Skip to main content

Antimicrobial Activity of the Glucosinolates

  • Reference work entry
  • First Online:
Glucosinolates

Abstract

The use of natural antimicrobial compounds is receiving much attention and is becoming very frequent by the importance that nowadays is given to natural resources. Natural components have been applied in several sectors such as agriculture, biomedicine and food preservation. The development of resistance to conventional antibiotic by pathogenic bacteria makes necessary to find alternative antimicrobials to eradicate these microorganisms. Many food products are perishable and require protection from spoilage to improve quality and shelf life. Numerous efforts are conducted to find safe natural alternatives to prevent microorganism growth in plants and food products, because of the consumer concern regarding synthetic pesticides and preservatives. Natural antimicrobials can be obtained from different sources including plants, animals, bacteria, algae, and fungi. Among them, glucosinolates and their derived products have been recognized for their benefits to human nutrition, plant defense, and as potent antimicrobial agents. This chapter describes the antimicrobial activity of glucosinolates and their hydrolysis products against different bacterial and fungal species, as well as the mechanism of action of these active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AAM:

Allylamine

AC:

Allyl cyanide

AITC:

Allyl isothiocyanate

ASC:

Ascorbigen

ATC:

Ally thiocyanate

BAM:

Benzylamine

BC:

Benzyl cyanide

BITC:

Benzyl isothiocyanate

CEPT:

1-Cyano-2,3-epithiopropane

DIM:

3,3′-Di-indolylmethane

EITC:

Ethyl isothiocyanate

GLS:

Glucosinolate

I3C:

Indole-3-carbinol

IAN:

Indole-3-acetonitrile

ITC:

Isothiocyanate

MAP:

Modified atmosphere packaging

MCT:

Medium-chain triglyceride

MITC:

Methyl isothiocyanate

PAM:

2-Phenylethylamine

PEC:

2-Phenylethyl cyanide

PEITC:

Phenylethyl isothiocyanate

PITC:

Phenyl isothiocyanate

SBO:

Soybean oil

SFN:

Sulforaphane

TC:

Thiocyanate

References

  1. Lucera A, Costa C, Conte A, Del Nobile MA (2012) Food applications of natural antimicrobial compounds. Front Microbiol 3(287):1–13

    Google Scholar 

  2. Dufour V, Stahl M, Baysse C (2015) The antibacterial properties of isothiocyanates. Microbiol 161:229–243

    Article  CAS  Google Scholar 

  3. Vig A, Rampal G, Thinda TH, Arora S (2009) Bio-protective effects of glucosinolates – a review. LWT – Food Sci Technol 42:1561–1572

    Article  CAS  Google Scholar 

  4. Vaughn SF (1999) Glucosinolates as natural pesticides. In: Cutler HG, Cutler SJ (eds) Biologically active natural products. CRC Press, Boca Raton

    Google Scholar 

  5. Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429

    Article  CAS  Google Scholar 

  6. Hansen M, Møller P, Sørensen H, De Trejo MC (1995) Glucosinolates in broccoli stored under controlled atmosphere. J Am Soc Hortic Sci 120(6):1069–1074

    CAS  Google Scholar 

  7. Chen S, Andreasson E (2001) Update on glucosinolate metabolism and transport. Plant Physiol Biochem 39:743–758

    Article  CAS  Google Scholar 

  8. Cataldi TRI, Rubino A, Lelario F, Bufo SA (2007). Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Rapid Commun Mass Sp 21:2374–2388

    Google Scholar 

  9. Kostova Z, Rashev C, Lulov R (1983) Studies on the possibilities to disinfect goose eggs and hen eggs with allyl isothiocyanate (AITC). Nauch Tr Vissh Selskostop Inst Vasil Kolarov Plodiv 28:133–141

