Advertisement

Glucosinolates pp 431-461 | Cite as

Investigation of Glucosinolates by Mass Spectrometry

  • Giuliana BiancoEmail author
  • Raffaella PascaleEmail author
  • Filomena LelarioEmail author
  • Sabino A. BufoEmail author
  • Tommaso R. I. CataldiEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

There is an ever-increasing interest in the biological effects of glucosinolates (GSLs), due to their anticarcinogenic properties and potential to contribute to dietary phytonutrient consumption, thereby improving human health and well-being. Cruciferous vegetables are unique in that they are rich sources of GSLs. Several epidemiological studies have shown that a high intake of cruciferous vegetables, for example, cabbage, broccoli, or Brussels sprouts, has beneficial influence on human health. A new window of investigations has been opened by mass spectrometry (MS) and its combination with the various chromatographic techniques has proved to be highly successful to gain reliable data about the presence and abundance of GSLs in vegetables. The purpose of this chapter is focused on the methods that are currently available for their qualitative and quantitative analysis by MS and tandem MS (MS/MS). Emphasis is placed on the description and value of existing methods as well as on the many MS applications reported for GSL analysis.

Keywords

Glucosinolates Isothiocyanate Mass spectrometry Tandem mass spectrometry High resolution 

Abbreviations

APCI

Atmospheric pressure chemical ionization

CE

Capillary electrophoresis

CID

Collision-induced dissociation

CZE

Capillary zone electrophoresis

DART

Direct analysis in real time

ESI

Electrospray ionization

FAB

Fast atom bombardment

GC

Gas chromatography

GLC

Gas–liquid chromatography

GSLs

Glucosinolates

HPCE

High-performance capillary electrophoresis

HPLC

High-performance liquid chromatography

HRMS

High-resolution mass spectrometry

IRMPD

Infrared multiphoton dissociation

ITCs

Isothiocyanates

ITMS

Ion trap mass spectrometry

LC

Liquid chromatography

LC-ESI

Liquid chromatography–electrospray ionization

MALDI

Matrix-assisted laser desorption/ionization

MS/MS

Tandem mass spectrometry

MECC

Micellar electrokinetic capillary chromatography

MRM

Multiple reaction monitoring

MS

Mass spectrometry

MSI

Mass spectrometry imaging

NMR

Nuclear magnetic resonance

RP-HPLC

Reversed-phase high-performance liquid chromatography

SIM

Selected ion monitoring

SRM

Selected reaction monitoring

TIC

Total ion current

TOF

Time of flight

XIC

Extracted ion chromatogram

Notes

Acknowledgments

This study was supported by the Università degli Studi di Bari Aldo Moro (Fondi di Ateneo 2012) and Università degli Studi della Basilicata.

