Advertisement

Genetics and Breeding of Brassica Crops

  • Pablo VelascoEmail author
  • Víctor Manuel Rodríguez
  • Marta Francisco
  • María Elena Cartea
  • Pilar Soengas
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Brassica genus includes very common crops including oilseeds (oilseed rape, mustard) and vegetables (broccoli, cauliflower, Brussels sprouts, cabbage, turnip, Chinese cabbage, pak choi, etc.). Glucosinolates are the major class of secondary metabolites in the family Brassicaceae, and their hydrolytic products have beneficial effects in plant protection and human health. Knowledge on the genetics and inheritance of these compounds may be used to modify the content and the profile of glucosinolates. In this review, we summarize the identification of the main genes related to glucosinolate synthesis in crops of the Brassica genus using different tools, such as syntenic information with the model plant Arabidopsis, whole-genome sequence information, or identification of quantitative trait loci. Breeding programs to decrease total glucosinolate content of seed (oilseeds, mustards) or to increase the content of a specific glucosinolate (glucoraphanin in broccoli) through conventional breeding or genetic engineering are also reviewed. Besides, recent studies on genetics of glucosinolates in other crops that do not belong to Brassica (Raphanus, Sinapis, etc.) are also presented.

Keywords

Brassica genus Brassicaceae Genes Regulation Breeding QTLs 

References

  1. 1.
    FAOSTAT (2016) Food and agriculture organization of the United Nations. In: FAOSTAT databaseGoogle Scholar
  2. 2.
    Cartea ME, Velasco P (2007) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7:213–229CrossRefGoogle Scholar
  3. 3.
    Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51CrossRefGoogle Scholar
  4. 4.
    Mithen RF (2001) Glucosinolates and their degradation products. Adv Bot Res 35:213–232CrossRefGoogle Scholar
  5. 5.
    Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods 2:310–325CrossRefGoogle Scholar
  6. 6.
    Wang Y, Pan Y, Liu Z, Zhu X, Zhai L, Xu L, Yu R, Gong Y, Liu L (2013) De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism. BMC Genomics 14:836–848CrossRefGoogle Scholar
  7. 7.
    Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:31CrossRefGoogle Scholar
  8. 8.
    Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X (2011) Glucosinolate biosynthetic genes in Brassica rapa. Gene 487:135–142CrossRefGoogle Scholar
  9. 9.
    Pfalz M, Vogel H, Kroymann J (2009) The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in arabidopsis. Plant Cell 21:985–999CrossRefGoogle Scholar
  10. 10.
    Wiesner M, Schreiner M, Zrenner R (2014) Functional identification of genes responsible for the biosynthesis of 1-methoxy-indol-3-ylmethyl-glucosinolate in Brassica rapa ssp. chinensis. BMC Plant Biol 14:124CrossRefGoogle Scholar
  11. 11.
    Magrath R, Bano F, Morgner M, Parkin I, Sharpe A, Lister C, Dean C, Turner J, Lydiate D, Mithen RF (1994) Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 72:290–299CrossRefGoogle Scholar
  12. 12.
    Giamoustaris A, Mithen RF (1996) Genetics of aliphatic glucosinolates. IV. Side-chain modification in Brassica oleracea. TAG Theor Appl Genet 93:1006–1010CrossRefGoogle Scholar
  13. 13.
    Mithen RF, Clarke J, LIister C, Dean C (1995) Genetics of aliphatic glucosinolates. III. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana. Heredity 74:210–215CrossRefGoogle Scholar
  14. 14.
    Parkin I, Magrath R, Keith D, Sharpe A, Mithen RF, Lydiate D (1994) Genetics of aliphatic glucosinolates. II. Hydroxylation of alkenyl glucosinolates in Brassica napus. Heredity 72:594–598CrossRefGoogle Scholar
  15. 15.
    Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. TAG Theor Appl Genet 106:1116–1121CrossRefGoogle Scholar
  16. 16.