    CAS  Google Scholar 

  10. Delaquis PJ, Mazza G (1995) Antimicrobial properties of isothiocyanates in food preservation. Food Technol 49:73–84

    CAS  Google Scholar 

  11. Mithen RF (2001) Glucosinolates and their degradation products. Adv Bot Res 35:214–262

    Google Scholar 

  12. Chew FS (1988) Biological effects of glucosinolates. In: Cutler HG (ed) Biologically active natural products: potential use in agriculture. American Chemical Society, Washington, DC

    Google Scholar 

  13. Drobnica L, Zemanová M, Nemec P, Antos K, Kristian P, Stullerova A, Knoppová V, Nemec P (1968) Antifungal activity of isothiocyanates and related compounds. Appl Microbiol 15:701–709

    Google Scholar 

  14. Saavedra MJ, Borges A, Dias C, Aires A, Bennett RN, Rosa ES, Simoes M (2010) Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria. Med Chem 6:174–183

    Article  CAS  Google Scholar 

  15. Lewis JA, Papavizas GC (1971) Effect of sulfur-containing volatile compounds and vapors from cabbage decomposition on Aphanomyces euteiches. Phytopath 61:208–214

    Article  CAS  Google Scholar 

  16. Foter MJ, Golik AM (1938) Inhibitory properties of horseradish vapors. Food Res 3:609–613

    Article  Google Scholar 

  17. Foter MJ (1940) Bactericidal properties of allyl isothiocyanate and related oils. Food Res 3:147–151

    Article  Google Scholar 

  18. Virtanen AI (1965) Studies on organic sulfur containing compounds and other labile substances in plants. Angew Chem Int Ed 1:207–228

    Google Scholar 

  19. Zsolnai T (1966) Antimicrobial effect of thiocyanates and isothiocyanates. Arztl Forsch 16:870–876

    CAS  Google Scholar 

  20. Kanemaru K, Miyamoto T (1990) Inhibitory effects on the growth of several bacteria by brown mustard and allyl isothiocyanate. Nippon Shokuhin Kogyo Gakkaishi 37:823–829

    Article  CAS  Google Scholar 

  21. Shofran BG, Purrington ST, Breidt F, Fleming HP (1998) Antimicrobial properties of sinigrin and its hydrolysis products. J Food Sci 63:621–624

    Article  CAS  Google Scholar 

  22. Brabban AD, Edwards C (1995) The effects of glucosinolates and their hydrolysis products on microbial growth. J Appl Bact 79:171–177

    Article  CAS  Google Scholar 

  23. Kyung KH, Fleming HP (1997) Antimicrobial activity of sulfur compounds derived from cabbage. J Food Prot 60:67–71

    Article  CAS  Google Scholar 

  24. Delaquis PJ, Sholberg PL (1997) Antimicrobial activity of gaseous allyl isothiocyanate. J Food Prot 60:943–947

    Article  CAS  Google Scholar 

  25. Fahey JW, Haristoy X, Dolan PM (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A 99:7610–7615

    Article  CAS  Google Scholar 

  26. Haristoy X, Angioi-Duprez K, Duprez A, Lozniewski A (2003) Efficacy of sulforaphane in eradicating Helicobacter pylori human gastric xenografts implanted in nude mice. Antimicrob Agents Chemother 47:3982–3984

    Article  CAS  Google Scholar 

  27. Haristoy X, Fahey JW, Scholtus I, Lozeniewski A (2005) Evaluation of the antimicrobial effects of several isothiocyanates on Helicobacter pylori. Planta Med 71:326–330

    Article  CAS  Google Scholar 

  28. Ono H, Tesaki S, Tanabe S, Watanabe M (1998) 6-Methylsulfinylhexyle isothiocyanate and its homologues as food originated compounds with antibacterial activity against Escherichia coli and Staphylococcus aureus. Biosci Biotechnol Biochem 62:363–365

    Article  CAS  Google Scholar 

  29. Liu TT, Yang TS (2010) Stability and antimicrobial activity of Allyl Isothiocyanate during long-term storage in an oil-in-water emulsion. J Food Sci 75:C445–C451

