Advertisement

Glucosinolates pp 339-379 | Cite as

Therapeutic Paradigm Underscoring Glucosinolate Sulforaphane in Chemo- and Radiosensitization of Cancer: Preclinical and Clinical Perspective

  • Sanjeev BanerjeeEmail author
  • Shivani B. Paruthy
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Fruits and vegetables harbor innocuous bioactive compounds which after absorption and distribution tend to have an effect on general defense mechanism of the body including cancer prevention and therapeutic effects. Emerging knowledge from clinical and laboratory studies reveal an important insight regarding their mechanism of action orchestrating therapeutic paradigm with conventional cancer treatment modalities to enhance the curative index of cancer treatment. However, unlike conventional cancer therapeutics, natural bioactive compounds rarely develop resistance undermining their chemopreventive actions. One such bioactive natural compound – sulforaphane, a cognate isothiocyanate limited mostly to vegetables of Brassica family and enriched in broccoli – is considered a promising chemopreventive agent against cancer. Sulforaphane is released from hydrolysis of glucoraphanin isothiocyanate by action of myrosinase enzyme which is also found localized inside vegetal tissues. Overwhelming evidence points to sulforaphane’s multitargeted actions operationally targeting core cell survival signaling pathways in tumor cells and enzyme induction mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated transcriptions of genes encoding carcinogen detoxification, antioxidant enzymes, and other effects including reversal of resistance and reduction in the systemic toxicity of drug. This chapter presents a broad perspective on the role of sulforaphane in augmenting multimodal cancer therapy including putative mechanism complementing the efficacy of chemo- and radiotherapy with presumptive notion of its future use in clinics in fight against cancer and patient’s benefit. Clinical trials have also been reviewed to ensure clinical safety and efficacy of sulforaphane in patients diagnosed with cancer.

Keywords

Glucosinolate Isothiocyanates Brassicaceae Glucoraphanin Sulforaphane Chemosensitization Chemoresistance Radiosensitization 