    Hall C, McCallum D, Prescott A, Mithen RF (2001) Biochemical genetics of glucosinolate modification in Arabidopsis and Brassica. TAG Theor Appl Genet 102:369–374CrossRefGoogle Scholar
  17. 17.
    Li G, Riaz A, Goyal S, Abel S, Quiros CF (2001) Inheritance of three major genes involved in the synthesis of aliphatic glucosinolates in Brassica oleracea. J Am Soc Hortic Sci 126:427–431Google Scholar
  18. 18.
    Li G, Quiros CF (2002) Genetic analysis, expression and molecular characterization of BoGSL-ELONG, a major gene involved in the aliphatic glucosinolate pathway of brassica species. Genetics 162:1937–1943Google Scholar
  19. 19.
    Gao M, Li G, Yang B, McCombie WR, Quiros CF (2004) Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome 47:666–679CrossRefGoogle Scholar
  20. 20.
    Kliebenstein DJ (2009) A quantitative genetics and ecological model system: understanding the aliphatic glucosinolate biosynthetic network via QTLs. Phytochem Rev 8:243–254CrossRefGoogle Scholar
  21. 21.
    Hansen BG, Kliebenstein DJ, Halkier BA (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J 50:902–910CrossRefGoogle Scholar
  22. 22.
    Zang YX, Kim HU, Kim JA, Lim MH, Jin M, Lee SC, Kwon SJ, Lee SI, Hong JK, Park TH et al (2009) Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J 276:3559–3574CrossRefGoogle Scholar
  23. 23.
    Zhu B, Wang Z, Yang J, Zhu Z, Wang H (2012) Isolation and expression of glucosinolate synthesis genes CYP83A1 and CYP83B1 in Pak Choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S.H. Lee) Hanelt). Int J Mol Sci 13:5832–5843CrossRefGoogle Scholar
  24. 24.
    Hirani AH, Zelmer CD, McVetty PB, Daayf F, Li G (2013) Homoeologous GSL-ELONG gene replacement for manipulation of aliphatic glucosinolates in Brassica rapa L. by marker assisted selection. Front Plant Sci 4:55CrossRefGoogle Scholar
  25. 25.
    Augustine R, Majee M, Gershenzon J, Bisht NC (2013) Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolyploid Brassica juncea. J Exp Bot 64:4907–4921CrossRefGoogle Scholar
  26. 26.
    Meenu, Augustine R, Majee M, Pradhan AK, Bisht NC (2015) Genomic origin, expression differentiation and regulation of multiple genes encoding CYP83A1, a key enzyme for core glucosinolate biosynthesis, from the allotetraploid Brassica juncea. Planta 241:651–665CrossRefGoogle Scholar
  27. 27.
    Baskar V, Park SW (2015) Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis. C R Biol 338:434–442CrossRefGoogle Scholar
  28. 28.
    Yi GE, Robin AH, Yang K, Park JI, Kang JG, Yang TJ, Nou IS (2015) Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules 20:13089–13111CrossRefGoogle Scholar
  29. 29.
    Frerigmann H, Gigolashvili T (2014) MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant 7:814–828CrossRefGoogle Scholar
  30. 30.
    Grubb DC, Zipp BJ, Ludwig-Müller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908CrossRefGoogle Scholar
  31. 31.
    Klein M, Reichelt M, Gershenzon J, Papenbrock J (2006) The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed. FEBS J 273:122–136CrossRefGoogle Scholar
  32. 32.
    Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72CrossRefGoogle Scholar
  33. 33.
    Pfalz M, Mikkelsen MD, Bednarek P, Olsen CE, Halkier BA, Kroymann J (2011) Metabolic engineering in nicotiana benthamiana reveals key enzyme functions in arabidopsis indole glucosinolate modification. Plant Cell 23:716–729CrossRefGoogle Scholar
  34. 34.
    Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci 15:283–290CrossRefGoogle Scholar
  35. 35.
