Glucosinolates pp 301-317 | Cite as

Antileukemic Activity of Sulforaphane

  • Elena CatanzaroEmail author
  • Carmela Fimognari
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


The biological complexity of cancer offers numerous targets for antineoplastic therapies. Diet is a common source of biologically active compounds. Many studies demonstrated an inverse relation between the consumption of vegetables and the risk of cancer. In this context, the interest is currently focused toward the study of certain diet-derived molecules to prevent, delay, or treat cancer by acting simultaneously on different critical pathways. Among phytochemicals, sulforaphane, an isothiocyanate derived from the hydrolysis of the glucosinolate glucoraphanin mainly present in Brassica vegetables, is one of the most promising diet-derived molecules. In this chapter, we will present the antileukemic activity of sulforaphane and discuss its therapeutic potential in terms of mechanisms of action, safety, and limits.


Leukemia Sulforaphane Brassica vegetables Dietary phytochemicals Apoptosis Cell cycle 



Plasmatic protein kinase B


Acute lymphoblastic leukemia


Acute myeloid leukemia


Acute promyelocytic leukemia


Acute B-lymphoblastic leukemia


Cyclin-dependent kinase


Chronic lymphoblastic leukemia


Chronic myeloid leukemia




Cytochrome P450


Double-strand break


Glutamate-cysteine ligase catalytic


Glutamate-cysteine ligase modifier






Homologous recombination repair




Mammalian target of rapamycin


Poly (ADP-ribose) polymerase


Phosphatidylinositol 3-kinase




Reactive oxygen species




Signal transducers and activators of transcription


Acute T-lymphoblastic leukemia


  1. 1.
    Ahmad A, Ormiston-Smith N, Sasieni P (2015) Trends in the lifetime risk of developing cancer in great Britain: comparison of risk for those born from 1930 to 1960. Br J Cancer 112:943–947CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  4. 4.
    Kufe DW, Pollock RE, Weichselbaum RR, Bast RC, Gansler TS, Holland JF, Frei E (2003) Holland-Frei cancer medicine. BC Decker, HamiltonGoogle Scholar
  5. 5.
    Devi PU (2004) Basics of carcinogenesis. Health Admin 17:16–24Google Scholar
  6. 6.
    Iyanagi T (2007) Molecular mechanism of phase I and phase Ii drug‐metabolizing enzymes: implications for detoxification. Int Rev Cytol 260:35–112CrossRefGoogle Scholar
  7. 7.
    Fimognari C, Hrelia P (2007) Sulforaphane as a promising molecule for fighting cancer. Mutat Res-Rev Mutat 635:90–104CrossRefGoogle Scholar
  8. 8.
    Fimognari C, Turrini E, Sestili P, Calcabrini C, Carulli G, Fontanelli G, Rousseau M, Cantelli-Forti G, Hrelia P (2014) Antileukemic activity of sulforaphane in primary blasts from patients affected by myelo- and lympho-proliferative disorders and in hypoxic conditions. PLoS One 9(7):e101991CrossRefGoogle Scholar
  9. 9.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellström-Lindberg E, Tefferi A (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951CrossRefGoogle Scholar
  10. 10.
    Fathi AT, Karp JE (2009) New agents in acute myeloid leukemia: beyond cytarabine and anthracyclines. Curr Oncol Rep 11:346–352CrossRefGoogle Scholar
  11. 11.
    Arcangeli A, Pillozzi S, Becchetti A (2012) Targeting Ion channels in leukemias: a new challenge for treatment. Curr Med Chem 19:683–696CrossRefGoogle Scholar
  12. 12.
    Karp JE, Ross DD, Yang W, Tidwell ML, Wei Y, Greer J, Mann DL, Nakanishi T, Wright JJ, Colevas AD (2003) Timed sequential therapy of acute leukemia with flavopiridol in vitro model for a phase i clinical trial. Clin Cancer Res 9:307–315Google Scholar