References

  1. 1.
    Drewnowski A, Gomez-Carneros C (2000) Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr 72(6):1424–1435Google Scholar
  2. 2.
    Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42(1):1–9. doi:10.1207/S15327914NC421_1CrossRefGoogle Scholar
  3. 3.
    Lund E (2003) Non-nutritive bioactive constituents of plants: dietary sources and health benefits of glucosinolates. Int J Vitam Nutr Res 73(2003):135–143. doi:10.1024/0300-9831.73.2.135CrossRefGoogle Scholar
  4. 4.
    Perocco P, Bronzetti G, Canistro D, Valgimigli L, Sapone A, Affatato A (2006) Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces phase-I xenobiotic metabolizing enzymes and increases free radical generation in rat liver. Mutat Res 595:125–136. doi:10.1016/j.mrfmmm.2005.11.007CrossRefGoogle Scholar
  5. 5.
    Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236. doi:10.1016/j.apsusc.2006.02.134CrossRefGoogle Scholar
  6. 6.
    Oregon State University, Linus Pauling institute’s micronutrient information center. Phytochemicals. http://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals. Accessed 18 Nov 2015
  7. 7.
    Radojčić RI, Glivetić T, Delonga K, Vorkapić-Furač J (2008) Glucosinolates and their potential role in plant. Period Biol 110(4):297–309, ISSN:0031–5362Google Scholar
  8. 8.
    Agerbirk N, Olsen CE (2012) Glucosinolates structures in evolution. Phytochemistry 77:16–45. doi:10.1016/j.phytochem.2012.02.005CrossRefGoogle Scholar
  9. 9.
    Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51. doi:10.1016/S0031-9422(00)00316-2CrossRefGoogle Scholar
  10. 10.
    Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984, doi:0022-5142/2000CrossRefGoogle Scholar
  11. 11.
    Heaney RK, Fenwick RG (1993) Methods for glucosinolate analysis. In: Waterman PG (ed) Methods in plant biochemistry. Academic, LondonGoogle Scholar
  12. 12.
    Fenwick GR, Eagles J, Gmelin R, Rakow D (1980) The mass spectra of glucosinolates and desulfoglucosinolates. Biol Mass Spectrom 7(9):410–412. doi:10.1002/bms.1200070911CrossRefGoogle Scholar
  13. 13.
    Maharjan RP, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145–154. doi:10.1016/S0003-2697(02)00536-5CrossRefGoogle Scholar
  14. 14.
    Blažević I, Mastelić J (2009) Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chem 113(1):96–102. doi:10.1016/j.foodchem.2008.07.029CrossRefGoogle Scholar
  15. 15.
    Oerlemans K, Barrett DM, Suades CB, Verkerk R, Dekker M (2006) Thermal degradation of glucosinolates in red cabbage. Food Chem 95:19–29. doi:10.1016/j.foodchem.2004.12.013CrossRefGoogle Scholar
  16. 16.
    Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2007) Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proc Nutr Soc 66:69–81. doi:10.1017/S0029665107005319CrossRefGoogle Scholar
  17. 17.
    Bringmann G, Kajahn I, Neusuess C, Pelzing M, Laug S, Unger M, Holzgrabe U (2005) Analysis of the glucosinolate pattern of Arabidopsis thaliana seeds by capillary zone electrophoresis coupled to electrospray ionization-mass spectrometry. Electrophoresis 26:1513–1522. doi:10.1002/elps.200410255CrossRefGoogle Scholar
  18. 18.
    Cataldi TR, Rubino A, Lelario F, Bufo SA (2007) Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion‐trap mass spectrometry. Rapid Commun Mass Spectrom 21(14):2374–2388. doi:10.1002/rcm.3101CrossRefGoogle Scholar
  19. 19.
    Cataldi TRI, Lelario F, Orlando D, Bufo SA (2010) Collision-induced dissociation of the A+2 isotope ion facilitates glucosinolates structure elucidation by electrospray ionization-tandem mass spectrometry with a linear quadrupole ion trap. Anal Chem 82(13):5686–5696. doi:10.1021/ac100703wCrossRefGoogle Scholar
