Glucosinolates in Food

  • Marco PossentiEmail author
  • Simona Baima
  • Antonio Raffo
  • Alessandra Durazzo
  • Anna Maria Giusti
  • Fausta Natella
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Glucosinolates are secondary plant metabolites that have attracted researcher’s attention due to their potential chemopreventive activity. More than 120 different glucosinolates have been identified in plants, and several of these compounds have been studied for the potential anti-cancerogenic effect of their metabolic breakdown products (mainly ITCs).

Glucosinolates are peculiar of vegetables belonging to Brassicaceae family but are present also in few other species (capers, papaya, and moringa) used for human consumption. The type and concentration of glucosinolates in food are highly variable depending on several factors, such as genetics, cultivation site, cultivar, growth conditions, developmental stage, plant tissue, post-harvest handling, and food preparation methods. As types and concentration are also the main determinant of their biological activities, estimates of their content in food are essential tool to understand if a certain diet is adequate to deliver qualitatively and quantitatively appropriate glucosinolates and ITCs.

The aim of this chapter is to describe qualitative and quantitative glucosinolate distribution among commonly eaten food, as well as the effect of the post-harvest handling on the glucosinolate food content.


Glucosinolates Isothiocyanates Brassicaceae Food content Processing 



4-[β-d-Glucopyranosyldisulfanyl] butyl glucosinolate


Dimeric 4-mercaptobutyl-glucosinolate


Dry weight


Fresh weight







This work was supported by Italian Ministry of Agriculture, Food & Forestry (MiPAAF) grants “NUTRIGEA” (DM 30281 23/12/2009).


  1. 1.
    Mewis I, Ulrich C, Schnitzler WH (2002) The role of glucosinolates and their hydrolysis products in oviposition and host-plant finding by cabbage webworm, Hellula undalis. Entomol Exp Appl 105:129–139. doi:10.1023/A:1022176524227CrossRefGoogle Scholar
  2. 2.
    Miles CI, Del Campo ML, Renwick JAA (2005) Behavioral and chemosensory responses to a host recognition cue by larvae of Pieris rapae. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 191:147–155. doi:10.1007/s00359-004-0580-xCrossRefGoogle Scholar
  3. 3.
    Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347–363CrossRefGoogle Scholar
  4. 4.
    Martin N, Müller C (2007) Induction of plant responses by a sequestering insect: relationship of glucosinolate concentration and myrosinase activity. Basic Appl Ecol 8:13–25. doi:10.1016/j.baae.2006.02.001CrossRefGoogle Scholar
  5. 5.
    Read DP, Feeny PP, Root RB (1970) Habitat selection by the aphid parasite diaeretiella rapae (hymenoptera: braconidae) and hyperparasite charips brassicae (hymenoptera: cynipidae). Can Entomol 102:1567–1578CrossRefGoogle Scholar
  6. 6.
    Mattiacci L, Dicke M, Posthumus MA (1994) Induction of parasitoid attracting synomone in brussels sprouts plants by feeding of Pieris brassicae larvae: role of mechanical damage and herbivore elicitor. J Chem Ecol 20:2229–2247. doi:10.1007/BF02033199CrossRefGoogle Scholar
  7. 7.
    Choi E-J, Zhang P, Kwon H (2014) Determination of goitrogenic metabolites in the serum of male wistar rat fed structurally different glucosinolates. Toxicol Res 30:109–116CrossRefGoogle Scholar
  8. 8.
    U.S. Department of Health and Human Services PHS (2006) Agency for toxic substances and disease registry div. of tocicology and environmental medicine 1600 ecifton road ne, Mailstop F-32 Atlanta, Georgia 30333, US Dep Heal Hum Serv, p 298Google Scholar
  9. 9.
    Newkirk RW, Classen HL, Tyler RT (1997) Nutritional evaluation of low glucosinolate mustard meals (Brassica juncea) in broiler diets. Poult Sci 76:1272–1277CrossRefGoogle Scholar
  10. 10.
    Fahey JW, Haristoy X, Dolan PM et al (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A 99:7610–7615. doi:10.1007/BF02033199Google Scholar
  11. 11.
    Matsui TA, Murata H, Sakabe T et al (2007) Sulforaphane induces cell cycle arrest and apoptosis in murine osteosarcoma cells in vitro and inhibits tumor growth in vivo. Oncol Rep 18:1263–1268Google Scholar
  12. 12.
    Smith TK, Lund EK, Parker ML et al (2004) Allyl-isothiocyanate causes mitotic block, loss of cell adhesion and disrupted cytoskeletal structure in HT29 cells. Carcinogenesis 25:1409–1415CrossRefGoogle Scholar
  13. 13.
    Smith TK (2003) Effects of Brassica vegetable juice on the induction of apoptosis and aberrant crypt foci in rat colonic mucosal crypts in vivo. Carcinogenesis 24:491–495CrossRefGoogle Scholar
  14. 14.
    Boreddy SR, Sahu RP, Srivastava SK (2011) Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3. PLoS One 6, e25799. doi:10.1371/journal.pone.0025799CrossRefGoogle Scholar
  15. 15.
    Gupta P, Adkins C, Lockman P, Srivastava SK (2013) Metastasis of breast tumor cells to brain is suppressed by phenethyl isothiocyanate in a novel in vivo metastasis model. PLoS One 8:1–9. doi:10.1371/journal.pone.0067278CrossRefGoogle Scholar
  16. 16.
    Kang L, Wang Z-Y (2010) Breast cancer cell growth inhibition by phenethyl isothiocyanate is associated with down-regulation of oestrogen receptor-alpha36. J Cell Mol Med 14:1485–1493CrossRefGoogle Scholar
  17. 17.
    Xu C, Shen G, Chen C et al (2005) Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene 24:4486–4495. doi:10.1038/sj.onc.1208656CrossRefGoogle Scholar
  18. 18.
    Fimognari C, Turrini E, Ferruzzi L et al (2012) Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res – Rev Mutat Res 750:107–131. doi:10.1016/j.mrrev.2011.12.001CrossRefGoogle Scholar
  19. 19.
    Baasanjav-Gerber C, Monien BH, Mewis I et al (2011) Identification of glucosinolate congeners able to form DNA adducts and to induce mutations upon activation by myrosinase. Mol Nutr Food Res 55:783–792. doi:10.1002/mnfr.201000352CrossRefGoogle Scholar
  20. 20.
    Jang M, Hong E, Kim G-H (2010) Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables. J Food Sci 75:M412–M416CrossRefGoogle Scholar
  21. 21.
    Blažević I, Radonić A, Mastelić J et al (2010) Glucosinolates, glycosidically bound volatiles and antimicrobial activity of Aurinia sinuata (Brassicaceae). Food Chem 121:1020–1028CrossRefGoogle Scholar
  22. 22.
    Kulisic-Bilusic T, Schmöller I, Schnäbele K et al (2012) The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chem 132:261–267CrossRefGoogle Scholar
  23. 23.
