Advertisement

Glucosinolates pp 133-162 | Cite as

Accumulation of Glucosinolates in Broccoli

  • Huiying Miao
  • Jiansheng Wang
  • Congxi Cai
  • Jiaqi Chang
  • Yanting Zhao
  • Qiaomei WangEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Broccoli is a rich source of health-promoting antioxidants and anticarcinogenic glucosinolates, which has long been recognized for their outstanding benefits to human nutrition and plant defense. The composition and content of glucosinolate are closely associated with the flavor and anticancer activity of broccoli. Up to now, broccoli is among a few Brassica vegetables, in which the biosynthetic pathway of glucosinolate has been widely studied and has attracted extensive attention. Recent studies in glucosinolate research have also identified the genetic variations, as well as the functions of individual glucosinolate profiles and their degradation products in broccoli, which provide the basic aims and powerful strategies for breeding of broccoli varieties with optimal glucosinolate composition and content. To fully exploit the potentially beneficial effects of broccoli, it is important to investigate the glucosinolate variation and metabolism across the whole food chain, from preharvest production to post-harvest storage, processing, and cooking. This chapter provides a general overview of glucosinolate biosynthetic pathway, as well as the genetic variation and function of individual glucosinolate profiles in broccoli, highlights the recent advances in glucosinolate accumulation of broccoli upon different preharvest and post-harvest handlings, and discusses their potential application in broccoli breeding, production, storage, processing, and consumption.

Keywords

Glucosinolate Broccoli Light Chemical regulation Post-harvest handling Processing Cooking 

Abbreviations

6-BA

6-Benzylaminopurine

CA

Controlled atmosphere

EBR

Epibrassinolide

ESP

Epithiospecifier protein

GS

Glucosinolate

I3C

Indole-3-carbinol

ITC

Isothiocyanate

JA

Jasmonic acid

LDPE

Low-density polyethylene

M0

No holes

M1

Two microholes

M2

Four macroholes

MAP

Modified atmosphere packaging

MDA

Malondialdehyde

MeJA

Methyl jasmonate

NSP

Nitrile-specifier protein

PEF

Pulsed electric field

RH

Relative humidity

Notes

Acknowledgments

This work was supported by grants from National Science Foundation of China (NO. 30370974, 31270343, 31470385).