    Article  CAS  Google Scholar 

  30. Luciano FB, Holley RA (2009) Enzymatic inhibition by allyl isothiocyanate and factors affecting its antimicrobial action against Escherichia coli O157:H7. Int J Food Microbiol 131:240–245

    Article  CAS  Google Scholar 

  31. Radulovic NS, Dekic MS, Stojanovic-Radic ZZ (2012) Antimicrobial volatile glucosinolate autolysis products from Hornungia petraea (L.) Rchb. (Brassicae). Phytochem Lett 5:351–357

    Article  CAS  Google Scholar 

  32. Olaimat AN, Holley RA (2013) Effects of changes in pH and temperature on the inhibition of Salmonella and Listeria monocytogenes by Allyl isothiocyanate. Food Control 34:414–419

    Article  CAS  Google Scholar 

  33. Wilson AE, Bergaentzlé M, Bindler F, Marchioni E, Lintz A, Ennahar S (2013) In vitro efficacies of various isothiocyanates from cruciferous vegetables as antimicrobial agents against foodborne pathogens and spoilage bacteria. Food Control 30:318–324

    Article  CAS  Google Scholar 

  34. Dias C, Aires A, Saavedra MJ (2014) Antimicrobial activity of isothiocyanates from cruciferous plants against Methicillin-Resistant Staphylococcus aureus (MRSA). Int J Mol Sci 15:19552–19561

    Article  CAS  Google Scholar 

  35. Park CM, Taormina PJ, Beuchat LR (2000) Efficacy of allyl isothiocyanate in killing enterohemorrhagic Escherichia coli O157:H7 on alfalfa seeds. Int J Food Microbiol 56:13–20

    Article  CAS  Google Scholar 

  36. Aires A, Mota VR, Saavedra MJ, Monteiro AA, Simoes M, Rosa EA, Bennett RN (2009) Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J Appl Microbiol 106:2096–2105

    Article  CAS  Google Scholar 

  37. Bressan M, Roncato MA, Bellvert F, Comte G, Haichar FZ, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–1257

    Article  CAS  Google Scholar 

  38. Aires A, Mota VR, Saavedra MJ, Rosa EA, Bennett RN (2009) The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J Appl Microbiol 106:2086–2095

    Article  CAS  Google Scholar 

  39. Tajima H, Kimoto H, Taketo A (2001) Specific antimicrobial synergism of synthetic hydroxy isothiocyanates with aminoglycoside antibiotics. Biosci Biotechnol Biochem 65:1886–1888

    Article  CAS  Google Scholar 

  40. Tajima H, Kimoto H, Taketo A (2003) Paradoxical effect of synthetic hydroxy isothiocyanates on antimicrobial action of aminoglycosides. Biosci Biotechnol Biochem 67:1844–1846

    Article  CAS  Google Scholar 

  41. Palaniappan K, Holley RA (2010) Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol 140:164–168

    Article  CAS  Google Scholar 

  42. Freitas E, Aires A, Rosa E, Saavedra MJ (2013) Antibacterial activity and synergistic effect between watercress extracts, 2‐phenylethyl isothiocyanate and antibiotics against 11 isolates of Escherichia coli from clinical and animal source. Lett Appl Microbiol 57(4):266–273

    CAS  Google Scholar 

  43. Tressler DK, Joslyn MA (1954) The chemistry and technology of fruit and vegetables juice production. Avi Publ Co, New York

    Google Scholar 

  44. Kosker O, Esselen WB Jr, Fellers CR (1952) Effect of allylisothiocyanate and related substances on the thermal resistance of Aspergillus niger, Saccharomyces ellipsoideus and Bacillus thermoacidurans. Food Res 16:510–514

    Google Scholar 

  45. Isshiki K, Tokuoka K, Mori R, Chiba S (1992) Preliminary examination of allyl isothiocyanate vapor for food preservation. Biosci Biotechnol Biochem 56:1476–1477

    Article  CAS  Google Scholar 

  46. Ward SM, Delaquis PJ, Holley RA, Mazza G (1998) Inhibition of spoilage and pathogenic bacteria on agar and pre-cooked roasted beef by volatile horseradish distillates. Food Res Int 31:19–26