    Vanden Bussche J, Noppe H, Verheyden K et al (2009) Analysis of thyreostats: a history of 35 years. Anal Chim Acta 637:2–12CrossRefGoogle Scholar
  24. 24.
    Srivastava SK, Xiao D, Lew KL et al (2003) Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Carcinogenesis 24:1665–1670. doi:10.1093/carcin/bgg123CrossRefGoogle Scholar
  25. 25.
    Tsai S-C, Huang WW, Huang CW et al (2012) ERK-modulated intrinsic signaling and G(2)/M phase arrest contribute to the induction of apoptotic death by allyl isothiocyanate in MDA-MB-468 human breast adenocarcinoma cells. Int J Oncol 41:2065–2072. doi:10.3892/ijo.2012.1640Google Scholar
  26. 26.
    Manesh C, Kuttan G (2003) Effect of naturally occurring allyl and phenyl isothiocyanates in the inhibition of experimental pulmonary metastasis induced by B16F-10 melanoma cells. Fitoterapia 74:355–363CrossRefGoogle Scholar
  27. 27.
    Kumar A, D’Souza SS, Tickoo S et al (2009) Antiangiogenic and proapoptotic activities of allyl isothiocyanate inhibit ascites tumor growth in vivo. Integr Cancer Ther 8:75–87CrossRefGoogle Scholar
  28. 28.
    Kim MJ, Kim SH, Lim SJ (2010) Comparison of the apoptosis-inducing capability of sulforaphane analogues in human colon cancer cells. Anticancer Res 30:3611–3620. doi:30/9/3611 [pii]Google Scholar
  29. 29.
    Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A 89:2399–2403CrossRefGoogle Scholar
  30. 30.
    Lamy E, Schröder J, Paulus S et al (2008) Antigenotoxic properties of Eruca sativa (rocket plant), erucin and erysolin in human hepatoma (HepG2) cells towards benzo(a)pyrene and their mode of action. Food Chem Toxicol 46:2415–2421. doi:10.1016/j.fct.2008.03.022CrossRefGoogle Scholar
  31. 31.
    Fimognari C, Nüsse M, Iori R et al (2004) The new isothiocyanate 4-(methylthio)butylisothiocyanate selectively affects cell-cycle progression and apoptosis induction of human leukemia cells. Invest New Drugs 22:119–129CrossRefGoogle Scholar
  32. 32.
    Yehuda H, Soroka Y, Zlotkin-Frušić M et al (2012) Isothiocyanates inhibit psoriasis-related proinflammatory factors in human skin. Inflamm Res 61:735–742. doi:10.1007/s00011-012-0465-3CrossRefGoogle Scholar
  33. 33.
    Abdull Razis AF, De Nicola GR, Pagnotta E et al (2012) 4-Methylsulfanyl-3-butenyl isothiocyanate derived from glucoraphasatin is a potent inducer of rat hepatic phase II enzymes and a potential chemopreventive agent. Arch Toxicol 86:183–194. doi:10.1007/s00204-011-0750-xCrossRefGoogle Scholar
  34. 34.
    Scholl C, Eshelman BD, Barnes DM, Hanlon PR (2011) Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products. J Food Sci 76:504–511. doi:10.1111/j.1750-3841.2011.02078.xCrossRefGoogle Scholar
  35. 35.
    Salah-Abbes JB, Abbes S, Abdel-Wahhab MA, Oueslati R (2010) In-vitro free radical scavenging, antiproliferative and anti-zearalenone cytotoxic effects of 4-(methylthio)-3-butenyl isothiocyanate from Tunisian Raphanus sativus. J Pharm Pharmacol 62:231–239. doi:10.1211/jpp.62.02.0011CrossRefGoogle Scholar
  36. 36.
    Wang N, Wang W, Huo P et al (2014) Mitochondria-mediated apoptosis in human lung cancer A549 Cells by 4-Methylsulfinyl-3-butenyl isothiocyanate from radish seeds. Asian Pacific J Cancer Prev 15:2133–2139. doi:10.7314/APJCP.2014.15.5.2133CrossRefGoogle Scholar
  37. 37.
    Jakubikova J, Bao Y, Bodo J, Sedlak J (2006) Isothiocyanate iberin modulates phase II enzymes, posttranslational modification of histones and inhibits growth of Caco-2 cells by inducing apoptosis. Neoplasma 53:463–470Google Scholar
  38. 38.
    Wang N, Shen L, Qiu S et al (2010) Analysis of the isothiocyanates present in three Chinese Brassica vegetable seeds and their potential anticancer bioactivities. Eur Food Res Technol 231:951–958CrossRefGoogle Scholar
  39. 39.
    Ben Salah-Abbes J, Abbes S, Ouanes Z et al (2009) Isothiocyanate from the Tunisian radish (Raphanus sativus) prevents genotoxicity of Zearalenone in vivo and in vitro. Mutat Res – Genet Toxicol Environ Mutagen 677:59–65. doi:10.1016/j.mrgentox.2009.05.017CrossRefGoogle Scholar
  40. 40.
    Myzak MC, Karplus PA, Chung F-L, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774CrossRefGoogle Scholar
  41. 41.
    Kanematsu S, Yoshizawa K, Uehara N et al (2011) Sulforaphane inhibits the growth of KPL-1 human breast cancer cells in vitro and suppresses the growth and metastasis of orthotopically transplanted KPL-1 cells in female athymic mice. Oncol Rep 26:603–608Google Scholar
  42. 42.
    Heiss E, Herhaus C, Klimo K et al (2001) Nuclear factor κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276:32008–32015. doi:10.1074/jbc.M104794200CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Kensler TW, Cho CG et al (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci U S A 91:3147–3150CrossRefGoogle Scholar
  44. 44.
    Sun CC, Li SJ, Yang CL et al (2015) Sulforaphane attenuates muscle inflammation in dystrophin-deficient mdx mice via NF-E2-related factor 2 (Nrf2)-mediated inhibition of NF-κB signaling pathway. J Biol Chem 290:17784–17795CrossRefGoogle Scholar
  45. 45.
    Jackson SJT, Singletary KW, Venema RC (2007) Sulforaphane suppresses angiogenesis and disrupts endothelial mitotic progression and microtubule polymerization. Vascul Pharmacol 46:77–84CrossRefGoogle Scholar
  46. 46.
    Rodríguez-Cantú LN, Gutiérrez-Uribe JA, Arriola-Vucovich J et al (2011) Broccoli (Brassica oleracea var. italica) sprouts and extracts rich in glucosinolates and isothiocyanates affect cholesterol metabolism and genes involved in lipid homeostasis in hamsters. J Agric Food Chem 59:1095–1103CrossRefGoogle Scholar
  47. 47.
    Morroni F, Tarozzi A, Sita G et al (2013) Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson’s disease. Neurotoxicology 36:63–71. doi:10.1016/j.neuro.2013.03.004CrossRefGoogle Scholar
  48. 48.