Abbreviations

ALDH-1

Aldehyde dehydrogenase 1

ARE

Antioxidant response element

BCl2

B-cell lymphoma 2

COX-2

Cycloxygenase-2

GSC

Genomic standards consortium

GTC

Green tea catechins

HCG

Human chorionic gonadotropin

HNF-3β

Hepatocyte nuclear factor 3β

HRR

Homologous recombination repair

IL-1β

Interleukin-1β

Keap-1

Kelch-like ECH-associated protein 1

MAPK

Mitogen-activated protein kinases

NF-κB

Nuclear factor- kappa B

NHEJ

Nonhomologous end joining

NOD/SCID

Nonobese diabetic/severe combined immunodeficiency

Nrf2

Nuclear factor erythroid 2-related factor 2

Oct 2/3

Octamer transcription factor-2/3

OTX-2

Orthodenticle homeobox 2

PDX-1

Pancreatic and duodenal homeobox 1

PET

Positron emission tomography

TP63

Tumor protein p63

UV

Ultraviolet

VEGFR-2

Vascular endothelial growth factor receptor-2

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30CrossRefGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  3. 3.
    Steinmetz KA, Potter JD (1991) Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes Control 2:325–357CrossRefGoogle Scholar
  4. 4.
    Potter JD, Steinmetz K (1996) Vegetables, fruit and phytoestrogens as preventive agents. IARC Sci Publ 139:61–90Google Scholar
  5. 5.
    Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78:517S–520SGoogle Scholar
  6. 6.
    Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29CrossRefGoogle Scholar
  7. 7.
    D’Incalci M, Steward WP, Gescher AJ (2005) Use of cancer chemopreventive phytochemicals as antineoplastic agents. Lancet Oncol 6:899–904CrossRefGoogle Scholar
  8. 8.
    Sarkar FH, Li Y (2006) Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res 66:3347–3350CrossRefGoogle Scholar
  9. 9.
    van Poppel G, Verhoeven DT, Verhagen H, Goldbohm RA (1999) Brassica vegetables and cancer prevention. Epidemiology and mechanisms. Adv Exp Med Biol 472:159–168CrossRefGoogle Scholar
  10. 10.
    Bosetti C, Filomeno M, Riso P, Polesel J, Levi F, Talamini R, Montella M, Negri E, Franceschi S, La Vecchia C (2012) Cruciferous vegetables and cancer risk in a network of case-control studies. Ann Oncol 23:2198–2203CrossRefGoogle Scholar
  11. 11.
    IARC (2004) Cruciferous vegetables, isothiocyanates and indoles. International Agency for Research on Cancer, LyonGoogle Scholar
  12. 12.
    Navarro SL, Li F, Lampe JW (2011) Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct 2:579–587CrossRefGoogle Scholar
  13. 13.
    Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A 94:10367–10372CrossRefGoogle Scholar
  14. 14.
    Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548CrossRefGoogle Scholar
  15. 15.
    Gasper AV, Al-Janobi A, Smith JA, Bacon JR, Fortun P, Atherton C, Taylor MA, Hawkey CJ, Barrett DA, Mithen RF (2005) Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am J Clin Nutr 82:1283–1291Google Scholar
  16. 16.
    Hu R, Khor TO, Shen G, Jeong WS, Hebbar V, Chen C, Xu C, Reddy B, Chada K, Kong AN (2006) Cancer chemoprevention of intestinal polyposis in ApcMin/+ mice by sulforaphane, a natural product derived from cruciferous vegetable. Carcinogenesis 27:2038–2046CrossRefGoogle Scholar
  17. 17.
    Kassahun K, Davis M, Hu P, Martin B, Baillie T (1997) Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates. Chem Res Toxicol 10:1228–1233CrossRefGoogle Scholar
  18. 18.
    Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269:291–304CrossRefGoogle Scholar
  19. 19.
    Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, Chen MS, Stierer T, Garrett-Mayer E, Argani P et al (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28:1485–1490CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Tang L (2007) Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin 28:1343–1354CrossRefGoogle Scholar
  21. 21.
    Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127CrossRefGoogle Scholar
  22. 22.
    Fimognari C, Hrelia P (2007) Sulforaphane as a promising molecule for fighting cancer. Mutat Res 635:90–104CrossRefGoogle Scholar
  23. 23.
    Awasthi YC, Jaiswal S, Sahu M, Sharma A (2014) Mechanisms of chemopreventive activity of Sulforaphane. Springer, IndiaCrossRefGoogle Scholar
  24. 24.
    Fahey JW, Talalay P (1999) Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol 37:973–979CrossRefGoogle Scholar
  25. 25.
    Myzak MC, Dashwood RH (2006) Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett 233:208–218CrossRefGoogle Scholar
  26. 26.
    Jakubikova J, Sedlak J, Mithen R, Bao Y (2005) Role of PI3K/Akt and MEK/ERK signaling pathways in sulforaphane- and erucin-induced phase II enzymes and MRP2 transcription, G2/M arrest and cell death in Caco-2 cells. Biochem Pharmacol 69:1543–1552CrossRefGoogle Scholar