References

  1. 1.
    Kmiecik W, Lisiewska Z, Korus A (2007) Retention of mineral constituents in frozen brassicas depending on the method of preliminary processing of the raw material and preparation of frozen products for consumption. Eur Food Res Technol 224:573–579CrossRefGoogle Scholar
  2. 2.
    Bhandari S, Kwak J-H (2015) Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 20:1228–1243CrossRefGoogle Scholar
  3. 3.
    Dominguez-Perles R, Mena P, Garcia-Viguera C, Moreno DA (2014) Brassica foods as a dietary source of vitamin C: a review. Crit Rev Food Sci 54:1076–1091CrossRefGoogle Scholar
  4. 4.
    Mahn A, Reyes A (2012) An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Sci Technol Int 18:503–514CrossRefGoogle Scholar
  5. 5.
    Higdon J, Delage B, Williams D, Dashwood R (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236CrossRefGoogle Scholar
  6. 6.
    Jeffery EH, Araya M (2009) Physiological effects of broccoli consumption. Phytochem Rev 8:283–298CrossRefGoogle Scholar
  7. 7.
    Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci 15:283–290CrossRefGoogle Scholar
  8. 8.
    Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods-UK 2:310–325CrossRefGoogle Scholar
  9. 9.
    Wittstock U, Burow M (2010) Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. Arabidopsis Book 8, e0134CrossRefGoogle Scholar
  10. 10.
    Slominski BA, Campbell LD, Stanger NE (1987) Influence of cecectomy and dietary antibiotics on the fate of ingested intact glucosinolates in poultry. Can J Anim Sci 67:1117–1124CrossRefGoogle Scholar
  11. 11.
    Elfoul L, Rabot S, Khelifa N, Quinsac A, Duguay A, Rimbault A (2001) Formation of allyl isothiocyanate from sinigrin in the digestive tract of rats monoassociated with a human colonic strain of Bacteroides thetaiotaomicron. FEMS Microbiol Lett 197:99–103CrossRefGoogle Scholar
  12. 12.
    Maskell I, Smithard R (1994) Degradation of glucosinolates during in vitro incubations of rapeseed meal with myrosinase (EC 3.2.3.1) and with pepsin (EC 3.4.23.1)-hydrochloric acid, and contents of porcine small intestine and caecum. Brit J Nutr 72:455–466CrossRefGoogle Scholar
  13. 13.
    Mullaney JA, Kelly WJ, McGhie TK, Ansell J, Heyes JA (2013) Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from enterobacteriaceae. J Agr Food Chem 61:3039–3046CrossRefGoogle Scholar
  14. 14.
    Rabot S, Nugonbaudon L, Raibaud P, Szylit O (1993) Rapeseed meal toxicity in gnotobiotic rats: influence of a whole human faecal flora or single human strains of Escherichia coli and Bacteroides vulgatus. Brit J Nutr 70:323–331CrossRefGoogle Scholar
  15. 15.
    Abdull Razis AF, Noor NM (2013) Cruciferous vegetables: dietary phytochemicals for cancer prevention. Asian Pac J Cancer P 14:1565–1570CrossRefGoogle Scholar
  16. 16.
    Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100CrossRefGoogle Scholar
  17. 17.
    Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333CrossRefGoogle Scholar
  18. 18.
    Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270CrossRefGoogle Scholar
  19. 19.
    Mikkelsen MD, Petersen BL, Olsen CE, Halkier BA (2002) Biosynthesis and metabolic engineering of glucosinolates. Amino Acids 22:279–295CrossRefGoogle Scholar
  20. 20.
    Schuster J, Knill T, Reichelt M, Gershenzon J, Binder S (2006) Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell 18:2664–2679CrossRefGoogle Scholar
  21. 21.
    Gigolashvili T, Yatusevich R, Rollwitz I, Humphry M, Gershenzon J, Flügge U-I (2009) The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Plant Cell 21:1813–1829CrossRefGoogle Scholar
  22. 22.
    Kroymann J, Textor S, Tokuhisa JG, Falk KL, Bartram S, Gershenzon J, Mitchell-Olds T (2001) A gene controlling variation in arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol 127:1077–1088CrossRefGoogle Scholar
  23. 23.
    Textor S, de Kraker J-W, Hause B, Gershenzon J, Tokuhisa JG (2007) MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol 144:60–71CrossRefGoogle Scholar
  24. 24.
    Knill T, Reichelt M, Paetz C, Gershenzon J, Binder S (2009) Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation. Plant Mol Biol 71:227–239CrossRefGoogle Scholar
  25. 25.
    Knill T, Schuster J, Reichelt M, Gershenzon J, Binder S (2008) Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. Plant Physiol 146:1028–1039CrossRefGoogle Scholar
  26. 26.
    He Y, Mawhinney TP, Preuss ML, Schroeder AC, Chen B, Abraham L, Jez JM, Chen S (2009) A redox‐active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis. Plant J 60:679–690CrossRefGoogle Scholar
  27. 27.
    Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci U S A 97:2379–2384CrossRefGoogle Scholar
  28. 28.
    Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712–33717CrossRefGoogle Scholar
  29. 29.
    Chen S, Glawischnig E, Jørgensen K et al (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33:923–937CrossRefGoogle Scholar
  30. 30.
    Hansen CH, Wittstock U, Olsen CE, Hick AJ, Pickett JA, Halkier BA (2001) Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J Biol Chem 276:11078–11085CrossRefGoogle Scholar
  31. 31.
    Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of l-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem 275:14659–14666CrossRefGoogle Scholar
  32. 32.
    Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72CrossRefGoogle Scholar
  33. 33.
    Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:101–111CrossRefGoogle Scholar
  34. 34.
    Douglas Grubb C, Zipp BJ, Ludwig‐Müller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908CrossRefGoogle Scholar
  35. 35.
    Piotrowski M, Schemenewitz A, Lopukhina A, Müller A, Janowitz T, Weiler EW, Oecking C (2004) Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem 279:50717–50725CrossRefGoogle Scholar
  36. 36.
