroendocrine tumours. Endocr Relat Cancer. 2011;18 Suppl 1:S27–51.

    Article  CAS  PubMed  Google Scholar 

  104. Schillaci O, Spanu A, Scopinaro F, Falchi A, Danieli R, Marongiu P, et al. Somatostatin receptor scintigraphy in liver metastasis detection from gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2003;44(3):359–68.

    CAS  PubMed  Google Scholar 

  105. Perri M, Erba P, Volterrani D, Lazzeri E, Boni G, Grosso M, et al. Octreo-SPECT/CT imaging for accurate detection and localization of suspected neuroendocrine tumors. Q J Nucl Med Mol Imaging. 2008;52(4):323–33.

    CAS  PubMed  Google Scholar 

  106. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-Octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48(4):508–18.

    Article  CAS  PubMed  Google Scholar 

  107. de Mestier L, Dromain C, d’Assignies G, Scoazec JY, Lassau N, Lebtahi R, et al. Evaluating digestive neuroendocrine tumor progression and therapeutic responses in the era of targeted therapies: state of the art. Endocr Relat Cancer. 2014;21(3):R105–20.

    Article  PubMed  CAS  Google Scholar 

  108. Gopinath G, Ahmed A, Buscombe JR, Dickson JC, Caplin ME, Hilson AJ. Prediction of clinical outcome in treated neuroendocrine tumours of carcinoid type using functional volumes on 111In-pentetreotide SPECT imaging. Nucl Med Commun. 2004;25(3):253–7.

    Article  PubMed  Google Scholar 

  109. Kumar A, Jindal T, Dutta R, Kumar R. Functional imaging in differentiating bronchial masses: an initial experience with a combination of 18F-FDG PET-CT scan and 68Ga DOTA-TOC PET-CT scan. Ann Nucl Med. 2009;23(8):745–51.

    Article  PubMed  Google Scholar 

  110. Tsagarakis S, Christoforaki M, Giannopoulou H, Rondogianni F, Housianakou I, Malagari C, et al. A reappraisal of the utility of somatostatin receptor scintigraphy in patients with ectopic adrenocorticotropin Cushing’s syndrome. J Clin Endocrinol Metab. 2003;88(10):4754–8.

    Article  CAS  PubMed  Google Scholar 

  111. Rodriguez JA, Meyers MO, Jacome TH, Failla P, Harrison Jr LH. Intraoperative detection of a bronchial carcinoid with a radiolabeled somatostatin analog. Chest. 2002;121(3):985–8.

    Article  PubMed  Google Scholar 

  112. Bombardieri E, Ambrosini V, Aktolun C, Baum RP, Bishof-Delaloye A, Del Vecchio S, et al. 111In-pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37(7):1441–8.

    Article  PubMed  Google Scholar 

  113. Cecchin D, Lumachi F, Marzola MC, Opocher G, Scaroni C, Zucchetta P, et al. A meta-iodobenzylguanidine scintigraphic scoring system increases accuracy in the diagnostic management of pheochromocytoma. Endocr Relat Cancer. 2006;13(2):525–33.

    Article  CAS  PubMed  Google Scholar 

  114. Furuta N, Kiyota H, Yoshigoe F, Hasegawa N, Ohishi Y. Diagnosis of pheochromocytoma using [123I]-compared with [131I]-metaiodobenzylguanidine scintigraphy. Int J Urol: Off J Jpn Urol Assoc. 1999;6(3):119–24.

    Article  CAS  Google Scholar 

  115. Nakatani T, Hayama T, Uchida J, Nakamura K, Takemoto Y, Sugimura K. Diagnostic localization of extra-adrenal pheochromocytoma: comparison of 123I-MIBG imaging and 131I-MIBG imaging. Oncol Rep. 2002;9(6):1225–7.

    PubMed  Google Scholar 

  116. Lynn MD, Shapiro B, Sisson JC, Beierwaltes WH, Meyers LJ, Ackerman R, et al. Pheochromocytoma and the normal adrenal medulla: improved visualization with I-123 MIBG scintigraphy. Radiology. 1985;155(3):789–92.