  27. 27.
    Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC (2015) Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal 22:1382–1424CrossRefGoogle Scholar
  28. 28.
    Rajendran P, Delage B, Dashwood WM, Yu TW, Wuth B, Williams DE, Ho E, Dashwood RH (2011) Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Mol Cancer 10:68CrossRefGoogle Scholar
  29. 29.
    Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774CrossRefGoogle Scholar
  30. 30.
    Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG (2004) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr 134:1134–1138Google Scholar
  31. 31.
    Fowke JH, Chung FL, Jin F, Qi D, Cai Q, Conaway C, Cheng JR, Shu XO, Gao YT, Zheng W (2003) Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res 63:3980–3986Google Scholar
  32. 32.
    Terry P, Wolk A, Persson I, Magnusson C (2001) Brassica vegetables and breast cancer risk. JAMA 285:2975–2977CrossRefGoogle Scholar
  33. 33.
    Pawlik A, Slominska-Wojewodzka M, Herman-Antosiewicz A (2016) Sensitization of estrogen receptor-positive breast cancer cell lines to 4-hydroxytamoxifen by isothiocyanates present in cruciferous plants. Eur J Nutr 55:1165–1180CrossRefGoogle Scholar
  34. 34.
    O’Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J, Duffy MJ, Crown J, O’Donovan N, Slamon DJ (2010) Activated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib. Mol Cancer Ther 9:1489–1502CrossRefGoogle Scholar
  35. 35.
    Pawlik A, Wiczk A, Kaczynska A, Antosiewicz J, Herman-Antosiewicz A (2013) Sulforaphane inhibits growth of phenotypically different breast cancer cells. Eur J Nutr 52:1949–1958CrossRefGoogle Scholar
  36. 36.
    Kaczynska A, Swierczynska J, Herman-Antosiewicz A (2015) Sensitization of HER2 positive breast cancer cells to Lapatinib using plants-derived isothiocyanates. Nutr Cancer 67:976–986CrossRefGoogle Scholar
  37. 37.
    Kaczynska A, Herman-Antosiewicz A (2016). Combination of lapatinib with isothiocyanates overcomes drug resistance and inhibits migration of HER2 positive breast cancer cells. Breast CancerGoogle Scholar
  38. 38.
    Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Cebula-Obrzut B, Smolewski P, Fabianowska-Majewska K (2014) Clofarabine, a novel adenosine analogue, reactivates DNA methylation-silenced tumour suppressor genes and inhibits cell growth in breast cancer cells. Eur J Pharmacol 723:276–287CrossRefGoogle Scholar
  39. 39.
    Hussain A, Mohsin J, Prabhu SA, Begum S, Nusri Qel A, Harish G, Javed E, Khan MA, Sharma C (2013) Sulforaphane inhibits growth of human breast cancer cells and augments the therapeutic index of the chemotherapeutic drug, gemcitabine. Asian Pac J Cancer Prev 14:5855–5860CrossRefGoogle Scholar
  40. 40.
    Erzinger MM, Bovet C, Hecht KM, Senger S, Winiker P, Sobotzki N, Cristea S, Beerenwinkel N, Shay JW, Marra G et al (2016) Sulforaphane preconditioning sensitizes human colon cancer cells towards the bioreductive anticancer prodrug PR-104A. PLoS One 11:e0150219CrossRefGoogle Scholar
  41. 41.
    Wang X, Doherty GP, Leith MK, Curphey TJ, Begleiter A (1999) Enhanced cytotoxicity of mitomycin C in human tumour cells with inducers of DT-diaphorase. Br J Cancer 80:1223–1230CrossRefGoogle Scholar
  42. 42.
    Rahmati-Yamchi M, Zarghami N, Nozad Charoudeh H, Ahmadi Y, Baradaran B, Khalaj-Kondori M, Milani M, Akbarzadeh A, Shaker M, Pourhassan-Moghaddam M (2015) Clofarabine has apoptotic effect on T47D breast cancer cell line via P53R2 gene expression. Adv Pharm Bull 5:471–476CrossRefGoogle Scholar
  43. 43.
    Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Cebula-Obrzut B, Smolewski P, Fabianowska-Majewska K (2015) Sulforaphane alone and in combination with clofarabine epigenetically regulates the expression of DNA methylation-silenced tumour suppressor genes in human breast cancer cells. J Nutrigenet Nutrigenomics 8:91–101CrossRefGoogle Scholar
  44. 44.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003CrossRefGoogle Scholar
  45. 45.
    Stedt H, Samaranayake H, Pikkarainen J, Maatta AM, Alasaarela L, Airenne K, Yla-Herttuala S (2013) Improved therapeutic effect on malignant glioma with adenoviral suicide gene therapy combined with temozolomide. Gene Ther 20:1165–1171CrossRefGoogle Scholar
  46. 46.
    Zhang Z, Li C, Shang L, Zhang Y, Zou R, Zhan Y, Bi B (2016) Sulforaphane induces apoptosis and inhibits invasion in U251MG glioblastoma cells. SpringerPlus 5:235CrossRefGoogle Scholar
  47. 47.
    Karmakar S, Weinberg MS, Banik NL, Patel SJ, Ray SK (2006) Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience 141:1265–1280CrossRefGoogle Scholar