  20. 20.
    Bianco G, Lelario F, Battista FG, Bufo SA, Cataldi TRI (2012) Identification of glucosinolates in capers by LC‐ESI‐hybrid linear ion trap with Fourier-transform ion cyclotron resonance mass spectrometry (LC‐ESI‐LTQ‐FTICR MS) and infrared multiphoton dissociation. J Mass Spectrom 47(9):1160–1169. doi:10.1002/jms.2996CrossRefGoogle Scholar
  21. 21.
    Bianco G, Agerbirk N, Losito I, Cataldi TRI (2014) Acylated glucosinolates with diverse acyl groups investigated by high resolution mass spectrometry and infrared multiphoton dissociation. Phytochemistry 100:92–102. doi:10.1002/jms.2996CrossRefGoogle Scholar
  22. 22.
    Lelario F, Bianco G, Bufo SA, Cataldi TR (2012) Establishing the occurrence of major and minor glucosinolates in brassicaceae by LC–ESI-hybrid linear ion-trap and Fourier-transform ion cyclotron resonance mass spectrometry. Phytochemistry 73:74–83. doi:10.1016/j.phytochem.2011.09.010CrossRefGoogle Scholar
  23. 23.
    Mohn T, Cutting B, Ernst B, Hamburger M (2007) Extraction and analysis of intact glucosinolates-A validated pressurized liquid extraction/liquid chromatography–mass spectrometry protocol for Isatis tinctoria, and qualitative analysis of other cruciferous plants. J Chromatogr A 1166(1):142–151. doi:10.1016/j.chroma.2007.08.028CrossRefGoogle Scholar
  24. 24.
    Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38:699–708. doi:10.1002/jms.505CrossRefGoogle Scholar
  25. 25.
    Njumbe Ediage E, Diana Di Mavungu J, Monbaliu S, Van Peteghem C, De Saeger S (2011) A validated multianalyte LC–MS/MS method for quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples. J Agric Food Chem 59(10):5173–5180. doi:10.1021/jf2009364CrossRefGoogle Scholar
  26. 26.
    Lee JG, Bonnema G, Zhang N, Kwak JH, de Vos RC, Beekwilder J (2013) Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfo glucosinolates. J Agric Food Chem 61(16):3984–3993. doi:10.1021/jf400890pCrossRefGoogle Scholar
  27. 27.
    Kusznierewicz B, Iori R, Piekarska A, Namieśnik J, Bartoszek A (2013) Convenient identification of desulfoglucosinolates on the basis of mass spectra obtained during liquid chromatography–diode array–electrospray ionization mass spectrometry analysis: method verification for sprouts of different Brassicaceae species extracts. J Chromatogr A 1278:108–115. doi:10.1016/j.chroma.2012.12.075CrossRefGoogle Scholar
  28. 28.
    Kim SJ, Ishii G (2006) Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Sci Plant Nutr 52(3):394–400. doi:10.1111/j.1747-0765.2006.00049.xCrossRefGoogle Scholar
  29. 29.
    Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39(10):1091–1112. doi:10.1002/jms.703CrossRefGoogle Scholar
  30. 30.
    Wells JM, McLuckey SA (2005) Collision‐induced dissociation (CID) of peptides and proteins. Methods Enzymol 402:148–185. doi:10.1016/S0076-6879(05)02005-7CrossRefGoogle Scholar
  31. 31.
    Bialecki JB, Ruzicka J, Weisbecker CS, Haribal M, Attygalle AB (2010) Collision‐induced dissociation mass spectra of glucosinolate anions. J Mass Spectrom 45(3):272–283. doi:10.1002/jms.1711CrossRefGoogle Scholar
  32. 32.
    Kokkonen PS, Van der Greef J, Niessen WMA, Tjaden UR, Ten Hove GJ, Van de Werken G (1991) Identification of intact glucosinolates using direct coupling of high‐performance liquid chromatography with continuous‐flow frit fast atom bombardment tandem mass spectrometry. Biol Mass Spectrom 20(5):259–267. doi:10.1002/bms.1200200505CrossRefGoogle Scholar
  33. 33.