    Adesida A, Edwards LG, Thornalley PJ (1996) Inhibition of human leukaemia 60 cell growth by mercapturic acid metabolites of phenylethyl isothiocyanate. Food Chem Toxicol 34:385–392CrossRefGoogle Scholar
  49. 49.
    Telang NT, Katdare M, Bradlow HL et al (1997) Inhibition of proliferation and modulation of estradiol metabolism: novel mechanisms for breast cancer prevention by the phytochemical indole-3-carbinol. Exp Biol Med 216:246–252Google Scholar
  50. 50.
    Nakamura Y, Yogosawa S, Izutani Y et al (2009) A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer 8:100CrossRefGoogle Scholar
  51. 51.
    Bjeldanes LF, Kim JY, Grose KR et al (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci U S A 88:9543–9547CrossRefGoogle Scholar
  52. 52.
    Adwas AA, Elkhoely AA, Kabel AM et al (2016) Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. J Infect Chemother 22:36–43CrossRefGoogle Scholar
  53. 53.
    Wakabayashi K, Nagao M, Ochiai M, et al (1987) Recently identified nitrite-reactive compounds in food: occurrence and biological properties of the nitrosated products. IARC Sci Publ 84:287–291Google Scholar
  54. 54.
    Brunelli D, Tavecchio M, Falcioni C et al (2010) The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol 79:1141–1148CrossRefGoogle Scholar
  55. 55.
    Galuppo M, Giacoppo S, De Nicola GR et al (2014) Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 95:160–174CrossRefGoogle Scholar
  56. 56.
    Giacoppo S, Galuppo M, Montaut S et al (2015) An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia 106:12–21. doi:10.1016/j.fitote.2015.08.001CrossRefGoogle Scholar
  57. 57.
    Morris CR, Chen SC, Zhou L et al (2004) Inhibition by allyl sulfides and phenethyl isothiocyanate of methyl-n-pentylnitrosamine depentylation by rat esophageal microsomes, human and rat CYP2E1, and rat CYP2A3. Nutr Cancer 48:54–63CrossRefGoogle Scholar
  58. 58.
    Gupta P, Kim B, Kim SH, Srivastava SK (2014) Molecular targets of isothiocyanates in cancer: recent advances. Mol Nutr Food Res 58:1685–1707. doi:10.1002/mnfr.201300684CrossRefGoogle Scholar
  59. 59.
    Satyan KS, Swamy N, Dizon DS et al (2006) Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. Gynecol Oncol 103:261–270CrossRefGoogle Scholar
  60. 60.
    Huang C, Ma WY, Li J et al (1998) Essential role of p53 in phenethyl isothiocyanate-induced apoptosis. Cancer Res 58:4102–4106Google Scholar
  61. 61.
    Stoner G (1998) Inhibition of N’-nitrosonornicotine-induced esophageal tumorigenesis by 3-phenylpropyl isothiocyanate. Carcinogenesis 19:2139–2143CrossRefGoogle Scholar
  62. 62.
    Solt DB, Chang K, Helenowski I, Rademaker AW (2003) Phenethyl isothiocyanate inhibits nitrosamine carcinogenesis in a model for study of oral cancer chemoprevention. Cancer Lett 202:147–152CrossRefGoogle Scholar
  63. 63.
    Xiao D, Singh SV (2007) Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo. Cancer Res 67:2239–2246CrossRefGoogle Scholar
  64. 64.
    Rose P, Yen KW, Choon NO, Whiteman M (2005) Beta-phenylethyl and 8-methylsulphinyloctyl isothiocyanates, constituents of watercress, suppress LPS induced production of nitric oxide and prostaglandin E2 in RAW 264.7 macrophages. Nitric Oxide – Biol Chem 12:237–243. doi:10.1016/j.niox.2005.03.001CrossRefGoogle Scholar
  65. 65.
    Moon PD, Kim HM (2012) Anti-inflammatory effect of phenethyl isothiocyanate, an active ingredient of Raphanus sativus Linne. Food Chem 131:1332–1339. doi:10.1016/j.foodchem.2011.09.127CrossRefGoogle Scholar
  66. 66.
    Zhang Y, Talalay P (1998) Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic Phase 2 enzymes. Cancer Res 58:4632–4639Google Scholar
  67. 67.
    Srivastava SK, Singh SV (2004) Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis 25:1701–1709. doi:10.1093/carcin/bgh179CrossRefGoogle Scholar
  68. 68.
    Sahu RP, Srivastava SK (2009) The role of STAT-3 in the induction of apoptosis in pancreatic cancer cells by benzyl isothiocyanate. J Natl Cancer Inst 101:176–193CrossRefGoogle Scholar
  69. 69.
    Boreddy SR, Pramanik KC, Srivastava SK (2011) Pancreatic tumor suppression by benzyl isothiocyanate is associated with inhibition of PI3K/AKT/FOXO pathway. Clin Cancer Res 17:1784–1795CrossRefGoogle Scholar
  70. 70.
    Kermanshai R, McCarry BE, Rosenfeld J et al (2001) Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry 57:427–435. doi:10.1016/S0031-9422(01)00077-2CrossRefGoogle Scholar
  71. 71.
    McNaughton SA, Marks GC (2003) Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br J Nutr 90:687–697. doi:10.1079/BJN2003917CrossRefGoogle Scholar
  72. 72.
    Verkerk R, Schreiner M, Krumbein A et al (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53(Suppl 2):S219CrossRefGoogle Scholar
  73. 73.
    Wang J, Gu H, Yu H et al (2012) Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Food Chem 133:735–741. doi:10.1016/j.foodchem.2012.01.085CrossRefGoogle Scholar
  74. 74.
    Renaud ENC, Lammerts van Bueren ET, Myers JR et al (2014) Variation in Broccoli cultivar phytochemical content under organic and conventional management systems: implications in breeding for nutrition. PLoS One 9, e95683. doi:10.1371/journal.pone.0095683CrossRefGoogle Scholar
  75. 75.
    Baenas N, García-Viguera C, Moreno DA (2014) Biotic elicitors effectively increase the glucosinolates content in Brassicaceae sprouts. J Agric Food Chem 62:1881–1889. doi:10.1021/jf404876zCrossRefGoogle Scholar
  76. 76.
    Traka MH, Saha S, Huseby S et al (2013) Genetic regulation of glucoraphanin accumulation in Beneforte broccoli. New Phytol 198:1085–1095. doi:10.1111/nph.12232CrossRefGoogle Scholar
  77. 77.
    Zabaras D, Roohani M, Krishnamurthy R et al (2013) Characterisation of taste-active extracts from raw Brassica oleracea vegetables. Food Funct 4:592–601. doi:10.1039/c2fo30192jCrossRefGoogle Scholar
  78. 78.
    Bhandari S, Kwak J-H (2015) Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 20:1228–1243. doi:10.3390/molecules20011228CrossRefGoogle Scholar
  79. 79.