    Hirschmann F, Papenbrock J (2015) The fusion of genomes leads to more options: a comparative investigation on the desulfo-glucosinolate sulfotransferases of Brassica napus and homologous proteins of Arabidopsis thaliana. Plant Physiol Biochem 91:10–19CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Huai D, Yang Q, Cheng Y, Ma M, Kliebenstein DJ, Zhou Y (2015) Overexpression of three glucosinolate biosynthesis genes in Brassica napus identifies enhanced resistance to Sclerotinia sclerotiorum and Botrytis cinerea. PLoS One 10:e0140491CrossRefGoogle Scholar
  37. 37.
    Yun-Xiang Z, Myung-Ho L, Beom-Seok P, Seung-Beom H, Doo Hwan K (2008) Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Mol Cells 25:231–241Google Scholar
  38. 38.
    Zang Y-X, Lim M-H, Park B-S, Hong S-B, Kim DH (2008) Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Mol Cells 25:231–241Google Scholar
  39. 39.
    Gao J, Yu X, Ma F, Li J (2014) RNA-Seq analysis of transcriptome and glucosinolate metabolism in seeds and sprouts of broccoli (Brassica oleracea var.). PLoS One 9:e88804CrossRefGoogle Scholar
  40. 40.
    Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem 275:14659–14666CrossRefGoogle Scholar
  41. 41.
    Klein M, Papenbrock J (2009) Kinetics and substrate specificities of desulfo-glucosinolate sulfotransferases in Arabidopsis thaliana. Physiol Plant 135:140–149CrossRefGoogle Scholar
  42. 42.
    Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B et al (2014) Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 345:950–953CrossRefGoogle Scholar
  43. 43.
    Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The arabidopsis ATR1 MYB transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137:253–262CrossRefGoogle Scholar
  44. 44.
    Gigolashvili T, Berger B, Flügge U-I (2009) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem Rev 8:3–13CrossRefGoogle Scholar
  45. 45.
    Araki R, Hasumi A, Nishizawa OI, Sasaki K, Kuwahara A, Sawada Y, Totoki Y, Toyoda A, Sakaki Y, Li Y et al (2013) Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production. Plant Biotechnol J 11:1017–1027CrossRefGoogle Scholar
  46. 46.
    Koritsas VM, Lewis JA, Fenwick GR (1991) Glucosinolate responses of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala). Ann Appl Biol 118:209–221CrossRefGoogle Scholar
  47. 47.
    Brader G, Tas É, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol 126:849–860CrossRefGoogle Scholar
  48. 48.
    Bodnaryk RP (1992) The international journal of plant biochemistry effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry 31:2671–2677CrossRefGoogle Scholar
  49. 49.
    Doughty KJ, Kiddle GA, Pye BJ, Wallsgrove RM, Pickett JA (1995) Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry 38:347–350CrossRefGoogle Scholar
  50. 50.
    Baenas N, García-Viguera C, Moreno DA (2014) Biotic elicitors effectively increase the glucosinolates content in Brassicaceae sprouts. J Agric Food Chem 62:1881–1889CrossRefGoogle Scholar
  51. 51.
    Thiruvengadam M, Kim S-H, Chung I-M (2015) Exogenous phytohormones increase the accumulation of health-promoting metabolites, and influence the expression patterns of biosynthesis related genes and biological activity in Chinese cabbage (Brassica rapa spp. pekinensis). Sci Hortic 193:136–146CrossRefGoogle Scholar
  52. 52.
    van Doorn HE, van der Kruk GC, van Holst GJ, Raaijmakers-Ruijs N, Postma E, Groeneweg B, Jongen WHF (1998) The glucosinolates sinigrin and progoitrin are important determinants for taste preference and bitterness of brussels sprouts. J Sci Food Agric 78:30–38CrossRefGoogle Scholar
  53. 53.
    Traka M, Mithen RF (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282CrossRefGoogle Scholar
  54. 54.