    Kokkonen P, Van der Greef J, Niessen WMA, Tjaden UR, Ten Hove GJ, Van de Werken G (1989) Separation and identification of intact glucosinolates using direct coupling of high‐performance liquid chromatography with frit to fast‐atom bombardment mass spectrometry. Rapid Commun Mass Spectrom 3(4):102–106. doi:10.1002/rcm.1290030404CrossRefGoogle Scholar
  34. 34.
    Fabre N, Poinsot V, Debrauwer L, Vigor C, Tulliez J, Fourasté I, Moulis C (2007) Characterisation of glucosinolates using electrospray ion trap and electrospray quadrupole time‐of‐flight mass spectrometry. Phytochem Anal 18(4):306–319. doi:10.1002/pca.983CrossRefGoogle Scholar
  35. 35.
    Mellon FA, Chapman JR, Pratt JAE (1987) Thermospray liquid chromatography-mass spectrometry in food and agricultural research. J Chromatogr A 394(1):209–222. doi:10.1016/S0021-9673(01)94173-1CrossRefGoogle Scholar
  36. 36.
    Hogge LR, Reed DW, Underhill EW (1988) The identification of desulfoglucosinolates using thermospray liquid chromatography/mass spectrometry. J Chromatogr Sci 26(7):348–351. doi:10.1093/chromsci/26.7.348CrossRefGoogle Scholar
  37. 37.
    Hogge LR, Reed DW, Underhill EW, Haughn GW (1988) HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chromatography/mass spectrometry. J Chromatogr Sci 26:551–556CrossRefGoogle Scholar
  38. 38.
    Heeremans CEM, Van Der Hoeven RAM, Niessen WMA, Vuik J, De Vos RH, Van Der Greef J (1989) Specific screening methods for glucosinolates in sprout extracts using on-line thermospray liquid chromatography-tandem mass spectrometry. J Chromatogr A 472:219–229. doi:10.1016/S0021-9673(00)94108-6CrossRefGoogle Scholar
  39. 39.
    Agneta R, Rivelli AR, Ventrella E, Lelario F, Sarli G, Bufo SA (2012) Investigation of glucosinolates profile and qualitative aspects in sprouts and roots of horseradish (Armoracia rusticana) by using LC-ESI-hybrid linear ion-trap with Fourier-transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation. J Agric Food Chem 60(30):7474–7482. doi:10.1021/jf301294hCrossRefGoogle Scholar
  40. 40.
    Glauser G, Schweizer F, Turlings TC, Reymond P (2012) Rapid profiling of intact glucosinolates in Arabidopsis leaves by UHPLC‐QTOFMS using a charged surface hybrid column. Phytochem Anal 23(5):520–528. doi:10.1002/pca.2350CrossRefGoogle Scholar
  41. 41.
    Li W, Hendrickson CL, Emmett MR, Marshall AG (1999) Identification of intact proteins in mixtures by alternated capillary liquid chromatography electrospray ionization and LC ESI infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 71(19):4397–4402. doi:10.1021/ac990011eCrossRefGoogle Scholar
  42. 42.
    Little DP, Speir JP, Senko MW, O’Connor PB, McLafferty FW (1994) Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem 66(18):2809–2815. doi:10.1021/ac00090a004CrossRefGoogle Scholar
  43. 43.
    Laskin J, Futrell JH (2005) Activation of large lons in FT‐ICR mass spectrometry. Mass Spectrom Rev 24(2):135–167. doi:10.1002/mas.20012CrossRefGoogle Scholar
  44. 44.
    Millán S, Sampedro MC, Gallejones P, Castellón A, Ibargoitia ML, Goicolea MA, Barrio RJ (2009) Identification and quantification of glucosinolates in rapeseed using liquid chromatography–ion trap mass spectrometry. Anal Bioanal Chem 394(6):1661–1669. doi:10.1007/s00216-009-2823-8CrossRefGoogle Scholar
  45. 45.
    von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U, Clemens S (2004) Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol 134(2):548–559. doi:10.1104/pp.103.032714CrossRefGoogle Scholar
  46. 46.
    Agerbirk N, Olsen CE, Heimes C, Christensen S, Bak S, Hauser TP (2015) Multiple hydroxyphenethyl glucosinolate isomers and their tandem mass spectrometric distinction in a geographically structured polymorphism in the crucifer Barbarea vulgaris. Phytochemistry 115:130–142. doi:10.1016/j.phytochem.2014.09.003CrossRefGoogle Scholar