    Article  CAS  PubMed  Google Scholar 

  117. Janssen I, Chen CC, Millo CM, Ling A, Taieb D, Lin FI, et al. PET/CT comparing 68Ga-DOTATATE and other radiopharmaceuticals and in comparison with CT/MRI for the localization of sporadic metastatic pheochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2016;43(10):1784–91.

    Google Scholar 

  118. Sisson JC, Shapiro B, Beierwaltes WH, Glowniak JV, Nakajo M, Mangner TJ, et al. Radiopharmaceutical treatment of malignant pheochromocytoma. J Nucl Med. 1984;25(2):197–206.

    CAS  PubMed  Google Scholar 

  119. Guller U, Turek J, Eubanks S, Delong ER, Oertli D, Feldman JM. Detecting pheochromocytoma: defining the most sensitive test. Ann Surg. 2006;243(1):102–7.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bhatia KSS, Ismail MM, Sahdev A, Rockall AG, Hogarth K, Canizales A, et al. 123I-metaiodobenzylguanidine (MIBG) scintigraphy for the detection of adrenal and extra-adrenal phaeochromocytomas: CT and MRI correlation. Clin Endocrinol. 2008;69(2):181–8.

    Article  Google Scholar 

  121. Milardovic R, Corssmit EP, Stokkel M. Value of 123I-MIBG scintigraphy in paraganglioma. Neuroendocrinology. 2010;91(1):94–100.

    Article  CAS  PubMed  Google Scholar 

  122. Vallabhajosula S, Nikolopoulou A. Radioiodinated metaiodobenzylguanidine (MIBG): radiochemistry, biology, and pharmacology. Semin Nucl Med. 2011;41(5):324–33.

    Article  PubMed  Google Scholar 

  123. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36(3):228–47.

    Article  PubMed  Google Scholar 

  124. Rozovsky K, Koplewitz BZ, Krausz Y, Revel-Vilk S, Weintraub M, Chisin R, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol. 2008;190(4):1085–90.

    Article  PubMed  Google Scholar 

  125. Hofmann M, Maecke H, Borner R, Weckesser E, Schoffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28(12):1751–7.

    Article  CAS  PubMed  Google Scholar 

  126. Al-Nahhas A, Fanti S. Radiolabelled peptides in diagnosis and therapy: an introduction. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S1–3.

    Article  PubMed  Google Scholar 

  127. Treglia G, Castaldi P, Rindi G, Giordano A, Rufini V. Diagnostic performance of Gallium-68 somatostatin receptor PET and PET/CT in patients with thoracic and gastroenteropancreatic neuroendocrine tumours: a meta-analysis. Endocrine. 2012;42(1):80–7.

    Article  CAS  PubMed  Google Scholar 

  128. Ambrosini V, Campana D, Tomassetti P, Fanti S. 68Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S52–60.

    Article  PubMed  CAS  Google Scholar 

  129. Srirajaskanthan R, Kayani I, Quigley AM, Soh J, Caplin ME, Bomanji J. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. J Nucl Med. 2010;51(6):875–82.

    Article  CAS  PubMed  Google Scholar 

  130. Pfeifer A, Knigge U, Binderup T, Mortensen J, Oturai P, Loft A, et al. 64Cu-DOTATATE PET for neuroendocrine tumors: a prospective head-to-head comparison with 111In-DTPA-octreotide in 112 patients. J Nucl Med. 2015.

    Google Scholar 

  131. Ambrosini V, Morigi JJ, Nanni C, Castellucci P, Fanti S. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga]tracers, [11C]/[18F]-HTP). Q J Nucl Med Mol Imaging. 2015;59(1):58–69.

    Google Scholar 

  132. Putzer D, Gabriel M, Henninger B, Kendler D, Uprimny C, Dobrozemsky G, et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med. 2009;50(8):1214–21.

    Article  PubMed  Google Scholar 

  133. Baumann T, Rottenburger C, Nicolas G, Wild D. Gastroenteropancreatic neuroendocrine tumours (GEP-NET) – imaging and staging. Best Pract Res Clin Endocrinol Metab. 2016;30(1):45–57.

    Article  PubMed  Google Scholar 

  134. Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med. 2008;49(4):573–86.