    Liu Z, Hirani A, McVetty PBE, Daayf F, Quiros C, Li G (2012) Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family. Plant Mol Biol 79:179–189CrossRefGoogle Scholar
  55. 55.
    Cartea ME, Velasco P, Obregon S, Padilla G, de Haro A (2008) Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403–410CrossRefGoogle Scholar
  56. 56.
    Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548CrossRefGoogle Scholar
  57. 57.
    Bradshaw J, Wilson R (2012) Kale population improvement and cultivar production. Euphytica 184:275–288CrossRefGoogle Scholar
  58. 58.
    Toroser D, Thormann CE, Osborn TC, Mithen R (1995) RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape (Brassica napus L). Theor Appl Genet 91:802–808CrossRefGoogle Scholar
  59. 59.
    Rucker B, Robbelen G (1994) Inheritance of total and individual glucosinolate contents in seeds of winter oilseed rape (Brassica napus L). Plant Breed 113:206–216CrossRefGoogle Scholar
  60. 60.
    Li Y, Kiddle GUY, Bennett R, Doughty K, Wallsgrove R (1999) Variation in the glucosinolate content of vegetative tissues of Chinese lines of Brassica napus L. Ann Appl Biol 134:131–136CrossRefGoogle Scholar
  61. 61.
    Riso P, Del Bo’ C, Vendrame S (2014) Preventive effects of broccoli bioactives: role on oxidative stress and cancer risk. In: Preedy VR (ed) Cancer: oxidative stress and dietary antioxidants. Elsevier Science Publisher, San Diego, pp 115–126CrossRefGoogle Scholar
  62. 62.
    Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127CrossRefGoogle Scholar
  63. 63.
    Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984CrossRefGoogle Scholar
  64. 64.
    Faulkner K (1998) Selective increase of the potential anticarcinogen 4- methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis 19:605–609CrossRefGoogle Scholar
  65. 65.
    Mithen R (2003) Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor Appl Genet 106:727–734CrossRefGoogle Scholar
  66. 66.
    Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A 94:10367–10372CrossRefGoogle Scholar
  67. 67.
    Traka M, Saha S, Huseby S, Kopriva S, Walley P, Barker G, Moore J, Mero G, van den Bosch F, Constant H et al (2013) Genetic regulation of glucoraphanin accumulation in Beneforté®broccoli. New Phytol 198:1085–1095CrossRefGoogle Scholar
  68. 68.
    Zang Y-X, Kim J-H, Park Y-D, Kim D-H, Hong S-B (2008) Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. BMB Rep 41:472–478CrossRefGoogle Scholar
  69. 69.
    Geu Flores F, Olsen C, Halkier BA (2009) Towards engineering glucosinolates into non-cruciferous plants. Planta 229:261–270CrossRefGoogle Scholar
  70. 70.
    Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–460CrossRefGoogle Scholar
  71. 71.
    Uzunova M, Ecke W, Weissleder K, Robbelen G (1995) Mapping the genome of rapeseed (Brassica napus l).1. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204CrossRefGoogle Scholar
  72. 72.
    deQuiroz HC, Mithen R (1996) Molecular markers for low-glucosinolate alleles in oilseed rape (Brassica napus L). Mol Breed 2:277–281CrossRefGoogle Scholar
  73. 73.
    Zhao J, Meng J (2003) Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed 122:19–23CrossRefGoogle Scholar
  74. 74.
    Fu Y, Lu K, Qian LW, Mei JQ, Wei DY, Peng XH, Xu XF, Li JN, Frauen M, Dreyer F et al (2015) Development of genic cleavage markers in association with seed glucosinolate content in canola. Theor Appl Genet 128:1029–1037CrossRefGoogle Scholar
  75. 75.
    Feng J, Long Y, Shi L, Shi JQ, Barker G, Meng JL (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108CrossRefGoogle Scholar
  76. 76.
    Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113:549–561CrossRefGoogle Scholar
  77. 77.