    Yi G-E, Robin A, Yang K et al (2015) Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules 20:13089–13111. doi:10.3390/molecules200713089CrossRefGoogle Scholar
  80. 80.
    Vicas SI, Teusdea AC, Carbunar M et al (2013) Glucosinolates profile and antioxidant capacity of Romanian Brassica vegetables obtained by organic and conventional agricultural practices. Plant Foods Hum Nutr 68:313–321. doi:10.1007/s11130-013-0367-8CrossRefGoogle Scholar
  81. 81.
    Verkerk R, Tebbenhoff S, Dekker M (2010) Variation and distribution of glucosinolates in 42 cultivars of Brassica oleracea vegetable crops. Acta Hortic 63–70. doi:10.17660/ActaHortic.2010.856.7Google Scholar
  82. 82.
    Volden J, Bengtsson GB, Wicklund T (2009) Glucosinolates, l-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem 112:967–976. doi:10.1016/j.foodchem.2008.07.018CrossRefGoogle Scholar
  83. 83.
    Gratacós-Cubarsí M, Ribas-Agustí A, García-Regueiro JA, Castellari M (2010) Simultaneous evaluation of intact glucosinolates and phenolic compounds by UPLC-DAD-MS/MS in Brassica oleracea L. var. botrytis. Food Chem 121:257–263. doi:10.1016/j.foodchem.2009.11.081CrossRefGoogle Scholar
  84. 84.
    Hong E, Kim SJ, Kim GH (2011) Identification and quantitative determination of glucosinolates in seeds and edible parts of Korean Chinese cabbage. Food Chem 128:1115–1120. doi:10.1016/j.foodchem.2010.11.102CrossRefGoogle Scholar
  85. 85.
    Lee MK, Chun JH, Byeon DH et al (2014) Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT – Food Sci Technol 58:93–101. doi:10.1016/j.lwt.2014.03.001CrossRefGoogle Scholar
  86. 86.
    Schonhof I, Krumbein A, Brückner B (2004) Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahrung 48:25–33CrossRefGoogle Scholar
  87. 87.
    Sun B, Liu N, Zhao Y et al (2011) Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem 124:941–947. doi:10.1016/j.foodchem.2010.07.031CrossRefGoogle Scholar
  88. 88.
    Schreiner M, Beyene B, Krumbein A, Stützel H (2009) Ontogenetic changes of 2-propenyl and 3-indolylmethyl glucosinolates in Brassica carinata leaves as affected by water supply. J Agric Food Chem 57:7259–7263. doi:10.1021/jf901076hCrossRefGoogle Scholar
  89. 89.
    Barbieri G, Pernice R, Maggio A et al (2008) Glucosinolates profile of Brassica rapa L. subsp. Sylvestris L. Janch. var. esculenta Hort. Food Chem 107:1687–1691. doi:10.1016/j.foodchem.2007.09.054CrossRefGoogle Scholar
  90. 90.
    Sasaki K, Neyazaki M, Shindo K et al (2012) Quantitative profiling of glucosinolates by LC-MS analysis reveals several cultivars of cabbage and kale as promising sources of sulforaphane. J Chromatogr B Anal Technol Biomed Life Sci 903:171–176. doi:10.1016/j.jchromb.2012.07.017CrossRefGoogle Scholar
  91. 91.
    Park WT, Kim JK, Park S et al (2012) Metabolic profiling of glucosinolates, anthocyanins, carotenoids, and other secondary metabolites in kohlrabi (Brassica oleracea var. gongylodes). J Agric Food Chem 60:8111–8116. doi:10.1021/jf301667jCrossRefGoogle Scholar
  92. 92.
    Park M-H, Valan Arasu M, Park N-Y et al (2013) Variation of glucoraphanin and glucobrassicin: anticancer components in Brassica during processing. Food Sci Technol 33:624–631. doi:10.1590/S0101-20612013000400005Google Scholar
  93. 93.
    Sodhi YS, Mukhopadhyay A, Arumugam N et al (2002) Genetic analysis of total glucosinolate in crosses involving a high glucosinolate Indian variety and a low glucosinolate line of Brassica juncea. Plant Breed 121:508–511CrossRefGoogle Scholar
  94. 94.
    Krumbein A, Schonhof I, Schreiner M (2005) Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B. rapa subsp. chinensis and B. rapa subsp. rapa). J Appl Bot Food Qual 79:168–174Google Scholar
  95. 95.
    Tong Y, Gabriel-Neumann E, Ngwene B et al (2014) Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots. Food Chem 152:190–196. doi:10.1016/j.foodchem.2013.11.099CrossRefGoogle Scholar
  96. 96.
    Bhandari S, Jo J, Lee J (2015) Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20:15827–15841. doi:10.3390/molecules200915827CrossRefGoogle Scholar
  97. 97.
    Gupta S, Sangha MK, Kaur G, et al (2014) QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard (Brassica juncea L.). Euphytica 345–356. doi:10.1007/s10681-014-1204-3Google Scholar
  98. 98.
    Fallovo C, Schreiner M, Schwarz D et al (2011) Phytochemical changes induced by different nitrogen supply forms and radiation levels in two leafy Brassica species. J Agric Food Chem 59:4198–4207. doi:10.1021/jf1048904CrossRefGoogle Scholar
  99. 99.
    Wiesner M (2013) Genotypic variation of the glucosinolate profile in Pak Choi (Brassica rapa ssp.). J Agric Food Chem 61:1943–1953. doi:10.1021/jf303970kCrossRefGoogle Scholar
  100. 100.
    Zhu B, Yang J, Zhu Z (2013) Variation in glucosinolates in pak choi cultivars and various organs at different stages of vegetative growth during the harvest period. J Zhejiang Univ Sci B 14:309–317. doi:10.1631/jzus.B1200213CrossRefGoogle Scholar
  101. 101.
    Visentin M, Tava A, Iori R, Palmieri S (1992) Isolation and identification of trans-4-(Methylthio)-3-butenyl glucosinolate from radish roots (Raphanus sativus L.). J Agri Food Chem 40:1687–1691CrossRefGoogle Scholar
  102. 102.
    Bell L, Oruna-Concha MJ, Wagstaff C (2015) Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: highlighting the potential for improving nutritional value of rocket crops. Food Chem 172:852–861. doi:10.1016/j.foodchem.2014.09.116CrossRefGoogle Scholar
  103. 103.
    D’Antuono LF, Elementi S, Neri R (2008) Glucosinolates in diplotaxis and eruca leaves: diversity, taxonomic relations and applied aspects. Phytochemistry 69:187–199. doi:10.1016/j.phytochem.2007.06.019CrossRefGoogle Scholar
  104. 104.
    Chun J-H, Arasu MV, Lim Y-P, Kim S-J (2013) Variation of major glucosinolates in different varieties and lines of rocket salad. Hortic Environ Biotechnol 54:206–213. doi:10.1007/s13580-013-0122-yCrossRefGoogle Scholar
  105. 105.