    Hansen BG, Kliebenstein DJ, Halkier BA (2007) Identification of a flavin‐monooxygenase as the S‐oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J 50:902–910CrossRefGoogle Scholar
  37. 37.
    Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchell-Olds T (2001) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:681–693CrossRefGoogle Scholar
  38. 38.
    Hansen BG, Kerwin RE, Ober JA, Lambrix VM, Mitchell-Olds T, Gershenzon J, Halkier BA, Kliebenstein DJ (2008) A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis. Plant Physiol 148:2096–2108CrossRefGoogle Scholar
  39. 39.
    Bednarek P, Piślewska-Bednarek M, Svatoš A et al (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106CrossRefGoogle Scholar
  40. 40.
    Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101CrossRefGoogle Scholar
  41. 41.
    Pfalz M, Mikkelsen MD, Bednarek P, Olsen CE, Halkier BA, Kroymann J (2011) Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. Plant Cell 23:716–729CrossRefGoogle Scholar
  42. 42.
    Pfalz M, Vogel H, Kroymann J (2009) The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21:985–999CrossRefGoogle Scholar
  43. 43.
    Levy M, Wang Q, Kaspi R, Parrella MP, Abel S (2005) Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J 43:79–96CrossRefGoogle Scholar
  44. 44.
    Skirycz A, Reichelt M, Burow M et al (2006) DOF transcription factor AtDof1. 1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J 47:10–24CrossRefGoogle Scholar
  45. 45.
    Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235–3251CrossRefGoogle Scholar
  46. 46.
    Kim JH, Durrett TP, Last RL, Jander G (2004) Characterization of the Arabidopsis TU8 glucosinolate mutation, an allele of TERMINAL FLOWER2. Plant Mol Biol 54:671–682CrossRefGoogle Scholar
  47. 47.
    Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137:253–262CrossRefGoogle Scholar
  48. 48.
    Frerigmann H, Gigolashvili T (2014) MYB34, MYB51 and MYB122 Distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant 7:814–828. doi:10.1093/mp/ssu004CrossRefGoogle Scholar
  49. 49.
    Gigolashvili T, Berger B, Fluegge U-I (2009) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem Rev 8:3–13CrossRefGoogle Scholar
  50. 50.
    Gigolashvili T, Berger B, Mock HP, Müller C, Weisshaar B, Flügge UI (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50:886–901CrossRefGoogle Scholar
  51. 51.
    Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge UI (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–642CrossRefGoogle Scholar
  52. 52.
    Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge UI (2007) The R2R3‐MYB transcription factor HAG1/MYB28 is a regulator of methionine‐derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–261CrossRefGoogle Scholar
  53. 53.
    Schweizer F, Fernández-Calvo P, Zander M et al (2013) Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25:3117–3132CrossRefGoogle Scholar
  54. 54.
    Frerigmann H, Berger B, Gigolashvili T (2014) bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis. Plant Physiol 166:349–369CrossRefGoogle Scholar
  55. 55.
    Liu SY, Liu YM, Yang XH et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5Google Scholar
  56. 56.
    Li GY, Quiros CF (2002) Genetic analysis, expression and molecular characterization of BoGSL-ELONG, a major gene involved in the aliphatic glucosinolate pathway of Brassica species. Genetics 162:1937–1943Google Scholar
  57. 57.
    Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. Theor Appl Genet 106:1116–1121CrossRefGoogle Scholar
  58. 58.
    Gao MQ, Li GY, McCombie WR, Quiros CF (2005) Comparative analysis of a transposon-rich Brassica oleracea BAC clone with its corresponding sequence in A-thaliana. Theor Appl Genet 111:949–955CrossRefGoogle Scholar
  59. 59.
    Gao M, Li G, Potter D, McCombie WR, Quiros CF (2006) Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and Arabidopsis thaliana. Plant Cell Rep 25:592–598CrossRefGoogle Scholar
  60. 60.
    Giamoustaris A, Mithen R (1996) Genetics of aliphatic glucosinolates.4. Side-chain modification in Brassica oleracea. Theor Appl Genet 93:1006–1010CrossRefGoogle Scholar
  61. 61.
    Gao M, Li G, Yang B, Qiu D, Farnham M, Quiros C (2007) High-density Brassica oleracea linkage map: identification of useful new linkages. Theor Appl Genet 115:277–287CrossRefGoogle Scholar
  62. 62.
    Carlson DG, Daxenbichler ME, Vanetten CH, Kwolek WF, Williams PH (1987) Glucosinolates in crucifer vegetables: broccoli, brussels sprouts, cauliflower, collards, kale, mustard greens, and kohlrabi. J Am Soc Hortic Sci 112:173–178Google Scholar
  63. 63.
    Brown AF, Yousef GG, Jeffrey EH, Klein BP, Wallig MA, Kushad MM, Juvik JA (2002) Glucosinolate profiles in broccoli: variation in levels and implications in breeding for cancer chemoprotection. J Am Soc Hortic Sci 127:807–813Google Scholar
  64. 64.
    Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agr Food Chem 47:1541–1548CrossRefGoogle Scholar
  65. 65.
    Wang J, Gu H, Yu H, Zhao Z, Sheng X, Zhang X (2012) Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Food Chem 133:735–741CrossRefGoogle Scholar
  66. 66.
    Farnham MW, Stephenson KK, Fahey JW (2000) Capacity of broccoli to induce a mammalian chemoprotective enzyme varies among inbred lines. J Am Soc Hortic Sci 125:482–488Google Scholar
  67. 67.
    Baik HY, Juvik J, Jeffery EH, Wallig MA, Kushad M, Klein BP (2003) Relating glucosinolate content and flavor of broccoli cultivars. J Food Sci 68:1043–1050CrossRefGoogle Scholar
  68. 68.
    Sarikamis G, Marquez J, MacCormack R, Bennett RN, Roberts J, Mithen R (2006) High glucosinolate broccoli: a delivery system for sulforaphane. Mol Breed 18:219–228CrossRefGoogle Scholar
  69. 69.
    Schonhof I, Krumbein A, Bruckner B (2004) Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahrung 48:25–33CrossRefGoogle Scholar