  48. 48.
    Li C, Zhou Y, Peng X, Du L, Tian H, Yang G, Niu J, Wu W (2014) Sulforaphane inhibits invasion via activating ERK1/2 signaling in human glioblastoma U87MG and U373MG cells. PLoS One 9:e90520CrossRefGoogle Scholar
  49. 49.
    Lan F, Yang Y, Han J, Wu Q, Yu H, Yue X (2016) Sulforaphane reverses chemo-resistance to temozolomide in glioblastoma cells by NF-kappaB-dependent pathway downregulating MGMT expression. Int J Oncol 48:559–568Google Scholar
  50. 50.
    Lan F, Pan Q, Yu H, Yue X (2015) Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/beta-catenin signaling in glioblastoma. J Neurochem 134:811–818CrossRefGoogle Scholar
  51. 51.
    Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264CrossRefGoogle Scholar
  52. 52.
    Kotowski U, Heiduschka G, Brunner M, Czembirek C, Eder-Czembirek C, Schmidt R, Fahim T, Thurnher D (2011) Radiosensitization of head and neck cancer cells by the phytochemical agent sulforaphane. Strahlenther Onkol 187:575–580CrossRefGoogle Scholar
  53. 53.
    Biel MA (2010) Photodynamic therapy of head and neck cancers. Methods Mol Biol 635:281–293CrossRefGoogle Scholar
  54. 54.
    Lee SJ, Hwang HJ, Shin JI, Ahn JC, Chung PS (2015) Enhancement of cytotoxic effect on human head and neck cancer cells by combination of photodynamic therapy and sulforaphane. Gen Physiol Biophys 34:13–21CrossRefGoogle Scholar
  55. 55.
    Laurie SA, Licitra L (2006) Systemic therapy in the palliative management of advanced salivary gland cancers. J Clin Oncol 24:2673–2678CrossRefGoogle Scholar
  56. 56.
    Chu WF, Wu DM, Liu W, Wu LJ, Li DZ, Xu DY, Wang XF (2009) Sulforaphane induces G2-M arrest and apoptosis in high metastasis cell line of salivary gland adenoid cystic carcinoma. Oral Oncol 45:998–1004CrossRefGoogle Scholar
  57. 57.
    Wang XF, Wu DM, Li BX, Lu YJ, Yang BF (2009) Synergistic inhibitory effect of sulforaphane and 5-fluorouracil in high and low metastasis cell lines of salivary gland adenoid cystic carcinoma. Phytother Res 23:303–307CrossRefGoogle Scholar
  58. 58.
    Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC (2013) Sulforaphane induced cell cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res 6:41CrossRefGoogle Scholar
  59. 59.
    Chuang LT, Moqattash ST, Gretz HF, Nezhat F, Rahaman J, Chiao JW (2007) Sulforaphane induces growth arrest and apoptosis in human ovarian cancer cells. Acta Obstet Gynecol Scand 86:1263–1268CrossRefGoogle Scholar
  60. 60.
    Bryant CS, Kumar S, Chamala S, Shah J, Pal J, Haider M, Seward S, Qazi AM, Morris R, Semaan A et al (2010) Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells. Mol Cancer 9:47CrossRefGoogle Scholar
  61. 61.
    Hunakova L, Gronesova P, Horvathova E, Chalupa I, Cholujova D, Duraj J, Sedlak J (2014) Modulation of cisplatin sensitivity in human ovarian carcinoma A2780 and SKOV3 cell lines by sulforaphane. Toxicol Lett 230:479–486CrossRefGoogle Scholar
  62. 62.
    Sharma C, Sadrieh L, Priyani A, Ahmed M, Hassan AH, Hussain A (2011) Anti-carcinogenic effects of sulforaphane in association with its apoptosis-inducing and anti-inflammatory properties in human cervical cancer cells. Cancer Epidemiol 35:272–278CrossRefGoogle Scholar
  63. 63.
    Wang X, Govind S, Sajankila SP, Mi L, Roy R, Chung FL (2011) Phenethyl isothiocyanate sensitizes human cervical cancer cells to apoptosis induced by cisplatin. Mol Nutr Food Res 55:1572–1581CrossRefGoogle Scholar
  64. 64.
    Yu D, Sekine-Suzuki E, Xue L, Fujimori A, Kubota N, Okayasu R (2009) Chemopreventive agent sulforaphane enhances radiosensitivity in human tumor cells. Int J Cancer 125:1205–1211CrossRefGoogle Scholar
  65. 65.
    Zak-Prelich M, Narbutt J, Sysa-Jedrzejowska A (2004) Environmental risk factors predisposing to the development of basal cell carcinoma. Dermatol Surg 30:248–252Google Scholar
  66. 66.
    Knatko EV, Ibbotson SH, Zhang Y, Higgins M, Fahey JW, Talalay P, Dawe RS, Ferguson J, Huang JT, Clarke R et al (2015) Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans. Cancer Prev Res 8:475–486CrossRefGoogle Scholar
  67. 67.
    Berg D, Otley CC (2002) Skin cancer in organ transplant recipients: epidemiology, pathogenesis, and management. J Am Acad Dermatol 47:1–17, quiz 18-20CrossRefGoogle Scholar
  68. 68.
    Benedict AL, Knatko EV, Dinkova-Kostova AT (2012) The indirect antioxidant sulforaphane protects against thiopurine-mediated photooxidative stress. Carcinogenesis 33:2457–2466CrossRefGoogle Scholar
  69. 69.