  47. 47.
    Agerbirk N, Olsen CE (2015) Glucosinolate hydrolysis products in the crucifer Barbarea vulgaris include a thiazolidine-2-one from a specific phenolic isomer as well as oxazolidine-2-thiones. Phytochemistry 115:143–151. doi:10.1016/j.phytochem.2014.11.002CrossRefGoogle Scholar
  48. 48.
    Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231CrossRefGoogle Scholar
  49. 49.
    Lin CM, Kim JM, Du WX, Wei CI (2000) Bactericidal activity of isothiocyanate against pathogens on fresh produce. J Food Prot 63:25–30CrossRefGoogle Scholar
  50. 50.
    Manici LM, Lazzeri L, Baruzzi G, Leoni O, Galletti S, Palmieri S (2000) Suppressive activity of some glucosinolate enzyme degradation products on Pythium irregulare and Rhizoctonia solani in sterile soil. Pest Manag Sci 56:921–926. doi:10.1002/1526-4998(200010)CrossRefGoogle Scholar
  51. 51.
    Rosa EAS, Rodriges PMF (1999) Towards a more sustainable agriculture system: the effect of glucosinolates of the control of soilborne diseases. J Hortic Sci Biotechnol 74:667–674, ISSN:1462-0316CrossRefGoogle Scholar
  52. 52.
    Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J (2003) Chapter five glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Recent Adv Phytochem 37:101–125. doi:10.1016/S0079-9920(03)80020-5CrossRefGoogle Scholar
  53. 53.
    Zasada IA, Ferris H (2004) Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biol Biochem 36:1017–1024. doi:10.1016/j.soilbio.2003.12.014CrossRefGoogle Scholar
  54. 54.
    Bennett RN, Mellon FA, Botting NP, Eagles J, Rosa EA, Williamson G (2002) Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (salad rocket). Phytochemistry 61(1):25–30. doi:10.1016/S0031-9422(02)00203-0CrossRefGoogle Scholar
  55. 55.
    Tierens KFJ, Thomma BP, Brouwer M, Schmidt J, Kistner K, Broekaert WF (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125(4):1688–1699. doi:10.1104/pp.125.4.1688CrossRefGoogle Scholar
  56. 56.
    Choi MM, Shuang S, Lai HY, Cheng SC, Cheng RC, Cheung BK, Lee AW (2004) Gas chromatography-mass spectrometric determination of total isothiocyanates in Chinese medicinal herbs. Anal Chim Acta 516(1):155–163. doi:10.1016/j.aca.2004.04.010CrossRefGoogle Scholar
  57. 57.
    Vaughn SF, Berhow MA (2005) Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind Crop Prod 21(2):193–202. doi:10.1016/j.indcrop.2004.03.004CrossRefGoogle Scholar
  58. 58.
    Burow M, Markert J, Gershenzon J, Wittstock U (2006) Comparative biochemical characterization of nitrile‐forming proteins from plants and insects that alter myrosinase‐catalysed hydrolysis of glucosinolates. FEBS J 273(11):2432–2446. doi:10.1111/j.1742-4658.2006.05252.xCrossRefGoogle Scholar
  59. 59.
    Davis SC, Makarov AA, Hughes JD (1999) Ultrafast gas chromatography using time‐of‐flight mass spectrometry. Rapid Commun Mass Spectrom 13(4):237–241. doi:10.1002/(SICI)1097-0231(19990228)CrossRefGoogle Scholar
  60. 60.
    Nielsen J (2003) It is all about metabolic fluxes. J Bacteriol 185:7031–7035. doi:10.1128/JB.185.24.7031-7035.2003CrossRefGoogle Scholar
  61. 61.
    Guidance for industry: Q2B validation of analytical procedures: methodology, 1996Google Scholar
  62. 62.
    Hong E, Kim SJ, Kim GH (2011) Identification and quantitative determination of glucosinolates in seeds and edible parts of Korean Chinese cabbage. Food Chem 128(4):1115–1120. doi:10.1016/j.foodchem.2010.11.102CrossRefGoogle Scholar
  63. 63.