    Xu JF, Long Y, Wu JG, Xu HM, Zhao ZG, Wen J, Meng JL, Shi CH (2015) QTL identification on two genetic systems for rapeseed glucosinolate and erucic acid contents over two seasons. Euphytica 205:647–657CrossRefGoogle Scholar
  78. 78.
    Gajardo HA, Wittkop B, Soto-Cerda B, Higgins EE, Parkin IAP, Snowdon RJ, Federico ML, Iniguez-Luy FL (2015) Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Mol Breed 35:143Google Scholar
  79. 79.
    Wurschum T, Liu WX, Maurer HP, Abel S, Reif JC (2012) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124:153–161CrossRefGoogle Scholar
  80. 80.
    Rout K, Sharma M, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK (2015) Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations. Theor Appl Genet 128:657–666CrossRefGoogle Scholar
  81. 81.
    Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR (2003) Molecular mapping of seed aliphatic glucosinolates in Brassica juncea. Genome 46:753–760CrossRefGoogle Scholar
  82. 82.
    Gupta S, Sangha MK, Kaur G, Banga S, Gupta M, Kumar H, Banga SS (2015) QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard (Brassica juncea L.). Euphytica 201:345–356CrossRefGoogle Scholar
  83. 83.
    Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2007) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of ‘true’ QTL. Theor Appl Genet 116:77–85CrossRefGoogle Scholar
  84. 84.
    Bisht NC, Gupta V, Ramchiary N, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2009) Fine mapping of loci involved with glucosinolate biosynthesis in oilseed mustard (Brassica juncea) using genomic information from allied species. Theor Appl Genet 118:413–421CrossRefGoogle Scholar
  85. 85.
    Rahman H, Kebede B, Zimmerli C, Yang RC (2014) Genetic study and QTL mapping of seed glucosinolate content in Brassica rapa L. Crop Sci 54:537–543CrossRefGoogle Scholar
  86. 86.
    Lou P, Zhao J, He H, Hanhart C, Del Carpio DP, Verkerk R, Custers J, Koornneef M, Bonnema G (2008) Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New Phytol 179:1017–1032CrossRefGoogle Scholar
  87. 87.
    Del Carpio DP, Basnet RK, Arends D, Lin K, De Vos RCH, Muth D, Kodde J, Boutilier K, Bucher J, Wang XW et al (2014) Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway. PLoS One 9:e107123Google Scholar
  88. 88.
    Bagheri H, El-Soda M, Kim HK, Fritsche S, Jung C, Aarts MGM (2013) Genetic analysis of health-related secondary metabolites in a Brassica rapa Recombinant inbred line population. Int J Mol Sci 14:15561–15577CrossRefGoogle Scholar
  89. 89.
    Brown AF, Yousef GG, Reid RW, Chebrolu KK, Thomas A, Krueger C, Jeffery E, Jackson E, Juvik JA (2015) Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms. Theor Appl Genet 128:1431–1447CrossRefGoogle Scholar
  90. 90.
    Sotelo T, Soengas P, Velasco P, Rodriguez VM, Cartea ME (2014) Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds. PLoS One 9:e91428Google Scholar
  91. 91.
    Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S et al (2014) Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21:481–490CrossRefGoogle Scholar
  92. 92.
    Ediage EN, Di Mavungu JD, Scippo ML, Schneider YJ, Larondelle Y, Callebaut A, Robbens J, Van Peteghem C, De Saeger S (2011) Screening, identification and quantification of glucosinolates in black radish (Raphanus sativus L. niger) based dietary supplements using liquid chromatography coupled with a photodiode array and liquid chromatography-mass spectrometry. J Chromatogr 1218:4395–4405CrossRefGoogle Scholar
  93. 93.
    Ishida M, Nagata M, Ohara T, Kakizaki T, Hatakeyama K, Nishio T (2012) Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component. Breed Sci 62:63–70CrossRefGoogle Scholar
  94. 94.