  13. 13.
    Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M, group CRAc (2005) Causes of cancer in the World: comparative risk assessment of nine behavioural and environmental risk factors. Lancet 366:1784–1793CrossRefGoogle Scholar
  14. 14.
    Si H, Liu D (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J Nutr Biochem 25:581–591CrossRefGoogle Scholar
  15. 15.
    Keum Y-S, Jeong W-S, Kong A (2005) Chemopreventive functions of isothiocyanates. Drug News Perspect 18:445–451CrossRefGoogle Scholar
  16. 16.
    Turrini E, Ferruzzi L, Fimognari C (2014) Natural compounds to overcome cancer chemoresistance: toxicological and clinical issues. Expert Opin Drug Metab Toxicol 10:1677–1690CrossRefGoogle Scholar
  17. 17.
    de Figueiredo SM, Filho SA, Nogueira-Machado JA, Caligiorne RB (2013) The anti-oxidant properties of isothiocyanates: a review. Recent Pat Endocr Metab Immune Drug Discov 7:213–225CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Tang L (2007) Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin 28:1343–1354CrossRefGoogle Scholar
  19. 19.
    Fimognari C, Nüsse M, Cesari R, Iori R, Cantelli-Forti G, Hrelia P (2002) Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis 23:581–586CrossRefGoogle Scholar
  20. 20.
    Suppipat K, Park CS, Shen Y, Zhu X, Lacorazza HD (2012) Sulforaphane induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia cells. PLoS One 7(12):e51251CrossRefGoogle Scholar
  21. 21.
    Fimognari C, Lenzi M, Cantelli-Forti G, Hrelia P (2008) Induction of differentiation in human promyelocytic cells by the isothiocyanate sulforaphane. In Vivo 22:317–320Google Scholar
  22. 22.
    Misiewicz I, Skupinska K, Kowalska E, Lubinski J, Kasprzycka-Guttman T (2004) Sulforaphane-mediated induction of a phase 2 detoxifying enzyme Nad (P) H: quinone reductase and apoptosis in human lymphoblastoid cells. Acta Biochim Pol 51(3):711–722Google Scholar
  23. 23.
    Jancova P, Anzenbacher P, Anzenbacherova E (2010) Phase II drug metabolizing enzymes. Biomed Pap 154:103–116CrossRefGoogle Scholar
  24. 24.
    Yoxall V, Kentish P, Coldham N, Kuhnert N, Sauer MJ, Ioannides C (2005) Modulation of hepatic cytochromes P450 and phase II enzymes by dietary doses of sulforaphane in rats: implications for its chemopreventive activity. Int J Cancer 117:356–362CrossRefGoogle Scholar
  25. 25.
    Mahéo K, Morel F, Langouët S, Kramer H, Le Ferrec E, Ketterer B, Guillouzo A (1997) Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes. Cancer Res 57:3649–3652Google Scholar
  26. 26.
    Kamdem LK, Meineke I, Gödtel-Armbrust U, Brockmöller J, Wojnowski L (2006) Dominant contribution of P450 3a4 to the hepatic carcinogenic activation of aflatoxin B1. Chem Res Toxicol 19:577–586CrossRefGoogle Scholar
  27. 27.
    Dashwood RH (2002) Modulation of heterocyclic amine-induced mutagenicity and carcinogenicity: an ‘a-to-Z’guide to chemopreventive agents, promoters, and transgenic models. Mutat Res 511:89–112CrossRefGoogle Scholar
  28. 28.
    Juge N, Mithen R, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127CrossRefGoogle Scholar
  29. 29.
    Riedl MA, Saxon A, Diaz-Sanchez D (2009) Oral sulforaphane increases phase II antioxidant enzymes in the human upper airway. Clin Immunol 130:244–251CrossRefGoogle Scholar
  30. 30.
    Dias I, Chapple I, Milward M, Grant MM, Hill E, Brown J, Griffiths HR (2013) Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro. PLoS One 8:e66407CrossRefGoogle Scholar