    Article  CAS  PubMed  Google Scholar 

  135. Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35(8):1431–8.

    Article  CAS  PubMed  Google Scholar 

  136. Montravers F, Grahek D, Kerrou K, Ruszniewski P, de Beco V, Aide N, et al. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med. 2006;47(9):1455–62.

    CAS  PubMed  Google Scholar 

  137. Haug A, Auernhammer CJ, Wangler B, Tiling R, Schmidt G, Goke B, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36(5):765–70.

    Article  CAS  PubMed  Google Scholar 

  138. Binderup T, Knigge U, Loft A, Mortensen J, Pfeifer A, Federspiel B, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010;51(5):704–12.

    Article  PubMed  Google Scholar 

  139. Severi S, Nanni O, Bodei L, Sansovini M, Ianniello A, Nicoletti S, et al. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40(6):881–8.

    Article  CAS  PubMed  Google Scholar 

  140. Binderup T, Knigge U, Loft A, Federspiel B, Kjaer A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16(3):978–85.

    Article  CAS  PubMed  Google Scholar 

  141. Ezziddin S, Adler L, Sabet A, Poppel TD, Grabellus F, Yuce A, et al. Prognostic stratification of metastatic gastroenteropancreatic neuroendocrine neoplasms by 18F-FDG PET: feasibility of a metabolic grading system. J Nucl Med. 2014.

    Google Scholar 

  142. Antwi K, Fani M, Nicolas G, Rottenburger C, Heye T, Reubi JC, et al. Localization of hidden insulinomas with 68Ga-DOTA-Exendin-4 PET/CT: a pilot study. J Nucl Med. 2015;56(7):1075–8..

    Article  CAS  PubMed  Google Scholar 

  143. Ambrosini V, Castellucci P, Rubello D, Nanni C, Musto A, Allegri V, et al. 68Ga-DOTA-NOC: a new PET tracer for evaluating patients with bronchial carcinoid. Nucl Med Commun. 2009;30(4):281–6.

    Article  PubMed  Google Scholar 

  144. Kayani I, Conry BG, Groves AM, Win T, Dickson J, Caplin M, et al. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med. 2009;50(12):1927–32.

    Article  PubMed  Google Scholar 

  145. Chong S, Lee KS, Chung MJ, Han J, Kwon OJ, Kim TS. Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Radiographics: Rev Publ Radiol Soc N Am Inc. 2006;26(1):41–57. discussion -8.

    Article  Google Scholar 

  146. Pandit N, Gonen M, Krug L, Larson SM. Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging. 2003;30(1):78–84.

    Article  PubMed  Google Scholar 

  147. Janssen I, Chen CC, Taieb D, Patronas NJ, Millo CM, Adams KT, et al. 68Ga-DOTATATE PET/CT in the localization of head and neck paragangliomas compared with other functional imaging modalities and CT/MRI. J Nucl Med. 2016;57(2):186–91.

    Article  CAS  PubMed  Google Scholar 

  148. Poeppel TD, Binse I, Petersenn S, Lahner H, Schott M, Antoch G, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52(12):1864–70.

    Article  CAS  PubMed  Google Scholar 

  149. Kabasakal L, Demirci E, Ocak M, Decristoforo C, Araman A, Ozsoy Y, et al. Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39(8):1271–7.

    Article  PubMed  Google Scholar 

  150. Virgolini I, Ambrosini V, Bomanji JB, Baum RP, Fanti S, Gabriel M, et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2010;37(10):2004–10.

    Article  PubMed  Google Scholar 

  151. Bosman FT, Carneiro F, Hruban RH, et al. WHO classification of tumours of the digestive system. Lyon: IARC Press; 2010.

    Google Scholar 

  152. Travis WD, Brambilla E, Müller-Hermelink HK, Harris CC. Pathology and genetics: tumours of the lung, pleura, thymus and heart. Lyon: IARC; 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Bodei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Bodei, L. et al. (2016). Diagnostic Applications of Nuclear Medicine: Neuroendocrine Tumors. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Neuroendocrine Tumors
    Published:
    18 August 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_18-2

  2. Original

    Diagnostic Applications of Nuclear Medicine: Neuroendocrine Tumors
    Published:
    17 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_18-1