    Kalra S, Zhang Y, Knatko EV, Finlayson S, Yamamoto M, Dinkova-Kostova AT (2011) Oral azathioprine leads to higher incorporation of 6-thioguanine in DNA of skin than liver: the protective role of the Keap1/Nrf2/ARE pathway. Cancer Prev Res 4:1665–1674CrossRefGoogle Scholar
  70. 70.
    Devesa SS, Blot WJ, Fraumeni JF Jr (1998) Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 83:2049–2053CrossRefGoogle Scholar
  71. 71.
    Qazi A, Pal J, Maitah M, Fulciniti M, Pelluru D, Nanjappa P, Lee S, Batchu RB, Prasad M, Bryant CS et al (2010) Anticancer activity of a broccoli derivative, sulforaphane, in barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Transl Oncol 3:389–399CrossRefGoogle Scholar
  72. 72.
    Kallifatidis G, Labsch S, Rausch V, Mattern J, Gladkich J, Moldenhauer G, Buchler MW, Salnikov AV, Herr I (2011) Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol Ther 19:188–195CrossRefGoogle Scholar
  73. 73.
    Walther DJ, Peter JU, Bader M (2002) 7-Hydroxytryptophan, a novel, specific, cytotoxic agent for carcinoids and other serotonin-producing tumors. Cancer 94:3135–3140CrossRefGoogle Scholar
  74. 74.
    Cianchi F, Vinci MC, Supuran CT, Peruzzi B, De Giuli P, Fasolis G, Perigli G, Pastorekova S, Papucci L, Pini A et al (2010) Selective inhibition of carbonic anhydrase IX decreases cell proliferation and induces ceramide-mediated apoptosis in human cancer cells. J Pharmacol Exp Ther 334:710–719CrossRefGoogle Scholar
  75. 75.
    Potter C, Harris AL (2004) Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle 3:164–167CrossRefGoogle Scholar
  76. 76.
    Mastrangelo L, Cassidy A, Mulholland F, Wang W, Bao Y (2008) Serotonin receptors, novel targets of sulforaphane identified by proteomic analysis in Caco-2 cells. Cancer Res 68:5487–5491CrossRefGoogle Scholar
  77. 77.
    Mokhtari RB, Kumar S, Islam SS, Yazdanpanah M, Adeli K, Cutz E, Yeger H (2013) Combination of carbonic anhydrase inhibitor, acetazolamide, and sulforaphane, reduces the viability and growth of bronchial carcinoid cell lines. BMC Cancer 13:378CrossRefGoogle Scholar
  78. 78.
    Chauhan D, Hideshima T, Anderson KC (2008) Targeting proteasomes as therapy in multiple myeloma. Adv Exp Med Biol 615:251–260CrossRefGoogle Scholar
  79. 79.
    Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14:1649–1657CrossRefGoogle Scholar
  80. 80.
    Oakervee HE, Popat R, Curry N, Smith P, Morris C, Drake M, Agrawal S, Stec J, Schenkein D, Esseltine DL et al (2005) PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 129:755–762CrossRefGoogle Scholar
  81. 81.
    Jakubikova J, Cervi D, Ooi M, Kim K, Nahar S, Klippel S, Cholujova D, Leiba M, Daley JF, Delmore J et al (2011) Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethyl isothiocyanate, in multiple myeloma. Haematologica 96:1170–1179CrossRefGoogle Scholar
  82. 82.
    Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681CrossRefGoogle Scholar
  83. 83.
    He X, Yang K, Chen P, Liu B, Zhang Y, Wang F, Guo Z, Liu X, Lou J, Chen H (2014) Arsenic trioxide-based therapy in relapsed/refractory multiple myeloma patients: a meta-analysis and systematic review. OncoTargets Ther 7:1593–1599CrossRefGoogle Scholar
  84. 84.
    Takahashi S (2010) Combination therapy with arsenic trioxide for hematological malignancies. Anticancer Agents Med Chem 10:504–510CrossRefGoogle Scholar
  85. 85.
    Rollig C, Illmer T (2009) The efficacy of arsenic trioxide for the treatment of relapsed and refractory multiple myeloma: a systematic review. Cancer Treat Rev 35:425–430CrossRefGoogle Scholar
  86. 86.
    Munshi NC, Tricot G, Desikan R, Badros A, Zangari M, Toor A, Morris C, Anaissie E, Barlogie B (2002) Clinical activity of arsenic trioxide for the treatment of multiple myeloma. Leukemia 16:1835–1837CrossRefGoogle Scholar
  87. 87.
    Doudican NA, Wen SY, Mazumder A, Orlow SJ (2012) Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways. Oncol Rep 28:1851–1858Google Scholar
  88. 88.
    Greenstein S, Krett NL, Kurosawa Y, Ma C, Chauhan D, Hideshima T, Anderson KC, Rosen ST (2003) Characterization of the MM.1 human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells. Exp Hematol 31:271–282CrossRefGoogle Scholar
  89. 89.
    Fox E, Razzouk BI, Widemann BC, Xiao S, O’Brien M, Goodspeed W, Reaman GH, Blaney SM, Murgo AJ, Balis FM et al (2008) Phase 1 trial and pharmacokinetic study of arsenic trioxide in children and adolescents with refractory or relapsed acute leukemia, including acute promyelocytic leukemia or lymphoma. Blood 111:566–573CrossRefGoogle Scholar
  90. 90.
    Doudican NA, Bowling B, Orlow SJ (2010) Enhancement of arsenic trioxide cytotoxicity by dietary isothiocyanates in human leukemic cells via a reactive oxygen species-dependent mechanism. Leuk Res 34:229–234CrossRefGoogle Scholar