  31. 31.
    Mizuno K, Kume T, Muto C, Takada-Takatori Y, Izumi Y, Sugimoto H, Akaike A (2011) Glutathione biosynthesis via activation of the nuclear factor E2-related factor 2 (Nrf2)-antioxidant-response element (are) pathway is essential for neuroprotective effects of Sulforaphane and 6-(methylsulfinyl) hexyl isothiocyanate. J Pharmacol Sc 115:320–328CrossRefGoogle Scholar
  32. 32.
    Ye L, Dinkova-Kostova AT, Wade KL, Zhang Y, Shapiro TA, Talalay P (2002) Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin Chim Acta 316:43–53CrossRefGoogle Scholar
  33. 33.
    Adams J, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337CrossRefGoogle Scholar
  34. 34.
    Fimognari C, Lenzi M, Ferruzzi L, Turrini E, Scartezzini P, Poli F, Gotti R, Guerrini A, Carulli G, Ottaviano V (2011) Mitochondrial pathway mediates the antileukemic effects of hemidesmus indicus, a promising botanical drug. PLoS One 6:e21544CrossRefGoogle Scholar
  35. 35.
    Khan N, Afaq F, Mukhtar H (2006) Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis 28:233–239CrossRefGoogle Scholar
  36. 36.
    Junttila MR, Evan GI (2009) P53 – a jack of all trades but master of none. Nat Rev Cancer 9:821–829CrossRefGoogle Scholar
  37. 37.
    Portier BP, Taglialatela G (2006) Bcl-2 localized at the nuclear compartment induces apoptosis after transient overexpression. J Biol Chem 281:40493–40502CrossRefGoogle Scholar
  38. 38.
    Sestili P, Fimognari C (2015) Cytotoxic and antitumor activity of sulforaphane: the role of reactive oxygen species. Biomed Res Int 2015:402386CrossRefGoogle Scholar
  39. 39.
    Choi WY, Choi BT, Lee WH, Choi YH (2008) Sulforaphane generates reactive oxygen species leading to mitochondrial perturbation for apoptosis in human leukemia U937 Cells. Biomed Pharmacother 62:637–644CrossRefGoogle Scholar
  40. 40.
    Xu J, Ji L-D, Xu L-H (2006) Lead-induced apoptosis in Pc 12 Cells: involvement of P53, Bcl-2 family and caspase-3. Toxicol Lett 166:160–167CrossRefGoogle Scholar
  41. 41.
    Fimognari C, Lenzi M, Sciuscio D, Cantelli-Forti G, Hrelia P (2007) Cell-cycle specificity of sulforaphane-mediated apoptosis in jurkat t-leukemia cells. In Vivo 21:377–380Google Scholar
  42. 42.
    Bosanquet AG, Bell PB (2004) Ex vivo therapeutic index by drug sensitivity assay using fresh human normal and tumor cells. J Exp Ther Oncol 4:145–154Google Scholar
  43. 43.
    Sandal T (2002) Molecular aspects of the mammalian cell cycle and cancer. Oncologist 7:73–81CrossRefGoogle Scholar
  44. 44.
    Morgan DO (2007) The cell cycle: principles of control. New Science Press, LondonGoogle Scholar
  45. 45.
    Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lette 269:291–304CrossRefGoogle Scholar
  46. 46.
    Singh SV, Herman-Antosiewicz A, Singh AV, Lew KL, Srivastava SK, Kamath R, Brown KD, Zhang L, Baskaran R (2004) Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25c. J Biol Chem 279:25813–25822CrossRefGoogle Scholar
  47. 47.
    Guidet S, Meijerink S, Tung HL (2012) Progress in cell cycle research. Springer, New YorkGoogle Scholar
  48. 48.
    Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93:182–203CrossRefGoogle Scholar
  49. 49.
    Neri L, Cani A, Martelli A, Simioni C, Junghanss C, Tabellini G, Ricci F, Tazzari P, Pagliaro P, McCubrey J (2014) Targeting the Pi3k/Akt/Mtor signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia 28:739–748CrossRefGoogle Scholar
  50. 50.
    Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM (2009) Active-site inhibitors of Mtor target rapamycin-resistant outputs of Mtorc1 and Mtorc2. PLoS Biol 7:371CrossRefGoogle Scholar