    Article  Google Scholar 

  47. Delaquis PJ, Ward SM, Holley RA, Cliff MC, Mazza G (1999) Microbiological, chemical and sensory properties of pre-cooked roast beef preserved with horseradish essential oil. J Food Sci 64:519–524

    Article  CAS  Google Scholar 

  48. Lin CM, Kim J, Du WX, Wei CI (2000) Bactericidal activity of isothiocyanate against pathogens on fresh produce. J Food Prot 63:25–30

    Article  CAS  Google Scholar 

  49. Nadarajah D, Han JH, Holley RA (2005) Use of mustard flour to inactivate Escherichia coli O157:H7 in ground beef under nitrogen flushed packaging. Int J Food Microbiol 99:257–267

    Article  CAS  Google Scholar 

  50. Chacon PA, Muthukumarasamy P, Holley RA (2006) Elimination of Escherichia coli O157:H7 from fermented dry sausages at an organoleptically acceptable level of microencapsulated Allyl isothiocyanate. Appl Environ Microbiol 72:3096–3102

    Article  CAS  Google Scholar 

  51. Schirmer BC, Langsrud S (2010) Evaluation of natural antimicrobials on typical meat spoilage bacteria in vitro and in vacuum-packed pork meat. J Food Sci 75:M98–M102

    Article  CAS  Google Scholar 

  52. Chen W, Jin TJ, Gurtler JB, Geveke DJ, Fan X (2012) Inactivation of Salmonella on whole cantaloupe by application of an antimicrobial coating containing chitosan and allyl isothiocyanate. Int J Food Microbiol 155:165–170

    Article  CAS  Google Scholar 

  53. Ko JA, Kim WY, Park HJ (2012) Effects of microencapsulated Allyl isothiocyanate (AITC) on the extension of the shelf-life of Kimchi. Int J Food Microbiol 153:92–98

    Article  CAS  Google Scholar 

  54. Piercey MJ, Mazzanti G, Budge SM, Delaquis PJ, Paulson AT, Truelstrup Hansen L (2012) Antimicrobial activity of cyclodextrin entrapped allyl isothiocyanate in a model system and packaged fresh-cut onions. Food Microbiol 30:213–218

    Article  CAS  Google Scholar 

  55. David JRD, Ekanayake A, Singh I, Farina B, Meyer M (2013) Effect of white mustard essential oil on inoculated Salmonella sp. in a sauce with particulates. J Food Prot 76:580–587

    Article  Google Scholar 

  56. Shin J, Harte B, Ryser E, Selke S (2010) Active packaging of fresh chicken breast, with allyl isothiocyanate (AITC) in combination with modified atmosphere packaging (MAP) to control the growth of pathogens. J Food Sci 75:M65–M71

    Article  CAS  Google Scholar 

  57. EFSA (2010) EFSA panel on food additives and nutrient sources added to food (ANS): scientific opinion on the safety of allyl isothiocyanate for the proposed uses as a food additive. EFSA J 8:1943–1983

    Google Scholar 

  58. Walker JC, Morell S, Foster HH (1937) Toxicity of mustard oils and related sulfur compounds to certain fungi. Am J Bot 24:536–541

    Article  CAS  Google Scholar 

  59. Hooker WJ, Walker JC, Smith FG (1943) Toxicity of beta-phenethyl isothiocyanate to certain fungi. Am Soc Am 30:632–637

    CAS  Google Scholar 

  60. Kyung KH (2011) Antimicrobial activity of volatile sulfur compounds in foods. ACS Sym Ser 1068(16):323–338

    Article  CAS  Google Scholar 

  61. Vega FE, Dowd PF, McGuire MR, Jackson MA, Nelsen TC (1997) In vitro effects of secondary plant compounds on germination of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus (deuteromycotina: Hyphomycetes). J Investerbr Pathol 70:209–213