    Tolrà RP, Alonso R, Poschenrieder C, Barceló D, Barceló J (2000) Determination of glucosinolates in rapeseed and Thlaspi caerulescens plants by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 889(1):75–81. doi:10.1016/S0021-9673(00)00373-3CrossRefGoogle Scholar
  64. 64.
    Kim SJ, Ishida M, Matsuo T, Watanabe M, Watanabe Y (2001) Separation and identification of glucosinolates of vegetable turnip rape by LC/APCI-MS and comparison of their contents in ten cultivars of vegetable turnip rape (Brassica rapa L.). Soil Sci Plant Nutr 47(1):167–177. doi:10.1080/00380768.2001.10408379CrossRefGoogle Scholar
  65. 65.
    Griffiths DW, Deighton N, Birch ANE, Patrian B, Baur R, Städler E (2001) Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species. Phytochemistry 57(5):693–700. doi:10.1016/S0031-9422(01)00138-8CrossRefGoogle Scholar
  66. 66.
    Zimmermann NS, Gerendás J, Krumbein A (2007) Identification of desulfoglucosinolates in Brassicaceae by LC/MS/MS: comparison of ESI and atmospheric pressure chemical ionization‐MS. Mol Nutr Food Res 51(12):1537–1546. doi:10.1002/mnfr.200700103CrossRefGoogle Scholar
  67. 67.
    Mellon FA, Bennett RN, Holst B, Williamson G (2002) Intact glucosinolate analysis in plant extracts by programmed cone voltage electrospray LC/MS: performance and comparison with LC/MS/MS methods. Anal Biochem 306(1):83–91. doi:10.1006/abio.2002.5677CrossRefGoogle Scholar
  68. 68.
    Tian Q, Rosselot RA, Schwartz SJ (2005) Quantitative determination of intact glucosinolates in broccoli, broccoli sprouts, Brussels sprouts, and cauliflower by high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry. Anal Biochem 343(1):93–99. doi:10.1016/j.ab.2005.04.045CrossRefGoogle Scholar
  69. 69.
    Maldini M, Baima S, Morelli G, Scaccini C, Natella F (2012) A liquid chromatography‐mass spectrometry approach to study “glucosinoloma” in broccoli sprouts. J Mass Spectrom 47(9):1198–1206. doi:10.1002/jms.3028CrossRefGoogle Scholar
  70. 70.
    Maldini M, Maksoud SA, Natella F, Montoro P, Petretto GL, Foddai M, Pintore G (2014) Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry. J Mass Spectrom 49(9):900–910. doi:10.1002/jms.3437CrossRefGoogle Scholar
  71. 71.
    Song L, Morrison JJ, Botting NP, Thornalley PJ (2005) Analysis of glucosinolates, isothiocyanates, and amine degradation products in vegetable extracts and blood plasma by LC–MS/MS. Anal Biochem 347(2):234–243. doi:10.1016/j.ab.2005.09.040CrossRefGoogle Scholar
  72. 72.
    Botting CH, Davidson NE, Griffiths DW, Bennett RN, Botting NP (2002) Analysis of intact glucosinolates by MALDI-TOF mass spectrometry. J Agric Food Chem 50(5):983–988. doi:10.1021/jf011129aCrossRefGoogle Scholar
  73. 73.
    Kjaer A (1960) Naturally derived isothiocyanates (mustard oils) and their parent glucosides. Prog Chem Org Nat Prod 18:122–176. doi:10.1007/978-3-7091-7159-2_4Google Scholar
  74. 74.
    Daxenbichler ME, Spencer GF, Carlson DG, Rose GB, Brinker AM, Powell RG (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30:2623–2638. doi:10.1016/0031-9422(91)85112-DCrossRefGoogle Scholar
  75. 75.
    Prchalová J, Kovařík F, Ševčík R, Čížková H, Rajchl A (2014) Characterization of mustard seeds and paste by DART ionization with time‐of‐flight mass spectrometry. J Mass Spectrom 49(9):811–818. doi:10.1002/jms.3419CrossRefGoogle Scholar
  76. 76.
    Kiddle G, Bennett RN, Botting NP, Davidson NE, Robertson AA, Wallsgrove RM (2001) High‐performance liquid chromatographic separation of natural and synthetic desulfoglucosinolates and their chemical validation by UV, NMR and chemical ionization‐MS methods. Phytochem Anal 12(4):226–242. doi:10.1002/pca.589CrossRefGoogle Scholar