  91. 91.
    Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62:3893–3903Google Scholar
  92. 92.
    Lunghi P, Tabilio A, Lo-Coco F, Pelicci PG, Bonati A (2005) Arsenic trioxide (ATO) and MEK1 inhibition synergize to induce apoptosis in acute promyelocytic leukemia cells. Leukemia 19:234–244CrossRefGoogle Scholar
  93. 93.
    Deininger MW, Druker BJ (2003) Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol Rev 55:401–423CrossRefGoogle Scholar
  94. 94.
    Lin LC, Yeh CT, Kuo CC, Lee CM, Yen GC, Wang LS, Wu CH, Yang WC, Wu AT (2012) Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/beta-catenin function. J Agric Food Chem 60:7031–7039CrossRefGoogle Scholar
  95. 95.
    Capdevila J, Elez E, Peralta S, Macarulla T, Ramos FJ, Tabernero J (2008) Oxaliplatin-based chemotherapy in the management of colorectal cancer. Expert Rev Anticancer Ther 8:1223–1236CrossRefGoogle Scholar
  96. 96.
    Rixe O, Ortuzar W, Alvarez M, Parker R, Reed E, Paull K, Fojo T (1996) Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute’s Anticancer Drug Screen panel. Biochem Pharmacol 52:1855–1865CrossRefGoogle Scholar
  97. 97.
    Kaminski BM, Weigert A, Brune B, Schumacher M, Wenzel U, Steinhilber D, Stein J, Ulrich S (2011) Sulforaphane potentiates oxaliplatin-induced cell growth inhibition in colorectal cancer cells via induction of different modes of cell death. Cancer Chemother Pharmacol 67:1167–1178CrossRefGoogle Scholar
  98. 98.
    Guise CP, Abbattista MR, Singleton RS, Holford SD, Connolly J, Dachs GU, Fox SB, Pollock R, Harvey J, Guilford P et al (2010) The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res 70:1573–1584CrossRefGoogle Scholar
  99. 99.
    Singleton RS, Guise CP, Ferry DM, Pullen SM, Dorie MJ, Brown JM, Patterson AV, Wilson WR (2009) DNA cross-links in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism, and cytotoxicity. Cancer Res 69:3884–3891CrossRefGoogle Scholar
  100. 100.
    Gu Y, Patterson AV, Atwell GJ, Chernikova SB, Brown JM, Thompson LH, Wilson WR (2009) Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated dinitrobenzamide mustard PR-104A. Mol Cancer Ther 8:1714–1723CrossRefGoogle Scholar
  101. 101.
    Jameson MB, Rischin D, Pegram M, Gutheil J, Patterson AV, Denny WA, Wilson WR (2010) A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol 65:791–801CrossRefGoogle Scholar
  102. 102.
    Abou-Alfa GK, Chan SL, Lin CC, Chiorean EG, Holcombe RF, Mulcahy MF, Carter WD, Patel K, Wilson WR, Melink TJ et al (2011) PR-104 plus sorafenib in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol 68:539–545CrossRefGoogle Scholar
  103. 103.
    McKeage MJ, Gu Y, Wilson WR, Hill A, Amies K, Melink TJ, Jameson MB (2011) A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients. BMC Cancer 11:432CrossRefGoogle Scholar
  104. 104.
    McKeage MJ, Jameson MB, Ramanathan RK, Rajendran J, Gu Y, Wilson WR, Melink TJ, Tchekmedyian NS (2012) PR-104 a bioreductive pre-prodrug combined with gemcitabine or docetaxel in a phase Ib study of patients with advanced solid tumours. BMC Cancer 12:496CrossRefGoogle Scholar
  105. 105.
    Jamieson SM, Gu Y, Manesh DM, El-Hoss J, Jing D, Mackenzie KL, Guise CP, Foehrenbacher A, Pullen SM, Benito J et al (2014) A novel fluorometric assay for aldo-keto reductase 1C3 predicts metabolic activation of the nitrogen mustard prodrug PR-104A in human leukaemia cells. Biochem Pharmacol 88:36–45CrossRefGoogle Scholar
  106. 106.
    Roig AI, Eskiocak U, Hight SK, Kim SB, Delgado O, Souza RF, Spechler SJ, Wright WE, Shay JW (2010) Immortalized epithelial cells derived from human colon biopsies express stem cell markers and differentiate in vitro. Gastroenterology 138(1012–1021):e1011–e1015Google Scholar
  107. 107.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323CrossRefGoogle Scholar
  108. 108.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037CrossRefGoogle Scholar
  109. 109.
    Kallifatidis G, Rausch V, Baumann B, Apel A, Beckermann BM, Groth A, Mattern J, Li Z, Kolb A, Moldenhauer G et al (2009) Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 58:949–963CrossRefGoogle Scholar
  110. 110.
    Rausch V, Liu L, Kallifatidis G, Baumann B, Mattern J, Gladkich J, Wirth T, Schemmer P, Buchler MW, Zoller M et al (2010) Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res 70:5004–5013CrossRefGoogle Scholar
  111. 111.
    Li Y, Zhang T, Schwartz SJ, Sun D (2011) Sulforaphane potentiates the efficacy of 17-allylamino 17-demethoxygeldanamycin against pancreatic cancer through enhanced abrogation of Hsp90 chaperone function. Nutr Cancer 63:1151–1159CrossRefGoogle Scholar