    Article  CAS  Google Scholar 

  62. Whitmore BB, Naidu AS (2000) Glucosinolates. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press, Boca Raton

    Google Scholar 

  63. Manici LM, Lazzeri L, Palmieri S (1997) In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J Agric Food Chem 45:2768–2773

    Article  CAS  Google Scholar 

  64. Redovnikovic IR, Glivetic T, Delonga K, Vorkapic-Furac J (2008) Glucosinolates and their potential role in plant. Period Biol 110:297–309

    CAS  Google Scholar 

  65. Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7:213–229

    Article  CAS  Google Scholar 

  66. Mayton HS, Oliver C, Vaughn SF, Loria R (1996) Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology 86:267–271

    Article  CAS  Google Scholar 

  67. Sexton AC, Kirkegaard JA, Howlett BJ (1999) Glucosinolates in Brassica juncea and resistance to Australian isolates of Leptosphaeria maculans, the blackleg fungus. Australas Plant Pathol 28:95–102

    Article  Google Scholar 

  68. Ugolini L, Martini C, Lazzeri L, D’Alvino L, Mari M (2014) Control of postharvest grey mould (Botrytis cinerea Per.: Fr.) on strawberries by glucosinolate-derived allyl isothiocyanate treatments. Postharvest Biol Tec 90:34–39

    Google Scholar 

  69. Suhr KI, Nielsen PV (2005) Inhibition of fungal growth on wheat and rye bread by modified atmosphere packaging and active packaging using volatile mustard essential oil. J Food Sci 70:37–44

    Article  Google Scholar 

  70. Sellam A, Iacomi-Vasilescu B, Simoneau P (2007) In vitro antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer pathogens Alternaria brassicicola and Alternaria brassicae. Plant Pathol 56:296–301

    Article  CAS  Google Scholar 

  71. Wu H, Zhang X, Zhang G, Zeng S, Kin K (2011) Antifungal vapour-phase activity of a combination of allyl isothiocyanate and ethyl isothiocyanate against Botrytis cinerea and Penicillium expansum infection on apples. J Phytopathol 159:4050–4455

    Google Scholar 

  72. Wang SY, Chen CT, Yin J (2010) Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries. Food Chem 120:199–204

    Article  CAS  Google Scholar 

  73. Ma J (2012) Allyl isothiocyanate derived from oriental mustard meal as a natural antimicrobial to inhibit the growth of moulds on bread. Master thesis. Guelph

    Google Scholar 

  74. Sisti M, Amagliani G, Brandi G (2003) Antifungal activity of Brassica oleracea var. botrytis fresh aqueous juice. Fitoterapia 74:453

    Article  CAS  Google Scholar 

  75. Ekanayake A, Kester JJ, Li JJ, Zehentbauer GN, Bunke PR, Zent JB (2006) Isogard TM: a natural anti-microbial agent derived from white mustard seed. Acta Hortic 709:101–108

    Article  CAS  Google Scholar 

  76. Manyes L, Luciano FB, Manes J, Meca G (2015) In vitro antifungal activity of allyl isothiocyanate (AITC) against Aspergillus parasiticus and Penicillium expansum and evaluation of the AITC estimated daily intake. Food Chem Toxicol 83:293–299

    Article  CAS  Google Scholar 

  77. Quiles JM, Manyes L, Luciano F, Manes J, Meca G (2015) Influence of antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust. Food Chem Toxicol 83:222–228

    Article  CAS  Google Scholar 

  78. Azaiez I, Meca G, Manyes L, Fernández-Franzón M (2013) Antifungal activity of gaseous allyl, benzyl and phenyl isothiocyanate in vitro and their use for fumonisins reduction in bread. Food Control 32:428–434

    Article  CAS  Google Scholar 

  79. Troncoso-Rojas R, Sanchez-Estrada A, Ruelas C, Grcia HS, Tiznado ME (2005) Effect of benzyl isothiocyanate on tomato fruit infection development by Alternaria alternate. J Sci Food Agric 85:1427–1434