  51. 51.
    Bowman T, Garcia R, Turkson J, Jove R (2000) Stats in oncogenesis. Oncogene 19:2474–2488CrossRefGoogle Scholar
  52. 52.
    Pinz S, Unser S, Rascle A (2014) The natural chemopreventive agent sulforaphane inhibits Stat5 activity. PLoS One 9(6):e99391CrossRefGoogle Scholar
  53. 53.
    Dolcet X, Llobet D, Pallares J, Matias-Guiu X (2005) Nf-Kb in development and progression of human cancer. Virchows Arch 446:475–482CrossRefGoogle Scholar
  54. 54.
    Cheung KL, Kong A-N (2010) Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J 12:87–97CrossRefGoogle Scholar
  55. 55.
    Hanlon N, Coldham N, Gielbert A, Kuhnert N, Sauer MJ, King LJ, Ioannides C (2008) Absolute bioavailability and dose-dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothiocyanate sulforaphane in rat. Br J Nutr 99:559–564CrossRefGoogle Scholar
  56. 56.
    Egner PA, Chen JG, Wang JB, Wu Y, Sun Y, Lu JH, Zhu J, Zhang YH, Chen YS, Friesen MD (2011) Bioavailability of sulforaphane from two broccoli sprout beverages: results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prev Res 4:384–395CrossRefGoogle Scholar
  57. 57.
    Alumkal JJ, Slottke R, Schwartzman J, Cherala G, Munar M, Graff JN, Beer TM, Ryan CW, Koop DR, Gibbs A (2014) A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent Prostate cancer. Invest New Drugs 33:480–489CrossRefGoogle Scholar
  58. 58.
    Fimognari C, Nüsse M, Berti F, Iori R, Cantelli‐Forti G, Hrelia P (2003) Sulforaphane modulates cell cycle and apoptosis in transformed and non-transformed human T lymphocytes. Ann NY Acad Sci 1010:393–398CrossRefGoogle Scholar
  59. 59.
    Sekine-Suzuki E, Yu D, Kubota N, Okayasu R, Anzai K (2008) Sulforaphane induces DNA double strand breaks predominantly repaired by homologous recombination pathway in human cancer cells. Biochem Biophys Res Commun 377:341–345CrossRefGoogle Scholar
  60. 60.
    Dudáš A, Chovanec M (2004) DNA double-strand break repair by homologous recombination. Mutat Res 566:131–167CrossRefGoogle Scholar
  61. 61.
    West SC (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4:435–445CrossRefGoogle Scholar
  62. 62.
    Bahassi E, Ovesen J, Riesenberg A, Bernstein W, Hasty P, Stambrook P (2008) The checkpoint kinases Chk1 and Chk2 regulate the functional associations between Hbrca2 and Rad51 in response to DNA damage. Oncogene 27:3977–3985CrossRefGoogle Scholar
  63. 63.
    Fimognari C, Berti F, Iori R, Cantelli-Forti G, Hrelia P (2005) Micronucleus formation and induction of apoptosis by different isothiocyanates and a mixture of isothiocyanates in human lymphocyte cultures. Mutat Res 582:1–10CrossRefGoogle Scholar
  64. 64.
    TortorellaStephanie M, RoyceSimon G, LicciardiPaul V, KaragiannisTom C (2015) Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and Hdac inhibition. Antioxid Redox Signal 22(16):1382–1424CrossRefGoogle Scholar
  65. 65.
    Drexler H, Fombonne S, Matsuo Y, Hu Z, Hamaguchi H, Uphoff C (2000) P53 alterations in human leukemia-lymphoma cell lines: in vitro artifact or prerequisite for cell immortalization? Leukemia 14:198–206CrossRefGoogle Scholar
  66. 66.
    Fimognari C, Nüsse M, Lenzi M, Sciuscio D, Cantelli-Forti G, Hrelia P (2006) Sulforaphane increases the efficacy of doxorubicin in mouse fibroblasts characterized by P53 mutations. Mutat Res 601:92–101CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department for Life Quality StudiesAlma Mater Studiorum-University of BolognaRiminiItaly

Personalised recommendations