  70. 70.
    Rosa EAS, Rodrigues AS (2001) Total and individual glucosinolate content in 11 broccoli cultivars grown in early and late seasons. Hortscience 36:56–59Google Scholar
  71. 71.
    Vallejo F, Tomas-Barberan FA, Benavente-Garcia AG, Garcia-Viguera C (2003) Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. J Sci Food Agr 83:307–313CrossRefGoogle Scholar
  72. 72.
    Ernst IMA, Palani K, Esatbeyoglu T, Schwarz K, Rimbach G (2013) Synthesis and Nrf2-inducing activity of the isothiocyanates iberverin, iberin and cheirolin. Pharmacol Res 70:155–162CrossRefGoogle Scholar
  73. 73.
    Jakubikova J, Bao Y, Bodd J, Sedlak J (2006) Isothiocyanate iberin modulates phase II enzymes, posttranslational modification of histones and inhibits growth of Caco-2 cells by inducing apoptosis. Neoplasma 53:463–470Google Scholar
  74. 74.
    Smith TK, Lund EK, Parker ML, Clarke RG, Johnson IT (2004) Allyl-isothiocyanate causes mitotic block, loss of cell adhesion and disrupted cytoskeletal structure in HT29 cells. Carcinogenesis 25:1409–1415CrossRefGoogle Scholar
  75. 75.
    Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli GF, Iori R, Valgimigli L (2005) Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J Agr Food Chem 53:2475–2482CrossRefGoogle Scholar
  76. 76.
    Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay P, Lozniewski A (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo a pyrene-induced stomach tumors. Proc Natl Acad Sci U S A 99:7610–7615CrossRefGoogle Scholar
  77. 77.
    Jang M, Hong E, Kim G-H (2010) Evaluation of antibacterial activity of 3-Butenyl, 4-Pentenyl, 2-Phenylethyl, and benzyl isothiocyanate in Brassica vegetables. J Food Sci 75:M412–M416CrossRefGoogle Scholar
  78. 78.
    van Doorn HE, van der Kruk GC, van Holst GJ, Raaijmakers-Ruijs N, Postma E, Groeneweg B, Jongen WHF (1998) The glucosinolates sinigrin and progoitrin are important determinants for taste preference and bitterness of brussels sprouts. J Sci Food Agr 78:30–38CrossRefGoogle Scholar
  79. 79.
    ElSayed G, Louveaux A, Mavratzotis M, Rollin P, Quinsac A (1996) Effects of glucobrassicin, epiprogoitrin and related breakdown products on locusts feeding: schouwia purpurea and desert locust relationships. Entomol Exp Appl 78:231–236CrossRefGoogle Scholar
  80. 80.
    Yamada-Kato T, Nagai M, Ohnishi M, Yoshida K (2012) Inhibitory effects of wasabi isothiocyanates on chemical mediator release in RBL-2H3 rat basophilic leukemia cells. J Nutr Sci Vitaminol 58:303–307CrossRefGoogle Scholar
  81. 81.
    Xiao D, Singh SV (2007) Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo. Cancer Res 67:2239–2246CrossRefGoogle Scholar
  82. 82.
    Chinni SR, Li YW, Upadhyay S, Koppolu PK, Sarkar FH (2001) Indole3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 20:2927–2936CrossRefGoogle Scholar
  83. 83.
    Stephensen PU, Bonnesen C, Schaldach C, Andersen O, Bjeldanes LF, Vang O (2000) N-methoxyindole-3-carbinol is a more efficient inducer of cytochrome P-450 1A1 in cultured cells than indol-3-carbinol. Nutr Cancer 36:112–121CrossRefGoogle Scholar
  84. 84.
    Kronbak R, Duus F, Vang O (2010) Effect of 4-Methoxyindole-3-carbinol on the proliferation of colon cancer cells in vitro, when treated alone or in combination with Indole-3-carbinol. J Agric Food Chem 58:8453–8459CrossRefGoogle Scholar
  85. 85.
    Farnham MW, Wilson PE, Stephenson KK, Fahey JW (2004) Genetic and environmental effects on glucosinolate content and chemoprotective potency of broccoli. Plant Breed 123:60–65CrossRefGoogle Scholar
  86. 86.
    Gu HH, Wang JS, Yu HF, Zhao ZQ, Sheng XG, Chen JS, Xu YJ (2014) Development and validation of high-glucoraphanin broccoli F-1 hybrids and parental lines. J Am Soc Hortic Sci 139:460–468Google Scholar
  87. 87.
    Nour-Eldin HH, Andersen TG, Burow M et al (2012) NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488:531–534CrossRefGoogle Scholar
  88. 88.
    Kelly PJ, Bones A, Rossiter JT (1998) Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 206:370–377CrossRefGoogle Scholar
  89. 89.
    Andreasson E, Jorgensen LB, Hoglund AS, Rask L, Meijer J (2001) Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol 127:1750–1763CrossRefGoogle Scholar
  90. 90.
    Lipka V, Dittgen J, Bednarek P et al (2005) Pre-and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183CrossRefGoogle Scholar
  91. 91.
    Mithen R, Faulkner K, Magrath R, Rose P, Williamson G, Marquez J (2003) Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor Appl Genet 106:727–734CrossRefGoogle Scholar
  92. 92.
    Matusheski NV, Swarup R, Juvik JA, Mithen R, Bennett M, Jeffery EH (2006) Epithiospecifier protein from broccoli (Brassica oleracea L. ssp italica) inhibits formation of the anticancer agent sulforaphane. J Agric Food Chem 54:2069–2076CrossRefGoogle Scholar
  93. 93.
    Williams DJ, Critchley C, Pun S, Nottingham S, O'Hare TJ (2008) Epithiospecifier protein activity in broccoli: the link between terminal alkenyl glucosinolates and sulphoraphane nitrile. Phytochemistry 69:2765–2773CrossRefGoogle Scholar
  94. 94.
    Mahéo K, Morel F, Langouët S, Kramer H, Ferrec EL, Ketterer B, Guillouzo A (1997) Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes. Cancer Res 57:3649–3652Google Scholar
  95. 95.
    Conaway CC, Yang YM, Chung FL (2002) Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr Drug Metab 3:233–255CrossRefGoogle Scholar
  96. 96.
    Hecht SS (2000) Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 32:395–411CrossRefGoogle Scholar
  97. 97.
    Nishikawa A, Lee IS, Uneyama C, Furukawa F, Kim HC, Kasahara K, Huh N, Takahashi M (1997) Mechanistic insights into chemopreventive effects of phenethyl isothiocyanate in N-nitrosobis(2-oxopropyl)amine-treated hamsters. Jpn J Cancer Res 88:1137–1142CrossRefGoogle Scholar
  98. 98.
    Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18:337–347CrossRefGoogle Scholar
  99. 99.
    Guo ZY, Smith TJ, Wang E, Sadrieh N, Ma Q, Thomas PE, Yang CS (1992) Effects of phenethyl isothiocyanate, a carcinogenesis inhibitor, on xenobiotic-metabolizing enzymes and nitrosamine metabolism in rats. Carcinogenesis 13:2205–2210CrossRefGoogle Scholar
  100. 100.
    Riedl MA, Saxon A, Diaz-Sanchez D (2009) Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clin Immunol 130:244–251CrossRefGoogle Scholar
  101. 101.
    Ashok BT, Chen YG, Liu XY, Bradlow HL, Mittelman A, Tiwari RK (2001) Abrogation of estrogen-mediated cellular and biochemical effects by indole-3-carbinol. Nutr Cancer 41:180–187CrossRefGoogle Scholar
  102. 102.
    Michnovicz J (1998) Increased estrogen 2-hydroxylation in obese women using oral indole-3-carbinol. Int J Obes 22:227–229CrossRefGoogle Scholar
  103. 103.
    Meng QH, Goldberg ID, Rosen EM, Fan SJ (2000) Inhibitory effects of Indole-3-carbinol on invasion and migration in human breast cancer cells. Breast Cancer Res Treat 63:147–152CrossRefGoogle Scholar
  104. 104.
    Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C (2001) Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276:32008–32015CrossRefGoogle Scholar
  105. 105.
    Tanito M, Masutani H, Kim YC, Nishikawa M, Ohira A, Yodoi J (2005) Sulforaphane induces thioredoxin through the antioxidant-responsive element and attenuates retinal light damage in mice. Invest Ophthalmol Vis Sci 46:979–987CrossRefGoogle Scholar
  106. 106.
    Wu LY, Ashraf MHN, Facci M, Wang R, Paterson PG, Ferrie A, Juurlink BHJ (2004) Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc Natl Acad Sci U S A 101:7094–7099CrossRefGoogle Scholar
  107. 107.
    Senanayake GVK, Banigesh A, Wu LY, Lee P, Juurlink BHJ (2012) The dietary phase 2 protein inducer sulforaphane can normalize the kidney epigenome and improve blood pressure in hypertensive rats. Am J Hypertens 25:229–235CrossRefGoogle Scholar
  108. 108.
    Matusheski NV, Jeffery EH (2001) Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J Agric Food Chem 49:5743–5749CrossRefGoogle Scholar
  109. 109.
    Latte KP, Appel KE, Lampen A (2011) Health benefits and possible risks of broccoli – an overview. Food Chem Toxicol 49:3287–3309CrossRefGoogle Scholar
  110. 110.
    Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130Google Scholar
  111. 111.
    Drewnowski A, Gomez-Carneros C (2000) Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr 72:1424–1435Google Scholar
  112. 112.
    Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984CrossRefGoogle Scholar
  113. 113.
    Tripathi MK, Mishra AS (2007) Glucosinolates in animal nutrition: a review. Anim Feed Sci Technol 132:1–27CrossRefGoogle Scholar
  114. 114.
    Stadler E, Renwick JAA, Radke CD, Sachdevgupta K (1995) Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris-rapae. Physiol Entomol 20:175–187CrossRefGoogle Scholar
  115. 115.
    Kim JH, Lee BW, Schroeder FC, Jander G (2008) Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J 54:1015–1026CrossRefGoogle Scholar
  116. 116.
    Kos M, Houshyani B, Wietsma R, Kabouw P, Vet LEM, van Loon JJA, Dicke M (2012) Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. Phytochemistry 77:162–170CrossRefGoogle Scholar
  117. 117.
    Beekwilder J, van Leeuwen W, van Dam NM et al (2008) The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. Plos One 3, e2068CrossRefGoogle Scholar
  118. 118.
    Fan J, Crooks C, Creissen G, Hill L, Fairhurst S, Doerner P, Lamb C (2011) Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331:1185CrossRefGoogle Scholar
  119. 119.
    Zhao Y, Wang J, Liu Y et al (2015) Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis. Plant J 81:920–933CrossRefGoogle Scholar
  120. 120.
    Traka MH, Saha S, Huseby S et al (2013) Genetic regulation of glucoraphanin accumulation in beneforté® broccoli. New Phytol 198:1085–1095CrossRefGoogle Scholar
  121. 121.
    Sotelo T, Soengas P, Velasco P, Rodriguez VM, Cartea ME (2014) Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds. Plos One 9, e91428CrossRefGoogle Scholar
  122. 122.
    Abercrombie JM, Farnham MW, Rushing JW (2005) Genetic combining ability of glucoraphanin level and other horticultural traits of broccoli. Euphytica 143:145–151CrossRefGoogle Scholar
  123. 123.
    Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Am J Clin Nutr 59:281–311Google Scholar
  124. 124.
    Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J Exp Bot 61:11–24CrossRefGoogle Scholar
  125. 125.
    Steindal ALH, Mølmann J, Bengtsson GB, Johansen TJ (2013) Influence of day length and temperature on the content of health-related compounds in broccoli (Brassica oleracea L. var. italica). J Agric Food Chem 61:10779–10786CrossRefGoogle Scholar
  126. 126.
    Simioni C, Schmidt EC, Felix MR et al (2014) Effects of ultraviolet radiation (UVA + UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure. Photochem Photobiol 90:1050–1060Google Scholar
  127. 127.
    Brazaitytė A, Sakalauskienė S, Samuolienė G et al (2015) The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chem 173:600–606CrossRefGoogle Scholar
  128. 128.
    Seo JM, Arasu MV, Kim YB, Sang UP, Kim SJ (2015) Phenylalanine and LED lights enhance phenolic compound production in Tartary buckwheat sprouts. Food Chem 177:204–213CrossRefGoogle Scholar
  129. 129.
    Mewis I, Schreiner M, Nguyen CN, Krumbein A, Ulrichs C, Lohse M, Zrenner R (2012) UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant Cell Physiol 53:1546–1560CrossRefGoogle Scholar
  130. 130.
    Topcu Y, Dogan A, Kasimoglu Z, Sahin-Nadeem H, Polat E, Erkan M (2015) The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.). Plant Physiol Biochem 93:56–65CrossRefGoogle Scholar
  131. 131.