    Article  CAS  Google Scholar 

  80. Nazareth TM, Bordin K, Manyes L, Meca G, Manes J, Luciano FB (2016) Gaseous allyl isothiocyanate to inhibit the production of aflatoxins, beauvericin and enniatins by Aspergillus parasiticus and Fusarium poae in wheat flour. Food Control 62:317–321

    Google Scholar 

  81. Hontanaya C, Meca G, Luciano FB, Manes J, Font G (2015) Inhibition of aflatoxin B1, B2, G1 and G2 production by Aspergillus parasiticus in nuts using yellow and oriental mustard flours. Food Control 47:154–160

    Article  CAS  Google Scholar 

  82. Meca G, Luciano FB, Zhou T, Tsao R, Manes J (2012) Chemical reduction of the mycotoxin beauvericin using allyl isothiocyanate. Food Chem Toxicol 50:1755–1762

    Article  CAS  Google Scholar 

  83. Azaiez I, Meca G, Manyes L, Luciano FB, Fernández-Frazón M (2013) Study of the chemical reduction of the fumonisins toxicity using allyl, benzyl and phenyl isothiocyanate in model solution and in food products. Toxicon 63:137–146

    Article  CAS  Google Scholar 

  84. Chan MKY, Close RC (1987) Aphanomyces root rot of pears. 3. Control by use of cruciferous amendments. N Z J Agric Res 30:225–233

    Article  Google Scholar 

  85. Vierheilig H, Ocampo JA (1990) Effect of isothiocyanates on germination of spores of G. mosseae. Soil Biol Biochem 22:1161–1163

    Article  CAS  Google Scholar 

  86. Gamliel A, Stapleton JJ (1993) Characterization of antifungal volatile compounds evolved from solarized soil amended with cabbage residues. Phytopathology 83:899–905

    Article  CAS  Google Scholar 

  87. Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM (1994) Biofumigation: isothiocyanates released from Brassica roots inhibit growth of take-all fungus. Plant and Soil 162:107–112

    Article  CAS  Google Scholar 

  88. Rosa EAS (1997) Daily variation in glucosinolate concentrations on the leaves and roots of cabbage seedlings in two constant temperature regimes. J Sci Food Agric 73:364–368

    Article  CAS  Google Scholar 

  89. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  Google Scholar 

  90. Agneta R, Lelario F, De Maria S, Mollers C, Bufo SA, Rivelli AR (2014) Glucosinolate profile and distribution among plant tissue and phonological stages of field-grown horseradish. Phytochemistry 106:178–187

    Article  CAS  Google Scholar 

  91. Aghajanzadehdivaei T (2015) Sulfur metabolism, glucosinolates and fungal resistance in Brassica. Doctoral thesis. University of Groningen, p 172

    Google Scholar 

  92. Ludwing-Mueller J, Bennett R, Kiddle G, Ihmig S, Ruppel M, Hilgenberg W (1999) The host range of Plasmodiophora brassicae and its relationship to endogenous glucosinolate content. New Phytol 141:443–458

    Google Scholar 

  93. Ishimoto H, Fukushi Y, Tahara S (2004) Non-pathogenic Fusarium strains protect the seedlings of Lepidium sativum from Pythium ultimum. Soil Biol Biochem 36:409–414

    Article  CAS  Google Scholar 

  94. Mithen RF, Lewis BG (1986) In vitro activity of glucosinolates and their products against Leptosphaeria maculans. Trans Br Mycol Soc 87:433–440

    Article  CAS  Google Scholar 

  95. Ménard R, Laure JP, Silué D, Thouvenot D (1999) Glucosinolates in cauliflower as biochemical markers for resistance against downy mildew. Phytochemistry 52:29–35

    Article  Google Scholar 

  96. Buxdorf K, Yaffe H, Barda O, Levy M (2013) The effects of glucosinolates and their breakdown products on necrotrophic fungi. Effects of glucosinolate on fungi. 8:1–10. Available on www.phosone.org

  97. Smolinska U, Morra MJ, Knudsen GR, James RL (2003) Isothiocyanates produced by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis 87:407–412