  77. 77.
    Griffiths DW, Bain H, Deighton N, Botting NP, Robertson AA (2000) Evaluation of liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry for the identification and quantification of desulfoglucosinolates. Phytochem Anal 11(4):216–225. doi:10.1002/1099-1565(200007/08)CrossRefGoogle Scholar
  78. 78.
    Karcher A, El Rassi Z (1999) Capillary electrophoresis of glucosinolates and their degradation products. Electrophoresis 20:3181–3189. doi:10.1002/(SICI)1522-2683(19991001)CrossRefGoogle Scholar
  79. 79.
    Ibáñez C, Simó C, García-Cañas V, Acunha T, Cifuentes A (2015) The role of direct high-resolution mass spectrometry in foodomics. Anal Bioanal Chem 407(21):6275–6287. doi:10.1007/s00216-015-8812-1CrossRefGoogle Scholar
  80. 80.
    Agerbirk N, Olsen CE, Nielsen JK (2001) Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. arcuata. Phytochemistry 58(1):91–100. doi:10.1016/S0031-9422(01)00151-0CrossRefGoogle Scholar
  81. 81.
    Mewis IZ, Ulrich C, Schnitzler WH (2002) The role of glucosinolates and their hydrolysis products in oviposition and host-plant finding by cabbage webworm, Hellula undalis. Entomol Exp Appl 105:129–139. doi:10.1046/j.1570-7458.2002.01041.xCrossRefGoogle Scholar
  82. 82.
    Miles CI, del Campo M, Renwick JAA (2005) Behavioral and chemosensory responses to a host recognition cue by larvae of Pieris rapae. J Comp Physiol A 191:147–155. doi:10.1007/s00359-004-0580-xCrossRefGoogle Scholar
  83. 83.
    Heeren RMA, McDonnell LA, Amstalden E, Luxembourg SL, Altelaar AFM, Piersma SR (2006) Why don’t biologists use SIMS?: a critical evaluation of imaging MS. Appl Surf Sci 252(19):6827–6835CrossRefGoogle Scholar
  84. 84.
    Shroff R, Vergara F, Muck A et al (2008) Non uniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc Natl Acad Sci U S A 105:6196–6201. doi:10.1073/pnas.0711730105CrossRefGoogle Scholar
  85. 85.
    Shroff R, Schramm K, Jeschke V, Nemes P, Vertes A, Gershenzon J, Svatoš A (2015) Quantification of plant surface metabolites by matrix‐assisted laser desorption–ionization mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves. Plant J 81(6):961–972. doi:10.1111/tpj.12760CrossRefGoogle Scholar
  86. 86.
    Sarsby J, Towers MW, Stain C, Cramer R, Koroleva OA (2012) Mass spectrometry imaging of glucosinolates in Arabidopsis flowers and siliques. Phytochemistry 77:110–118. doi:10.1016/j.phytochem.2012.01.026CrossRefGoogle Scholar
  87. 87.
    Cha S, Zhang H, Ilarslan HI, Wurtele ES, Brachova L, Nikolau BJ, Yeung ES (2008) Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite‐assisted laser desorption ionization mass spectrometry. Plant J 55(2):348–360. doi:10.1111/j.1365-313X.2008.03507.xCrossRefGoogle Scholar
  88. 88.
    Jun JH, Song Z, Liu Z, Nikolau BJ, Yeung ES, Lee YJ (2010) High-spatial and high-mass resolution imaging of surface metabolites of Arabidopsis thaliana by laser desorption-ionization mass spectrometry using colloidal silver. Anal Chem 82(8):3255–3265. doi:10.1021/ac902990pCrossRefGoogle Scholar
  89. 89.
    Vrkoslav V, Muck A, Cvačka J, Svatoš A (2010) MALDI imaging of neutral cuticular lipids in insects and plants. J Am Soc Mass Spectrom 21(2):220–231. doi:10.1016/j.jasms.2009.10.003CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Dipartimento di ScienzeUniversità degli Studi della BasilicataPotenzaItaly
  2. 2.Scuola di IngegneriaDipartimento di Scienze, Università degli Studi della BasilicataPotenzaItaly
  3. 3.Dipartimento di Chimica and Centro Interdipartimentale SMARTUniversità degli Studi di Bari Aldo Moro, Campus UniversitarioBariItaly

Personalised recommendations