    Steindal ALH, Johansen TJ, Bengtsson GB, Hagen SF, Mølmann JAB (2015) Impact of pre-harvest light spectral properties on health- and sensory-related compounds in broccoli florets. J Sci Food Agric. doi:10.1002/jsfa.7307Google Scholar
  132. 132.
    Liuann G, Juvikjohn A, Jefferyelizabeth H, Bermanbootylisa D, Clintonsteven K, Jr EJW (2014) Enhancement of broccoli indole glucosinolates by methyl jasmonate treatment and effects on prostate carcinogenesis. J Med Food 17:1177–1182CrossRefGoogle Scholar
  133. 133.
    Van DNM, Leontien W, Aleš S (2004) Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytol 161:801–810CrossRefGoogle Scholar
  134. 134.
    Yan X, Chen S (2007) Regulation of plant glucosinolate metabolism. Planta 226:1343–1352CrossRefGoogle Scholar
  135. 135.
    Kim HH, Kwon DY, Uddin MR, Bae H, Kim SJ, Kim YB, Sang UP (2013) Influence of auxins on glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica). Asian J Chem 25:6099–6101Google Scholar
  136. 136.
    Guo R, Qian H, Shen W, Liu L, Zhang M, Cai C, Zhao Y, Qiao J, Wang Q (2013) BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in Arabidopsis. J Exp Bot 64:2401–2412CrossRefGoogle Scholar
  137. 137.
    Guo R, Hou Q, Yuan G, Zhao Y, Wang Q (2014) Effect of 2, 4-epibrassinolide on main health-promoting compounds in broccoli sprouts. LWT Food Sci Technol 58:287–292CrossRefGoogle Scholar
  138. 138.
    Dekkers BJW, Schuurmans JAMJ, Smeekens SCM (2004) Glucose delays seed germination in Arabidopsis thaliana. Planta 218:579–588CrossRefGoogle Scholar
  139. 139.
    Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann Rev Plant Biol Am J Clin Nutr 57:675–709CrossRefGoogle Scholar
  140. 140.
    Ramon M, Rolland F, Sheen J (2008) Sugar sensing and signaling. Arabidopsis Book 6, e0117CrossRefGoogle Scholar
  141. 141.
    Wingler A, Masclauxdaubresse C, Fischer AM (2009) Sugars, senescence, and ageing in plants and heterotrophic organisms. J Exp Bot 60:1063–1066CrossRefGoogle Scholar
  142. 142.
    Bolouri-Moghaddam MR, Roy KL, Li X, Rolland F, Ende WVD (2010) Sugar signalling and antioxidant network connections in plant cells. Febs J 277:2022–2037CrossRefGoogle Scholar
  143. 143.
    Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279CrossRefGoogle Scholar
  144. 144.
    Guo R, Yuan G, Wang Q (2011) Sucrose enhances the accumulation of anthocyanins and glucosinolates in broccoli sprouts. Food Chem 129:1080–1087CrossRefGoogle Scholar
  145. 145.
    Guo R, Yuan G, Wang Q (2011) Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Sci Hortic-Amsterdam 128:159–165CrossRefGoogle Scholar
  146. 146.
    Jia CG, Xu CJ, Wei J, Yuan J, Yuan GF, Wang BL, Wang QM (2009) Effect of modified atmosphere packaging on visual quality and glucosinolates of broccoli florets. Food Chem 114:28–37CrossRefGoogle Scholar
  147. 147.
    Carmen LB, Moreno DA, Micaela C, Cristina GV (2009) Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agric Food Chem 57:572–578CrossRefGoogle Scholar
  148. 148.
    Zaghdoud C, Alcaraz-López C, Mota-Cadenas C, Martínez-Ballesta MC, Moreno DA, Ferchichi A, Carvajal M (2012) Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement. Sci World J 2012:291435CrossRefGoogle Scholar
  149. 149.
    Guo L, Yang R, Wang Z, Guo Q, Gu Z (2013) Effect of NaCl stress on health-promoting compounds and antioxidant activity in the sprouts of three broccoli cultivars. Int J Food Sci Nutr 65:476–481CrossRefGoogle Scholar
  150. 150.
    Guo RF, Yuan GF, Wang QM (2013) Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J Zhejiang Univ Sci B 14:124–131CrossRefGoogle Scholar
  151. 151.
    Krumbein A, Schonhof I, Rühlmann J, Widell S (2001) Influence of sulphur and nitrogen supply on flavour and health-affecting compounds in Brassicaceae. Dev Plant Soil Sci 92:294–295Google Scholar
  152. 152.
    Schonhof I, Blankenburg D, Müller S, Krumbein A (2007) Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J Plant Nutr Soil Sci 170:65–72CrossRefGoogle Scholar
  153. 153.
    Xu CJ, Guo RF, Yan HZ, Yuan J, Sun B, Yuan GF, Wang QM (2010) Effect of nitrogen fertilization on ascorbic acid, glucoraphanin content and quinone reductase activity in broccoli floret and stem. J Food Agric Environ 88:179–184Google Scholar
  154. 154.
    Zhao F, Evans EJ, Bilsborrow PE, Syers JK (1993) Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rape (Brassica napus L). J Sci Food Agric 63:29–37CrossRefGoogle Scholar
  155. 155.
    Gerendas J, Podestat J, Stahl T (2009) Interactive effects of sulfur and nitrogen supply on the concentration of sinigrin and allyl isothiocyanate in Indian mustard (Brassica juncea L.). J Agric Food Chem 57:3837–3844CrossRefGoogle Scholar
  156. 156.
    Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol 9:573–581CrossRefGoogle Scholar
  157. 157.
    Aires A, Rosa E, Carvalho R (2006) Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts Brassica oleracea var. italica. J Sci Food Agr 86:1512–1516CrossRefGoogle Scholar
  158. 158.
    Naguib EMM, El-Baz FK, Salama ZA, Hanaa HAEB, Ali HF, Gaafar AA (2012) Enhancement of phenolics, flavonoids and glucosinolates of broccoli (Brassica oleracea, var. Italica) as antioxidants in response to organic and bio-organic fertilizers. J Saudi Soc Agric Sci 11:135–142Google Scholar
  159. 159.
    Dauda SN, Ajayi FA, Ndor E (2008) Growth and yield of water melon (citrullus lanatus) as affected by poultry manure application. J Agric Soc Sci 4:121–124Google Scholar
  160. 160.
    Dhull S, Goyal S, Kapoor K, Mundra M (2004) Microbial biomass carbon and microbial activities of soils receiving chemical fertilizers and organic amendments. Arch Agron Soil Sci 50:641–647CrossRefGoogle Scholar
  161. 161.
    Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389CrossRefGoogle Scholar
  162. 162.