    Jin J, Koroleva OA, Gibson T et al (2009) Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments. J Agric Food Chem 57:5227–5234. doi:10.1021/jf9002973CrossRefGoogle Scholar
  106. 106.
    Bell L, Wagstaff C (2014) Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). J Agric Food Chem 62:4481–4492CrossRefGoogle Scholar
  107. 107.
    Pasini F, Verardo V, Caboni MF, D’Antuono LF (2012) Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD-MS: evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chem 133:1025–1033. doi:10.1016/j.foodchem.2012.01.021CrossRefGoogle Scholar
  108. 108.
    Shiva RB, Jung-Ho K (2014) Seasonal variation in phytochemicals and antioxidant activities in different tissues of various Broccoli cultivars. Afr J Biotechnol 13:604–615. doi:10.5897/AJB2013.13432CrossRefGoogle Scholar
  109. 109.
    Valverde J, Reilly K, Villacreces S et al (2015) Variation in bioactive content in broccoli (Brassica oleracea var. italica) grown under conventional and organic production systems. J Sci Food Agric 95:1163–1171. doi:10.1002/jsfa.6804CrossRefGoogle Scholar
  110. 110.
    Brown AF, Yousef GG, Reid RW et al (2015) Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms. Theor Appl Genet 128:1431–1447. doi:10.1007/s00122-015-2517-xCrossRefGoogle Scholar
  111. 111.
    Ku KM, Jeffery EH, Juvik J (2014) Optimization of methyl jasmonate application to broccoli florets to enhance health-promoting phytochemical content. J Sci Food Agric 94:2090–2096. doi:10.1002/jsfa.6529CrossRefGoogle Scholar
  112. 112.
    Reilly K, Valverde J, Finn L et al (2014) Potential of cultivar and crop management to affect phytochemical content in winter-grown sprouting broccoli (Brassica oleracea L. var. italica). J Sci Food Agric 94:322–330. doi:10.1002/jsfa.6263CrossRefGoogle Scholar
  113. 113.
    Aires A, Fernandes C, Carvalho R et al (2011) Seasonal effects on bioactive compounds and antioxidant capacity of six economically important Brassica vegetables. Molecules 16:6816–6832. doi:10.3390/molecules16086816CrossRefGoogle Scholar
  114. 114.
    Alanís-Garza PA, Becerra-Moreno A, Mora-Nieves JL et al (2015) Effect of industrial freezing on the stability of chemopreventive compounds in broccoli. Int J Food Sci Nutr 66:282–288. doi:10.3109/09637486.2015.1007451CrossRefGoogle Scholar
  115. 115.
    Alarcón-Flores MI, Romero-González R, Martínez Vidal JL et al (2014) Monitoring of phytochemicals in fresh and fresh-cut vegetables: a comparison. Food Chem 142:392–399. doi:10.1016/j.foodchem.2013.07.065CrossRefGoogle Scholar
  116. 116.
    Rodríguez-Hernández MDC, Moreno D, Carvajal M et al (2012) Natural antioxidants in purple sprouting broccoli under Mediterranean climate. J Food Sci 77:C1058–C1063. doi:10.1111/j.1750-3841.2012.02886.xCrossRefGoogle Scholar
  117. 117.
    Dominguez-Perles R, Martinez-Ballesta MC, Riquelme F et al (2011) Novel varieties of broccoli for optimal bioactive components under saline stress. J Sci Food Agric 91:1638–1647. doi:10.1002/jsfa.4360CrossRefGoogle Scholar
  118. 118.
    Tian Q, Rosselot RA, Schwartz SJ (2005) Quantitative determination of intact glucosinolates in broccoli, broccoli sprouts, Brussels sprouts, and cauliflower by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Biochem 343:93–99. doi:10.1016/j.ab.2005.04.045CrossRefGoogle Scholar
  119. 119.
    Cieślik E, Leszczyńska T, Filipiak-Florkiewicz A et al (2007) Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chem 105:976–981. doi:10.1016/j.foodchem.2007.04.047CrossRefGoogle Scholar
  120. 120.
    Pellegrini N, Chiavaro E, Gardana C et al (2010) Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen Brassica vegetables. J Agric Food Chem 58:4310–4321. doi:10.1021/jf904306rCrossRefGoogle Scholar
  121. 121.
    Ciska E, Drabińska N, Honke J, Narwojsz A (2015) Boiled Brussels sprouts: a rich source of glucosinolates and the corresponding nitriles. J Funct Foods 19:91–99. doi:10.1016/j.jff.2015.09.008CrossRefGoogle Scholar
  122. 122.
    Nugrahedi PY, Dekker M, Widianarko B, Verkerk R (2016) Quality of cabbage during long term steaming; phytochemical, texture and colour evaluation. LWT – Food Sci Technol 65:421–427. doi:10.1016/j.lwt.2015.08.034CrossRefGoogle Scholar
  123. 123.
    Martinez-Villaluenga C, Peñas E, Frias J et al (2009) Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. J Food Sci. doi:10.1111/j.1750-3841.2008.01017.xGoogle Scholar
  124. 124.
    Kusznierewicz B, Baczek-Kwinta R, Bartoszek A et al (2012) The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environ Toxicol Chem 31:2482–2489. doi:10.1002/etc.1977CrossRefGoogle Scholar
  125. 125.
    Sarikamiş G, Balkaya A, Yanmaz R (2009) Glucosinolates within a collection of white head cabbages (Brassica oleracea var. capitata sub.var. alba) from Turkey. Afr J Biotechnol 8:5046–5052Google Scholar
  126. 126.
    Palani K, Harbaum-Piayda B, Meske D et al (2016) Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chem 190:755–762. doi:10.1016/j.foodchem.2015.06.012CrossRefGoogle Scholar
  127. 127.
    Peñas E, Frias J, Martínez-Villaluenga C, Vidal-Valverde C (2011) Bioactive compounds, myrosinase activity, and antioxidant capacity of white cabbages grown in different locations of Spain. J Agric Food Chem 59:3772–3779. doi:10.1021/jf200356mCrossRefGoogle Scholar
  128. 128.
    Dekker M, Hennig K, Verkerk R (2009) Differences in thermal stability of glucosinolates in five Brassica vegetables. Czech J Food Sci 27:85–88Google Scholar
  129. 129.
    Jakovljević T, Cvjetko M, Sedak M et al (2013) Balance of glucosinolates content under Cd stress in two Brassica species. Plant Physiol Biochem 63:99–106. doi:10.1016/j.plaphy.2012.10.019CrossRefGoogle Scholar
  130. 130.
    Fernández-León AM, Lozano M, González D et al (2014) Bioactive compounds content and total antioxidant activity of two savoy cabbages. Czech J Food Sci 32:549–554Google Scholar
  131. 131.
    Volden J, Borge GIA, Hansen M et al (2009) Processing (blanching, boiling, steaming) effects on the content of glucosinolates and antioxidant-related parameters in cauliflower (Brassica oleracea L. ssp. botrytis). LWT – Food Sci Technol 42:63–73. doi:10.1016/j.lwt.2008.05.018CrossRefGoogle Scholar
  132. 132.