  112. 112.
    Kamal A, Boehm MF, Burrows FJ (2004) Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med 10:283–290CrossRefGoogle Scholar
  113. 113.
    Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nature reviews. Cancer 5:761–772Google Scholar
  114. 114.
    Dai X, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G (2015) Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp Biol Med 240:760–773CrossRefGoogle Scholar
  115. 115.
    Maksimovic-Ivanic D, Stosic-Grujicic S, Nicoletti F, Mijatovic S (2012) Resistance to TRAIL and how to surmount it. Immunol Res 52:157–168CrossRefGoogle Scholar
  116. 116.
    Wang F, Lin J, Xu R (2014) The molecular mechanisms of TRAIL resistance in cancer cells: help in designing new drugs. Curr Pharm Des 20:6714–6722CrossRefGoogle Scholar
  117. 117.
    Lim B, Allen JE, Prabhu VV, Talekar MK, Finnberg NK, El-Deiry WS (2015) Targeting TRAIL in the treatment of cancer: new developments. Expert Opin Ther Targets 19:1171–1185CrossRefGoogle Scholar
  118. 118.
    Trivedi R, Mishra DP (2015) Trailing TRAIL resistance: novel targets for TRAIL sensitization in cancer cells. Front Oncol 5:69CrossRefGoogle Scholar
  119. 119.
    Zhang L, Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12:228–237CrossRefGoogle Scholar
  120. 120.
    Matsui TA, Sowa Y, Yoshida T, Murata H, Horinaka M, Wakada M, Nakanishi R, Sakabe T, Kubo T, Sakai T (2006) Sulforaphane enhances TRAIL-induced apoptosis through the induction of DR5 expression in human osteosarcoma cells. Carcinogenesis 27:1768–1777CrossRefGoogle Scholar
  121. 121.
    Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967CrossRefGoogle Scholar
  122. 122.
    Wang LH, Okaichi K, Ihara M, Okumura Y (1998) Sensitivity of anticancer drugs in Saos-2 cells transfected with mutant p53 varied with mutation point. Anticancer Res 18:321–325Google Scholar
  123. 123.
    Kandasamy K, Srivastava RK (2002) Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in non-small cell lung cancer cells. Cancer Res 62:4929–4937Google Scholar
  124. 124.
    Jin CY, Moon DO, Lee JD, Heo MS, Choi YH, Lee CM, Park YM, Kim GY (2007) Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis through downregulation of ERK and Akt in lung adenocarcinoma A549 cells. Carcinogenesis 28:1058–1066CrossRefGoogle Scholar
  125. 125.
    Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, Bridge JA, Crist WM, Triche TJ, Barr FG (2002) PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 20:2672–2679CrossRefGoogle Scholar
  126. 126.
    Bergantin E, Quarta C, Nanni C, Fanti S, Pession A, Cantelli-Forti G, Tonelli R, Hrelia P (2014) Sulforaphane induces apoptosis in rhabdomyosarcoma and restores TRAIL-sensitivity in the aggressive alveolar subtype leading to tumor elimination in mice. Cancer Biol Ther 15:1219–1225CrossRefGoogle Scholar
  127. 127.
    Yamanaka T, Shiraki K, Sugimoto K, Ito T, Fujikawa K, Ito M, Takase K, Moriyama M, Nakano T, Suzuki A (2000) Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology 32:482–490CrossRefGoogle Scholar
  128. 128.
    Shankar S, Srivastava RK (2004) Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 7:139–156CrossRefGoogle Scholar
  129. 129.
    Kim H, Kim EH, Eom YW, Kim WH, Kwon TK, Lee SJ, Choi KS (2006) Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer Res 66:1740–1750CrossRefGoogle Scholar
  130. 130.
    Shankar S, Ganapathy S, Srivastava RK (2008) Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis. Clin Cancer Res 14:6855–6866CrossRefGoogle Scholar
  131. 131.
    Sharpe B, Beresford M, Bowen R, Mitchard J, Chalmers AD (2013) Searching for prostate cancer stem cells: markers and methods. Stem Cell Rev 9:721–730CrossRefGoogle Scholar
  132. 132.
    Labsch S, Liu L, Bauer N, Zhang Y, Aleksandrowicz E, Gladkich J, Schonsiegel F, Herr I (2014) Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells. Int J Oncol 44:1470–1480Google Scholar
  133. 133.
    Shen G, Khor TO, Hu R, Yu S, Nair S, Ho CT, Reddy BS, Huang MT, Newmark HL, Kong AN (2007) Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/+ mouse. Cancer Res 67:9937–9944CrossRefGoogle Scholar
  134. 134.
    Shen G, Xu C, Chen C, Hebbar V, Kong AN (2006) p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1. Cancer Chemother Pharmacol 57:317–327CrossRefGoogle Scholar
  135. 135.
    Chen H, Landen CN, Li Y, Alvarez RD, Tollefsbol TO (2013) Epigallocatechin gallate and sulforaphane combination treatment induce apoptosis in paclitaxel-resistant ovarian cancer cells through hTERT and Bcl-2 down-regulation. Exp Cell Res 319:697–706CrossRefGoogle Scholar
  136. 136.