    Matich AJ, Mckenzie MJ, Lill RE, Brummell DA, Mcghie TK, Chen RKY, Rowan DD (2012) Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry 75:140–152CrossRefGoogle Scholar
  163. 163.
    Ávila FW, Yong Y, Faquin V, Ramos SJ, Guilherme LRG, Thannhauser TW, Li L (2014) Impact of selenium supply on Se -methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem 165:578–586CrossRefGoogle Scholar
  164. 164.
    Tian M, Xu X, Liu Y, Xie L, Pan S (2016) Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem 190:374–380CrossRefGoogle Scholar
  165. 165.
    Anna P, Dominik K, Tadeusz P et al (2014) The influence of selenium addition during germination of Brassica seeds on health-promoting potential of sprouts. Int J Food Sci Nutr 65:692–702CrossRefGoogle Scholar
  166. 166.
    Sepúlveda I, Barrientos H, Mahn A, Moenne A (2013) Changes in SeMSC, glucosinolates and sulforaphane levels, and in proteome profile in broccoli (Brassica oleracea var. Italica) fertilized with sodium selenate. Molecules 18:5221–5234CrossRefGoogle Scholar
  167. 167.
    Jones RB, Faragher JD, Winkler S (2006) A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biol Technol 41:1–8CrossRefGoogle Scholar
  168. 168.
    Xu C-J, Guo D-P, Yuan J, Yuan G-F, Wang Q-M (2006) Changes in glucoraphanin content and quinone reductase activity in broccoli (Brassica oleracea var. italica) florets during cooling and controlled atmosphere storage. Postharvest Biol Technol 42:176–184CrossRefGoogle Scholar
  169. 169.
    Rangkadilok N, Tomkins B, Nicolas ME, Premier RR, Bennett RN, Eagling DR, Taylor PWJ (2002) The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. italica). J Agric Food Chem 50:7386–7391CrossRefGoogle Scholar
  170. 170.
    Rodrigues AS, Rosa EAS (1999) Effect of post-harvest treatments on the level of glucosinolates in broccoli. J Sci Food Agric 79:1028–1032CrossRefGoogle Scholar
  171. 171.
    Howard LA, Jeffery EH, Wallig MA, Klein BP (1997) Retention of phytochemicals in fresh and processed broccoli. J Food Sci 62:1098–1104CrossRefGoogle Scholar
  172. 172.
    Hansen M, Moller P, Sorensen H, Detrejo MC (1995) Glucosinolates in broccoli stored under controlled atmosphere. J Am Soc Hortic Sci 120:1069–1074Google Scholar
  173. 173.
    Verkerk R, Dekker M, Jongen WMF (2001) Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. J Sci Food Agric 81:953–958CrossRefGoogle Scholar
  174. 174.
    Yuan G, Sun B, Yuan J, Wang Q (2010) Effect of 1-methylcyclopropene on shelf life, visual quality, antioxidant enzymes and health-promoting compounds in broccoli florets. Food Chem 118:774–781CrossRefGoogle Scholar
  175. 175.
    Volden J, Bengtsson GB, Wicklund T (2009) Glucosinolates, l-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem 112:967–976CrossRefGoogle Scholar
  176. 176.
    Song LJ, Thornalley PJ (2007) Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45:216–224CrossRefGoogle Scholar
  177. 177.
    Guo Y, Gao Z, Li L, Wang Y, Zhao H, Hu M, Li M, Zhang Z (2013) Effect of controlled atmospheres with varying O2/CO2 levels on the postharvest senescence and quality of broccoli (Brassica oleracea L. var. italica) florets. Eur Food Res Technol 237:943–950CrossRefGoogle Scholar
  178. 178.
    Fernández-León MF, Fernández-León AM, Lozano M, Ayuso MC, González-Gómez D (2013) Different postharvest strategies to preserve broccoli quality during storage and shelf life: controlled atmosphere and 1-MCP. Food Chem 138:564–573CrossRefGoogle Scholar
  179. 179.
    Dunford NT, Temelli F (1996) Effect of supercritical CO2 on myrosinase activity and glucosinolate degradation in canola. J Agric Food Chem 44:2372–2376CrossRefGoogle Scholar
  180. 180.
    Hansen ME, Sorensen H, Cantwell M (2001) Changes in acetaldehyde, ethanol and amino acid concentrations in broccoli florets during air and controlled atmosphere storage. Postharvest Biol Technol 22:227–237CrossRefGoogle Scholar
  181. 181.
    Izumi H, Watada AE, Douglas W (1996) Optimum O2 or CO2 atmosphere for storing broccoli florets at various temperatures. J Am Soc Hortic Sci 121:127–131Google Scholar
  182. 182.
    Fernández-León MF, Fernández-León AM, Lozano M, Ayuso MC, Amodio ML, Colelli G, González-Gómez D (2013) Retention of quality and functional values of broccoli ‘Parthenon’ stored in modified atmosphere packaging. Food Control 31:302–313CrossRefGoogle Scholar
  183. 183.
    Vallejo F, Tomas-Barberan F, Garcia-Viguera C (2003) Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J Agric Food Chem 51:3029–3034CrossRefGoogle Scholar
  184. 184.
    Schreiner MC, Peters PJ, Krumbein AB (2006) Glucosinolates in mixed-packaged mini broccoli and mini cauliflower under modified atmosphere. J Agric Food Chem 54:2218–2222CrossRefGoogle Scholar
  185. 185.
    Ku VVV, Wills RBH (1999) Effect of 1-methylcyclopropene on the storage life of broccoli. Postharvest Biol Technol 17:127–132CrossRefGoogle Scholar
  186. 186.
    Xu F, Chen X, Yang Z, Jin P, Wang K, Shang H, Wang X, Zheng Y (2013) Maintaining quality and bioactive compounds of broccoli by combined treatment with 1-methylcyclopropene and 6-benzylaminopurine. J Sci Food Agric 93:1156–1161CrossRefGoogle Scholar
  187. 187.
    Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131:298–308CrossRefGoogle Scholar
  188. 188.
    Luo Z, Xu X, Cai Z, Yan M (2007) Effects of ethylene and 1-methylcyclopropene (1-MCP) on lignification of postharvest bamboo shoot. Food Chem 105:521–527CrossRefGoogle Scholar
  189. 189.
    Jin P, Yao D, Xu F, Wang H, Zheng Y (2015) Effect of light on quality and bioactive compounds in postharvest broccoli florets. Food Chem 172:705–709CrossRefGoogle Scholar
  190. 190.
    Xu F, Yang Z, Chen X, Jin P, Wang X, Zheng Y (2012) 6-Benzylaminopurine delays senescence and enhances health-promoting compounds of harvested broccoli. J Agric Food Chem 60:234–240CrossRefGoogle Scholar
  191. 191.
    Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2007) Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. P Nutr Soc 66:69–81CrossRefGoogle Scholar
  192. 192.
    Andress EL, Harrison JA (2006) So easy to preserve. University of Georgia Cooperative Extension Service, AthensGoogle Scholar
  193. 193.
    Dosz EB, Jeffery EH (2013) Commercially produced frozen broccoli lacks the ability to form sulforaphane. J Funct Foods 5:987–990CrossRefGoogle Scholar
  194. 194.
    Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2008) Influence of blanching and freezing broccoli (Brassica oleracea var. italica) prior to storage and cooking on glucosinolate concentrations and myrosinase activity. Eur Food Res Technol 227:37–44CrossRefGoogle Scholar
  195. 195.
    Alanis-Garza PA, Becerra-Moreno A, Mora-Nieves JL, Mora-Mora JP, Jacobo-Velazquez DA (2015) Effect of industrial freezing on the stability of chemopreventive compounds in broccoli. Int J Food Sci Nutr 66:282–288CrossRefGoogle Scholar
  196. 196.
    Perez C, Barrientos H, Roman J, Mahn A (2014) Optimization of a blanching step to maximize sulforaphane synthesis in broccoli florets. Food Chem 145:264–271CrossRefGoogle Scholar
  197. 197.
    Hwang E-S, Kim G-H (2013) Effects of various heating methods on glucosinolate, carotenoid and tocopherol concentrations in broccoli. Int J Food Sci Nutr 64:103–111CrossRefGoogle Scholar
  198. 198.
    Sones K, Heaney RK, Fenwick GR (1984) An estimate of the mean daily intake of glucosinolates from cruciferous vegetables in the UK. J Sci Food Agric 35:712–720CrossRefGoogle Scholar
  199. 199.
    Bongoni R, Verkerk R, Steenbekkers B, Dekker M, Stieger M (2014) Evaluation of different cooking conditions on broccoli (Brassica oleracea var. italica) to improve the nutritional value and consumer acceptance. Plant Foods Hum Nutr 69:228–234CrossRefGoogle Scholar
  200. 200.
    Lopez-Berenguer C, Carvajal M, Moreno DA, Garcia-Viguera C (2007) Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences. J Agric Food Chem 55:10001–10007CrossRefGoogle Scholar
  201. 201.
    Vallejo F, Tomas-Barberan FA, Garcia-Viguera C (2002) Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. Eur Food Res Technol 215:310–316CrossRefGoogle Scholar
  202. 202.
    Yuan GF, Sun B, Yuan J, Wang QM (2009) Effects of different cooking methods on health-promoting compounds of broccoli. J Zhejiang Univ Sci B 10:580–588CrossRefGoogle Scholar
  203. 203.
    Gliszczynska-Swiglo A, Ciska E, Pawlak-Lemanska K, Chmielewski J, Borkowski T, Tyrakowska B (2006) Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit Contam 23:1088–1098CrossRefGoogle Scholar
  204. 204.
    Moreno DA, Lopez-Berenguer C, Garcia-Viguera C (2007) Effects of stir-fry cooking with different edible oils on the phytochemical composition of broccoli. J Food Sci 72:S64–S68CrossRefGoogle Scholar
  205. 205.
    Francisco M, Velasco P, Moreno DA, Garcia-Viguera C, Elena Cartea M (2010) Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Res Int 43:1455–1463CrossRefGoogle Scholar
  206. 206.
    Jones RB, Frisina CL, Winkler S, Imsic M, Tomkins RB (2010) Cooking method significantly effects glucosinolate content and sulforaphane production in broccoli florets. Food Chem 123:237–242CrossRefGoogle Scholar
  207. 207.
    Wathelet JP, Mabon N, Foucart M, Marlier M (1996) Influence of blanching on the quality of Brussels sprouts (Brassica oleracea L cv gemmifera). Sci Aliment 16:393–402Google Scholar
  208. 208.
    Oerlemans K, Barrett DM, Suades CB, Verkerk R, Dekker M (2006) Thermal degradation of glucosinolates in red cabbage. Food Chem 95:19–29CrossRefGoogle Scholar
  209. 209.
    Matusheski NV, Juvik JA, Jeffery EH (2004) Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65:1273–1281CrossRefGoogle Scholar
  210. 210.
    Ghawi SK, Methven L, Niranjan K (2013) The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chem 138:1734–1741CrossRefGoogle Scholar
  211. 211.
    Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) 7-Methylsulffinylheptyl and 8-methylsulfinyloctyl isothiocyanates from watercress are potent inducers of phase II enzymes. Carcinogenesis 21:1983–1988CrossRefGoogle Scholar
  212. 212.
    Aguilo-Aguayo I, Suarez M, Plaza L, Hossain MB, Brunton N, Lyng JG, Rai DK (2015) Optimization of pulsed electric field pre-treatments to enhance health-promoting glucosinolates in broccoli flowers and stalk. J Sci Food Agric 95:1868–1875CrossRefGoogle Scholar
  213. 213.
    Zhang Y, Huai D, Yang Q, Cheng Y, Ma M, Kliebenstein DJ, Zhou Y (2015) Overexpression of three glucosinolate biosynthesis genes in Brassica napus identifies enhanced resistance to sclerotinia sclerotiorum and Botrytis cinerea. Plos One 10, e0140491. doi:10.1371/journal.pone.0140491CrossRefGoogle Scholar
  214. 214.
    Augustine R, Mukhopadhyay A, Bisht NC (2013) Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. Plant Biotechnol J 11:855–866CrossRefGoogle Scholar
  215. 215.
    Liu Z, Hirani AH, McVetty PBE, Daayf F, Quiros CF, Li G (2012) Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family. Plant Mol Biol 79:179–189CrossRefGoogle Scholar
  216. 216.
    Qian H, Sun B, Miao H, Cai C, Xu C, Wang Q (2015) Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering. Food Chem 168:321–326CrossRefGoogle Scholar
  217. 217.
    Liu Z, Hammerlindl J, Keller W, McVetty PBE, Daayf F, Quiros CF, Li G (2011) MAM gene silencing leads to the induction of C3 and reduction of C4 and C5 side-chain aliphatic glucosinolates in Brassica napus. Mol Breed 27:467–478CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Huiying Miao
    • 1
  • Jiansheng Wang
    • 1
  • Congxi Cai
    • 1
  • Jiaqi Chang
    • 1
  • Yanting Zhao
    • 1
  • Qiaomei Wang
    • 1
    Email author
  1. 1.Department of HorticultureZhejiang UniversityHangzhouChina

Personalised recommendations