    Kim JK, Chu SM, Kim SJ et al (2010) Variation of glucosinolates in vegetable crops of Brassica rapa L. ssp. pekinensis. Food Chem 119:423–428. doi:10.1016/j.foodchem.2009.08.051CrossRefGoogle Scholar
  133. 133.
    Hong E, Kim G-H (2014) Variation of glucosinolates composition during seedling and growth stages of Brassica rapa L. ssp pekinensis. Kor J Hort Sci Technol 32(5):730–738Google Scholar
  134. 134.
    Lozano-Baena MD, Tasset I, Obregón-Cano S et al (2015) Antigenotoxicity and tumor growing inhibition by leafy Brassica carinata and sinigrin. Molecules 20:15748–15765. doi:10.3390/molecules200915748CrossRefGoogle Scholar
  135. 135.
    Bellostas N, Sørensen JC, Sørensen H (2007) Profiling glucosinolates in vegetative and reproductive tissues of four Brassica species of the U-triangle for their biofumigation potential. J Sci Food Agric 87:1586–1594CrossRefGoogle Scholar
  136. 136.
    De Pascale S, Maggio A, Pernice R et al (2007) Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp. sylvestris. Eur J Agron 26:418–424. doi:10.1016/j.eja.2006.12.009CrossRefGoogle Scholar
  137. 137.
    Gallo M, Esposito G, Ferracane R et al (2013) Beneficial effects of Trichoderma genus microbes on qualitative parameters of Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort. Eur Food Res Technol 236:1063–1071. doi:10.1007/s00217-013-1971-4CrossRefGoogle Scholar
  138. 138.
    Cartea ME, Velasco P, Obregón S et al (2008) Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403–410CrossRefGoogle Scholar
  139. 139.
    Ferioli F, Giambanelli E, D’Antuono LF et al (2013) Comparison of leafy kale populations from Italy, Portugal, and Turkey for their bioactive compound content: phenolics, glucosinolates, carotenoids, and chlorophylls. J Sci Food Agric 93:3478–3489. doi:10.1002/jsfa.6253CrossRefGoogle Scholar
  140. 140.
    Korus A, Słupski J, Gębczyński P, Banaś A (2014) Effect of preliminary processing and method of preservation on the content of glucosinolates in kale (Brassica oleracea L. var. acephala) leaves. LWT – Food Sci Technol 59:1003–1008CrossRefGoogle Scholar
  141. 141.
    Hollands WJ, Saha S, Hayran O et al (2013) Lack of effect of bioactive-rich extracts of pomegranate, persimmon, nettle, dill, kale and Sideritis and isolated bioactives on platelet function. J Sci Food Agric 93:3588–3594. doi:10.1002/jsfa.6213CrossRefGoogle Scholar
  142. 142.
    Olsen H, Grimmer S, Aaby K et al (2012) Antiproliferative effects of fresh and thermal processed green and red cultivars of curly kale (Brassica oleracea L. convar. acephala var. sabellica). J Agric Food Chem 60:7375–7383. doi:10.1021/jf300875fCrossRefGoogle Scholar
  143. 143.
    Choi S-H, Ryu D-K, Park S et al (2010) Composition analysis between kohlrabi (Brassica oleracea var. gongylodes) and radish (Raphanus sativus). Korean J Hortic Sci Technol 28:469–475Google Scholar
  144. 144.
    Park WT, Kim YB, Seo JM et al (2013) Accumulation of anthocyanin and associated gene expression in radish sprouts exposed to light and methyl jasmonate. J Agric Food Chem 61:4127–4132. doi:10.1021/jf400164gCrossRefGoogle Scholar
  145. 145.
    Gupta S, Sangha MK, Kaur G et al (2014) QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard (Brassica juncea L.). Euphytica 201:345–356. doi:10.1007/s10681-014-1204-3CrossRefGoogle Scholar
  146. 146.
    Nugrahedi PY, Verkerk R, Widianarko B, Dekker M (2015) A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: a review. Crit Rev Food Sci Nutr 55:823–838. doi:10.1080/10408398.2012.688076CrossRefGoogle Scholar
  147. 147.
    Zhu B, Yang J, He Y et al (2015) Glucosinolate accumulation and related gene expression in Pak Choi (Brassica rapa L. ssp. chinensis var. communis [N. Tsen & S.H. Lee] Hanelt) in response to insecticide application. J Agric Food Chem 63:9683–9689. doi:10.1021/acs.jafc.5b03894CrossRefGoogle Scholar
  148. 148.
    Mucha-Pelzer T, Mewis I, Ulrichs C (2010) Response of glucosinolate and flavonoid contents and composition of Brassica rapa ssp. chinensis (L.) Hanelt to silica formulations used as insecticides. J Agric Food Chem 58:12473–12480. doi:10.1021/jf102847pCrossRefGoogle Scholar
  149. 149.
    He H, Liu L, Song S et al (2003) Evaluation of glucosinolate composition and contents in Chinese Brassica vegetables. Acta Hortic 620:85–92CrossRefGoogle Scholar
  150. 150.
    Chen X, Zhu J, Gerendás J, Zimmermann N (2008) Glucosinolates in chinese Brassica campestris vegetables: Chinese cabbage, purple cai-tai, choysum, pakchoi, and turnip. HortScience 43:571–574Google Scholar
  151. 151.
    Hanlon PR, Barnes DM (2011) Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots. J Food Sci 76:C185–C192. doi:10.1111/j.1750-3841.2010.01972.xCrossRefGoogle Scholar
  152. 152.
    Ishida M, Nagata M, Ohara T et al (2012) Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component. Breed Sci 62:63–70. doi:10.1270/jsbbs.62.63CrossRefGoogle Scholar
  153. 153.
    Kim SJ, Chae SC, Park SU (2013) Glucosinolate accumulation in three important radish (Raphanus sativus) cultivars. Aust J Crop Sci 7:1843–1847Google Scholar
  154. 154.
    Jahangir M, Abdel-Farid IB, de Vos RCH et al (2014) Metabolomic variation of Brassica rapa var. rapa (var. Raapstelen) and Raphanus sativus L. at different developmental stages. Pak J Bot 46:1445–1452Google Scholar
  155. 155.
    Font R, del RÌo-Celestino M, Cartea E, de Haro-BailÛn A (2005) Quantification of glucosinolates in leaves of leaf rape (Brassica napus ssp. pabularia) by near-infrared spectroscopy. Phytochemistry 66:175–185. doi:10.1016/j.phytochem.2004.11.011CrossRefGoogle Scholar
  156. 156.
    Cartea ME, Rodríguez VM, De Haro A et al (2008) Variation of glucosinolates and nutritional value in nabicol (Brassica napus pabularia group). Euphytica 159:111–122. doi:10.1007/s10681-007-9463-xCrossRefGoogle Scholar
  157. 157.