    Article  CAS  Google Scholar 

  98. Greenhalg JR, Mitchell ND (1976) The involvement of flavor volatiles in the resistance to downy mildew of wild and cultivated forms of Brassica oleracea. New Phytol 61:709–714

    Google Scholar 

  99. Smith BJ, Kikegaard JA (2002) In vitro inhibition of soil microorganisms by 2-phenylethyl isothiocyanate. Plant Pathol 51:585–593

    Article  CAS  Google Scholar 

  100. Pedras MS, Sorensen JL (1998) Phytoalexin accumulation and antifungal compounds from the crucifer wasabi. Phytochemistry 49:1959–1965

    Article  CAS  Google Scholar 

  101. Giamoustaris A, Mithen R (1997) Glucosinolates and disease resistance in oilseed rape (Brassica napus ssp. oleifera). Plant Pathol 46:271–275

    Article  CAS  Google Scholar 

  102. Zhang Y, Talalay P (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res 54:1916–1930

    Google Scholar 

  103. Brown KK, Hampton MB (2011) Biological targets if isothiocyanates. Biochim Biophys Acta 1810:888–894

    Article  CAS  Google Scholar 

  104. Kawakishi S, Namiki M (1969) Decomposition of allyl isothiocyanate in aqueous solution. Agric Biol Chem 33:452–459

    Article  CAS  Google Scholar 

  105. Cejpek K, Valusek J, Velisek J (2000) Reactions of allyl isothiocyanate with alanine, glycine and several peptides in model systems. J Agric Food Chem 48:3560–3565

    Article  CAS  Google Scholar 

  106. Luciano FB, Hosseinian FS, Beta T, Holley RA (2008) Effect of free-SH containing compounds on allyl isothiocyanate antimicrobial activity against Escherichia coli O157:H7. J Food Sci 73:M214–M220

    Article  CAS  Google Scholar 

  107. Kassie F, Knasmuller S (2000) Genotoxic effects of allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC). Chem Biol Interact 127:163–180

    Article  CAS  Google Scholar 

  108. Kassie F, Laky B, Nobis E, Kundi M, Knasmuller S (2001) Genotoxic effects of methyl isothiocyanate. Mut Res Gen Toxicol Environ Mutagen 490:1–9

    Article  CAS  Google Scholar 

  109. Luciano FB (2010) Mechanism of action and utilization of isothiocyanates from mustard against Escherichia coli O 157:H7. Doctoral thesis. The University of Manitoba

    Google Scholar 

  110. Kojima M, Oawa K (1971) Studies on the effect of isothiocyanates and their analogues on microorganisms. (I) Effects of isothiocyanates on the oxygen uptake of yeasts. J Ferment Technol 49:740–746

    CAS  Google Scholar 

  111. Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:1–24

    Article  Google Scholar 

  112. Lin CM, Preston JF, Wei CI (2000) Antibacterial mechanism of allyl isothiocyanate. J Food Prot 63:727–734

    Article  CAS  Google Scholar 

  113. Ahn E, Kjim J, Shin D (2001) Antimicrobial effects of allyl isothiocyanate on several microorganisms. Korean J Food Sci Technol 31:206–211

    Google Scholar 

  114. Calmes B, Guyen GN, Durmur J, Brisach CA, Campion C, Iacomi B, Pigné S, Dias E, Macherel D, Guillemette T, Simoneau P (2015) Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. Front Plant Sci 6:1–14

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Economy and Competitiveness Spanish Ministry (AGL2013-43194-P), by the pre-PhD program of the University of Valencia “Santiago Grisolia,” and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Process 400896/2014-1) from Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Saladino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Saladino, F., Bordin, K., Luciano, F.B., Franzón, M.F., Mañes, J., Meca, G. (2017). Antimicrobial Activity of the Glucosinolates. In: Mérillon, JM., Ramawat, K. (eds) Glucosinolates. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25462-3_18

Download citation

Publish with us

Policies and ethics