    Carlson D, Axenbichler M, van Etten C (1985) Glucosinolate in radish cultivars. J Am Soc Hortic Sci 110:634–638Google Scholar
  95. 95.
    Zou Z, Ishida M, Li F, Kakizaki T, Suzuki S, Kitashiba H, Nishio T (2013) QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. PLoS One 8:e53541CrossRefGoogle Scholar
  96. 96.
    Ishida M, Kakizaki T, Morimitsu Y, Ohara T, Hatakeyama K, Yoshiaki H, Kohori J, Nishio T (2015) Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.). TAG Theor Appl Genet 128:2037–2046CrossRefGoogle Scholar
  97. 97.
    Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae) -chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92CrossRefGoogle Scholar
  98. 98.
    Hopkins R, Ekbom B, Henkow L (1998) Glucosinolate content and susceptibility for insect attack of three populations of Sinapis alba. J Chem Ecol 24:1203–1216CrossRefGoogle Scholar
  99. 99.
    Liangcheng D, Halkier BA (1998) Biosynthesis of glucosinolates in the developing silique walls and seeds of Sinapis alba. Phytochemistry 48:1145–1150CrossRefGoogle Scholar
  100. 100.
    Drost W, Rakow G, Raney P (1999) Inheritance of glucosinolate content in yellow mustard (Sinapis alba L.). In: Proceedings of the 10th international rapeseed congress. CanberraGoogle Scholar
  101. 101.
    Javidfar F, Cheng B (2013) Construction of a genetic linkage map and QTL analysis of erucic acid content and glucosinolate components in yellow mustard (Sinapis alba L.). BMC Plant Biol 13:142CrossRefGoogle Scholar
  102. 102.
    Agerbirk N, Ørgaard M, Nielsen JK (2003) Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry 63:69–80CrossRefGoogle Scholar
  103. 103.
    van Leur H, Raaijmakers CE, van Dam NM (2006) A heritable glucosinolate polymorphism within natural populations of Barbarea vulgaris. Phytochemistry 67:1214–1223CrossRefGoogle Scholar
  104. 104.
    Kuzina V, Nielsen JK, Augustin JM, Torp AM, Bak S, Andersen SB (2011) Barbarea vulgaris linkage map and quantitative trait loci for saponins, glucosinolates, hairiness and resistance to the herbivore Phyllotreta nemorum. Phytochemistry 72:188–198CrossRefGoogle Scholar
  105. 105.
    Schranz ME, Manzaneda AJ, Windsor AJ, Clauss MJ, Mitchell-Olds T (2009) Ecological genomics of Boechera stricta: identification of a QTL controlling the allocation of methionine- vs branched-chain amino acid-derived glucosinolates and levels of insect herbivory. Heredity 102:465–474CrossRefGoogle Scholar
  106. 106.
    Bennett RN, Mellon FA, Botting NP, Eagles J, Rosa EA, Williamson G (2002) Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (salad rocket). Phytochemistry 61:25–30CrossRefGoogle Scholar
  107. 107.
    Iori R, Bernardi R, Gueyrard D, Rollin P, Palmieri S (1999) Formation of glucoraphanin by chemoselective oxidation of natural glucoerucin: a chemoenzymatic route to sulforaphane. Bioorg Med Chem Lett 9:1047–1048CrossRefGoogle Scholar
  108. 108.
    Stowe KA, Marquis RJ (2011) Cost of defense: correlated responses to divergent selection for foliar glucosinolate content in Brassica rapa. Evol Ecol 25:763–775CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Pablo Velasco
    • 1
    Email author
  • Víctor Manuel Rodríguez
    • 1
  • Marta Francisco
    • 1
  • María Elena Cartea
    • 1
  • Pilar Soengas
    • 1
  1. 1.Group of Genetics, Breeding and Biochemistry of BrassicasMisión Biológica de Galicia (CSIC)PontevedraSpain

Personalised recommendations