    Kim S-J, Chiami K, Ishii G (2006) Effect of ammonium: nitrate nutrient ratio on nitrate and glucosinolate contents of hydroponically-grown rocket salad (Eruca sativa Mill.). Soil Sci Plant Nutr 52:387–393. doi:10.1111/j.1747-0765.2006.00048.xCrossRefGoogle Scholar
  158. 158.
    Villatoro-Pulido M, Priego-Capote F, Álvarez-Sánchez B et al (2013) An approach to the phytochemical profiling of rocket [Eruca sativa (Mill.) Thell]. J Sci Food Agric 93:3809–3819. doi:10.1002/jsfa.6286CrossRefGoogle Scholar
  159. 159.
    Kim S-J, Ishii G (2007) Effect of storage temperature and duration on glucosinolate, total vitamin C and nitrate contents in rocket salad (Eruca sativa Mill.). J Sci Food Agric 87:966–973CrossRefGoogle Scholar
  160. 160.
    Francisco M, Moreno DA, Cartea ME et al (2009) Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa. J Chromatogr A 1216:6611–6619. doi:10.1016/j.chroma.2009.07.055CrossRefGoogle Scholar
  161. 161.
    Cartea ME, de Haro A, Obregón S et al (2012) Glucosinolate variation in leaves of Brassica rapa crops. Plant Foods Hum Nutr 67:283–288. doi:10.1007/s11130-012-0300-6CrossRefGoogle Scholar
  162. 162.
    Justen VL, Cohen JD, Gardner G, Fritz VA (2011) Seasonal variation in glucosinolate accumulation in turnip cultivars grown with colored plastic mulches. HortScience 46:1608–1614Google Scholar
  163. 163.
    Matthäus B, Özcan M (2002) Glucosinolate composition of young shoots and flower buds of capers (Capparis species) growing wild in Turkey. J Agric Food Chem 50:7323–7325CrossRefGoogle Scholar
  164. 164.
    Bor M, Ozkur O, Ozdemir F, Turkan I (2009) Identification and characterization of the glucosinolate–myrosinase system in caper (Capparis ovata desf.). Plant Mol Biol Report 27:518–525. doi:10.1007/s11105-009-0117-0CrossRefGoogle Scholar
  165. 165.
    Bianco G, Lelario F, Battista FG et al (2012) Identification of glucosinolates in capers by LC-ESI-hybrid linear ion trap with Fourier transform ion cyclotron resonance mass spectrometry (LC-ESI-LTQ-FTICR MS) and infrared multiphoton dissociation. J Mass Spectrom 47:1160–1169. doi:10.1002/jms.2996CrossRefGoogle Scholar
  166. 166.
    Maldini M, Maksoud S, Natella F et al (2014) Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry. J Mass Spectrom 49:900–910. doi:10.1002/jms.3437CrossRefGoogle Scholar
  167. 167.
    Amaglo NK, Bennett RN, Lo Curto RB et al (2010) Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem 122:1047–1054. doi:10.1016/j.foodchem.2010.03.073CrossRefGoogle Scholar
  168. 168.
    Rossetto MRM, Do Nascimento JRO, Purgatto E et al (2008) Benzylglucosinolate, benzylisothiocyanate, and myrosinase activity in papaya fruit during development and ripening. J Agric Food Chem 56:9592–9599. doi:10.1021/jf801934xCrossRefGoogle Scholar
  169. 169.
    O’Hare TJ, Wong LS, Williams DJ, Pun S (2008) Papaya (Carica papaya) as a source of glucotropaeolin and its active derivative, benzyl-isothiocyanate. Proc Trop Fruits Hum Nutr Heal Conf 2008:197–201Google Scholar
  170. 170.
    Li ZY, Wang Y, Shen WT, Zhou P (2012) Content determination of benzyl glucosinolate and anti-cancer activity of its hydrolysis product in Carica papaya L. Asian Pac J Trop Med 5:231–233. doi:10.1016/S1995-7645(12)60030-3CrossRefGoogle Scholar
  171. 171.
    Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci 94:10367–10372. doi:10.1073/pnas.94.19.10367CrossRefGoogle Scholar
  172. 172.
    Taormina PJ, Beuchat LR, Slutsker L (1999) Infections associated with eating seed sprouts: an international concern. Emerg Infect Dis 5:626–634. doi:10.3201/eid0505.990503CrossRefGoogle Scholar
  173. 173.
    Foley C, Harvey E, Bidol SA et al (2013) Outbreak of Escherichia coli O104:H4 infections associated with sprout consumption – Europe and North America, May-July 2011. Morb Mortal Wkly Rep 62:1029–1031Google Scholar
  174. 174.
    Vale AP, Santos J, Brito NV et al (2015) Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts. Phytochemistry. doi:10.1016/j.phytochem.2015.02.004Google Scholar
  175. 175.
    Baenas N, Moreno DA, García-Viguera C (2012) Selecting sprouts of Brassicaceae for optimum phytochemical composition. J Agric Food Chem 60:11409–11420. doi:10.1021/jf302863cCrossRefGoogle Scholar
  176. 176.
    Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121:1014–1019. doi:10.1016/j.foodchem.2010.01.040CrossRefGoogle Scholar
  177. 177.
    Guo L, Yang R, Zhou Y, Gu Z (2015) Heat and hypoxia stresses enhance the accumulation of aliphatic glucosinolates and sulforaphane in broccoli sprouts. Eur Food Res Technol. doi:10.1007/s00217-015-2522-yGoogle Scholar
  178. 178.
    Kusznierewicz B, Iori R, Piekarska A et al (2013) Convenient identification of desulfoglucosinolates on the basis of mass spectra obtained during liquid chromatography-diode array-electrospray ionisation mass spectrometry analysis: method verification for sprouts of different Brassicaceae species extract. J Chromatogr A 1278:108–115. doi:10.1016/j.chroma.2012.12.075CrossRefGoogle Scholar
  179. 179.
    De Nicola GR, Bagatta M, Pagnotta E et al (2013) Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts. Food Chem 141:297–303. doi:10.1016/j.foodchem.2013.02.102CrossRefGoogle Scholar
  180. 180.
    Mewis I, Schreiner M, Nguyen CN et al (2012) UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant Cell Physiol 53:1546–1560. doi:10.1093/pcp/pcs096CrossRefGoogle Scholar
  181. 181.
    Piekarska A, Kołodziejski D, Pilipczuk T et al (2014) The influence of selenium addition during germination of Brassica seeds on health-promoting potential of sprouts. Int J Food Sci Nutr 65:692–702. doi:10.3109/09637486.2014.917148CrossRefGoogle Scholar
  182. 182.
    Roine P, Uksila E, Teir H, Rapola J (1960) Histopathological changes in rats and pigs fed rapeseed oil. Z Ernahrungswiss 1:118–124. doi:10.1007/BF02021352CrossRefGoogle Scholar
  183. 183.
    Abdellatif AM (1972) Cardiopathogenic effects of dietary rapeseed oil. Nutr Rev 30:2–6CrossRefGoogle Scholar
  184. 184.