    Nair S, Hebbar V, Shen G, Gopalakrishnan A, Khor TO, Yu S, Xu C, Kong AN (2008) Synergistic effects of a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells. Pharm Res 25:387–399CrossRefGoogle Scholar
  137. 137.
    Nair S, Barve A, Khor TO, Shen GX, Lin W, Chan JY, Cai L, Kong AN (2010) Regulation of Nrf2- and AP-1-mediated gene expression by epigallocatechin-3-gallate and sulforaphane in prostate of Nrf2-knockout or C57BL/6J mice and PC-3 AP-1 human prostate cancer cells. Acta Pharmacol Sin 31:1223–1240CrossRefGoogle Scholar
  138. 138.
    Zhang M, Binns CW, Lee AH (2002) Tea consumption and ovarian cancer risk: a case-control study in China. Cancer Epid Biomark Prev 11:713–718Google Scholar
  139. 139.
    Lee AH, Su D, Pasalich M, Binns CW (2013) Tea consumption reduces ovarian cancer risk. Cancer Epidemiol 37:54–59CrossRefGoogle Scholar
  140. 140.
    Hu J, Hu Y, Hu Y, Zheng S (2015) Intake of cruciferous vegetables is associated with reduced risk of ovarian cancer: a meta-analysis. Asia Pac J Clin Nutr 24:101–109Google Scholar
  141. 141.
    Nagle CM, Olsen CM, Bain CJ, Whiteman DC, Green AC, Webb PM (2010) Tea consumption and risk of ovarian cancer. Cancer Causes Control 21:1485–1491CrossRefGoogle Scholar
  142. 142.
    Jiang H, Shang X, Wu H, Huang G, Wang Y, Al-Holou S, Gautam SC, Chopp M (2010) Combination treatment with resveratrol and sulforaphane induces apoptosis in human U251 glioma cells. Neurochem Res 35:152–161CrossRefGoogle Scholar
  143. 143.
    Hussain A, Priyani A, Sadrieh L, Brahmbhatt K, Ahmed M, Sharma C (2012) Concurrent sulforaphane and eugenol induces differential effects on human cervical cancer cells. Integr Cancer Ther 11:154–165CrossRefGoogle Scholar
  144. 144.
    Pappa G, Strathmann J, Lowinger M, Bartsch H, Gerhauser C (2007) Quantitative combination effects between sulforaphane and 3,3′-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis 28:1471–1477CrossRefGoogle Scholar
  145. 145.
    Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42:1–9CrossRefGoogle Scholar
  146. 146.
    Liu B, Mao Q, Cao M, Xie L (2012) Cruciferous vegetables intake and risk of prostate cancer: a meta-analysis. Int J Urol 19:134–141CrossRefGoogle Scholar
  147. 147.
    Steinbrecher A, Nimptsch K, Husing A, Rohrmann S, Linseisen J (2009) Dietary glucosinolate intake and risk of prostate cancer in the EPIC-Heidelberg cohort study. Int J Cancer 125:2179–2186CrossRefGoogle Scholar
  148. 148.
    Frydoonfar HR, McGrath DR, Spigelman AD (2003) The effect of indole-3-carbinol and sulforaphane on a prostate cancer cell line. ANZ J Surg 73:154–156CrossRefGoogle Scholar
  149. 149.
    Larsson SC, Hakansson N, Naslund I, Bergkvist L, Wolk A (2006) Fruit and vegetable consumption in relation to pancreatic cancer risk: a prospective study. Cancer Epid, Biomark Prev 15:301–305CrossRefGoogle Scholar
  150. 150.
    Hutzen B, Willis W, Jones S, Cen L, Deangelis S, Fuh B, Lin J (2009) Dietary agent, benzyl isothiocyanate inhibits signal transducer and activator of transcription 3 phosphorylation and collaborates with sulforaphane in the growth suppression of PANC-1 cancer cells. Cancer Cell Int 9:24CrossRefGoogle Scholar
  151. 151.
    Kuroiwa Y, Nishikawa A, Kitamura Y, Kanki K, Ishii Y, Umemura T, Hirose M (2006) Protective effects of benzyl isothiocyanate and sulforaphane but not resveratrol against initiation of pancreatic carcinogenesis in hamsters. Cancer Lett 241:275–280CrossRefGoogle Scholar
  152. 152.
    Thakkar A, Sutaria D, Grandhi BK, Wang J, Prabhu S (2013) The molecular mechanism of action of aspirin, curcumin and sulforaphane combinations in the chemoprevention of pancreatic cancer. Oncol Rep 29:1671–1677Google Scholar
  153. 153.
    Sutaria D, Grandhi BK, Thakkar A, Wang J, Prabhu S (2012) Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen. Int J Oncol 41:2260–2268Google Scholar
  154. 154.
    Appari M, Babu KR, Kaczorowski A, Gross W, Herr I (2014) Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int J Oncol 45:1391–1400Google Scholar
  155. 155.
    Srivastava RK, Tang SN, Zhu W, Meeker D, Shankar S (2011) Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci 3:515–528CrossRefGoogle Scholar
  156. 156.
    Shapiro TA, Fahey JW, Dinkova-Kostova AT, Holtzclaw WD, Stephenson KK, Wade KL, Ye L, Talalay P (2006) Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study. Nutr Cancer 55:53–62CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Pathology (Past), Barbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA
  2. 2.Department of SurgeryVardhman Mahavir Medical College and Safdarjung HospitalNew DelhiIndia

Personalised recommendations