    Beare-Rogers JL, Nera EA, Heggtveit HA (1971) Cardiac lipid changes in rats fed oils containing long-chain fatty acids. Can Inst Food Technol J 4:120–124. doi:10.1016/S0008-3860(71)74194-4CrossRefGoogle Scholar
  185. 185.
    Kramer JKG, Mahadevan S, Hunt JR et al (1973) Growth rate, lipid composition, metabolism and myocardial lesions of rats fed rapeseed oils (Brassica campestris var. Arlo, Echo and Span, and B. napus var. Oro). J Nutr 103:1696–1708Google Scholar
  186. 186.
    Aherne FX, Bowland JP, Hardin RT, Christian RG (1976) Performance of myocardial and blood seral changes in pigs fed diets containing high or low erucic acid rapeseed oils. Can J Anim Sci 56:275–284. doi:10.4141/cjas76-032CrossRefGoogle Scholar
  187. 187.
    Badawy IH, Atta B, Ahmed WM (1994) Biochemical and toxicological studies on the effect of high and low erucic acid rapeseed oil on rats. Nahrung 38:402–411CrossRefGoogle Scholar
  188. 188.
    Przybylski R (2011) Vegetable oils in food technology. Wiley-Blackwell, Oxford, UKGoogle Scholar
  189. 189.
    Prchalová J, Kovařík F, Ševčík R et al (2014) Characterization of mustard seeds and paste by DART ionization with time-of-flight mass spectrometry. J Mass Spectrom 49:811–818CrossRefGoogle Scholar
  190. 190.
    Paunovic D, Solevic-Knudsen T, Krivokapic M et al (2012) Sinalbin degradation products in mild yellow mustard paste. Hem Ind 66:29–32CrossRefGoogle Scholar
  191. 191.
    Ciska E, Pathak DR (2004) Glucosinolate derivatives in stored fermented cabbage. J Agric Food Chem 52:7938–7943. doi:10.1021/jf048986+CrossRefGoogle Scholar
  192. 192.
    Bennett RN, Mellon FA, Foidl N et al (2003) Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L. J Agric Food Chem 51:3546–3553. doi:10.1021/jf0211480CrossRefGoogle Scholar
  193. 193.
    Papas A, Ingalls JR, Campbell LD (1979) Studies on the effects of rapeseed meal on thyroid status of cattle, glucosinolate and iodine content of milk and other parameters. J Nutr 109:1129–1139Google Scholar
  194. 194.
    Persano Oddo L, Piana L, Bogdanov S et al (2004) Botanical species giving unifloral honey in Europe. Apidologie 35:S82–S93CrossRefGoogle Scholar
  195. 195.
    Ares AM, Nozal MJ, Bernal J (2015) Development and validation of a liquid chromatography-tandem mass spectrometry method to determine intact glucosinolates in bee pollen. J Chromatogr B 1000:49–56. doi:10.1016/j.jchromb.2015.07.017CrossRefGoogle Scholar
  196. 196.
    Truchado P, Tourn E, Gallez LM et al (2010) Identification of botanical biomarkers in Argentinean diplotaxis honeys: flavonoids and glucosinolates. J Agric Food Chem 58:12678–12685. doi:10.1021/jf103589cCrossRefGoogle Scholar
  197. 197.
    Hanschen FS, Lamy E, Schreiner M, Rohn S (2014) Reactivity and stability of glucosinolates and their breakdown products in foods. Angew Chem Int Ed Engl 53:11430–11450. doi:10.1002/anie.201402639CrossRefGoogle Scholar
  198. 198.
    Hennig K, Verkerk R, van Boekel MAJS et al (2014) Food science meets plant science: a case study on improved nutritional quality by breeding for glucosinolate retention during food processing. Trends Food Sci Technol 35:61–68. doi:10.1016/j.tifs.2013.10.006CrossRefGoogle Scholar
  199. 199.
    Nugrahedi PY, Verkerk R, Widianarko B, Dekker M (2015) A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: a review. Crit Rev Food Sci Nutr 55:823–838CrossRefGoogle Scholar
  200. 200.
    Rodrigues AS, Rosa EAS (1999) Effect of post-harvest treatments on the level of glucosinolates in broccoli. J Sci Food Agric 79:1028–1032. doi:10.1002/(SICI)1097-0010(19990515)79:7<1028::AID-JSFA322>3.0.CO;2-ICrossRefGoogle Scholar
  201. 201.
    Rangkadilok N, Tomkins B, Nicolas ME et al (2002) The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. italica). J Agric Food Chem 50:7386–7391. doi:10.1021/jf0203592CrossRefGoogle Scholar
  202. 202.
    Hansen M, Moller P, Sorensen H, Cantwell M (1995) Glucosinolates in broccoli stored under controlled atmosphere. J Am Soc Hortic Sci 120:1069–1074Google Scholar
  203. 203.
    Verkerk R, Dekker M, Jongen WM (2001) Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. J Sci Food Agric 81:953–958CrossRefGoogle Scholar
  204. 204.
    Song L, Thornalley PJ (2007) Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45:216–224. doi:10.1016/j.fct.2006.07.021CrossRefGoogle Scholar
  205. 205.
    Quinsac A, Charrier A, Ribaillier D, Peron JY (1994) Glucosinolates in etiolated sprouts of sea-kale (Crambe maritima L.). J Sci Food Agric 65:201–207CrossRefGoogle Scholar
  206. 206.
    Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2007) Effect of cooking Brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proc Nutr Soc 66:69–81. doi:10.1017/S0029665107005319CrossRefGoogle Scholar
  207. 207.
    Verkerk R, Dekker M (2004) Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem 52:7318–7323CrossRefGoogle Scholar
  208. 208.
    Vallejo F, Tomas-Barberan FA, Garcia-Viguera C (2002) Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. Eur Food Res Technol 215:310–316CrossRefGoogle Scholar
  209. 209.
    Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236. doi:10.1016/j.phrs.2007.01.009CrossRefGoogle Scholar
  210. 210.
    Agudo A, Ibáñez R, Amiano P et al (2008) Consumption of cruciferous vegetables and glucosinolates in a Spanish adult population. Eur J Clin Nutr 62:324–331CrossRefGoogle Scholar
  211. 211.
    AICR (2008) Food, nutrition, physical activity, and the prevention of cancer: a Global perspective. American institute for cancer research, Washington, Dc.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Marco Possenti
    • 1
    Email author
  • Simona Baima
    • 1
  • Antonio Raffo
    • 1
  • Alessandra Durazzo
    • 1
  • Anna Maria Giusti
    • 2
  • Fausta Natella
    • 1
  1. 1.CREA-NUT, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Food and Nutrition Research CentreRomeItaly
  2. 2.Department of Experimental Medicine, Medical Physiopathology, Food Science and Endocrinology SectionFood Science and Human Nutrition Research Unit – University “Sapienza” of RomeRomeItaly

Personalised recommendations