Advertisement

Glucosinolates pp 407-429 | Cite as

Processing and Preparation of Brassica Vegetables and the Fate of Glucosinolates

  • Probo Yulianto NugrahediEmail author
  • Matthijs Dekker
  • Ruud Verkerk
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

The healthiness of a vegetable cannot solely be inferred from the amount of health-promoting compounds in the raw materials. Brassica vegetables, for example, are consumed mostly after processing to improve palatability and to extend the shelf life. However, processing also results to various changes in the content of glucosinolates which intakes are associated with a reduced risk of several cancers. The large variety in cooking practices and processing methods affect the glucosinolate content in the vegetables, particularly due to processes that allow for enzymatic hydrolysis and thermal degradation of glucosinolates, and leaching of the bioactive components. Knowledge on the effect of preparation and processing of Brassica vegetables is important to evaluate the healthiness of the consumed product and to investigate mechanisms to retain high glucosinolate levels at the stage of consumption and to increase the intake of health-protective compounds by the consumer. By using a mechanistic approach, the fate of glucosinolates during different processing and preparation methods and conditions can be explained. Boiling and blanching reduce the glucosinolate content significantly particularly because of the mechanisms of leaching following cell lysis and diffusion, and partly due to thermal and enzymatic degradation. Steaming, microwave processing, and stir frying either retain or only slightly reduce the glucosinolate content due to low degrees of leaching. These methods can enhance the accessibility of glucosinolates from the plant tissue. Fermentation reduces the glucosinolate content considerably, the underlying mechanisms are not yet completely clear, but enzymatic breakdown seems to play an important role. Studying the changes of glucosinolates during processing by a mechanistic approach is shown to be valuable to redesign the processing and to reformulate the product for improving health benefits of these compounds.

Keywords

Glucosinolate Preparation Processing Mechanistic approach Brassica vegetable 

Abbreviations

ESP

Epithiospecifier protein

GS

Glucosinolate

HPP

High pressure processing

ITC

Isothiocyanate

MW

Microwave

References

  1. 1.
    Padilla G, Cartea ME, Velasco P, de Haro A, Ordas A (2007) Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68:536–545CrossRefGoogle Scholar
  2. 2.
    Drewnowski A, Gomez-Carneros C (2000) Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr 72:1424–1435Google Scholar
  3. 3.
    Schonhof I, Krumbein A, Brückner B (2004) Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Food Nahrung 48:25–33CrossRefGoogle Scholar
  4. 4.
    Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984CrossRefGoogle Scholar
  5. 5.
    Verkerk R, Schreiner M, Krumbein A et al (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:S219–S265CrossRefGoogle Scholar
  6. 6.
    Nugrahedi PY, Verkerk R, Widianarko B, Dekker M (2015) A mechanistic perspective on process induced changes in glucosinolate content in Brassica vegetables: a review. Crit Rev Food Sci Nutr 55:823–838CrossRefGoogle Scholar
  7. 7.
    Jahangir M, Kim HK, Choi YH, Verpoorte R (2009) Health-affecting compounds in Brassicaceae. Comp Rev Food Sci Food Saf 8:31–43CrossRefGoogle Scholar
  8. 8.
    Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51CrossRefGoogle Scholar
  9. 9.
    Voorrips LE, Goldbohm RA, van Poppel G, Sturmans F, Hermus RJJ, van den Brandt PA (2000) Vegetable and fruit consumption and risks of colon and rectal cancer in a prospective cohort study; The Netherlands cohort study on diet and cancer. Am J Epidemiol 152:1081–1092CrossRefGoogle Scholar
  10. 10.
    Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236CrossRefGoogle Scholar
  11. 11.
    Herr I, Büchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:377–383CrossRefGoogle Scholar
  12. 12.
    Brennan P, Hsu CC, Moullan N et al (2005) Effect of cruciferous vegetables on lung cancer in patients stratified by genetic status: a Mendelian randomisation approach. Lancet 366:1558–1560CrossRefGoogle Scholar
  13. 13.
    Eid N, Walton G, Costabile A, Kuhnle GG, Spencer JP (2014) Polyphenols, glucosinolates, dietary fibre and colon cancer: understanding the potential of specific types of fruit and vegetables to reduce bowel cancer progression. Nutr Aging 2:45–67Google Scholar
  14. 14.
    Dekker M, Verkerk R (2003) Dealing with variability in food production chains: a tool to enhance the sensitivity of epidemiological studies on phytochemicals. Eur J Nutr 42:67–72CrossRefGoogle Scholar
  15. 15.
    Hennig K (2013) Plant science meets food science: genetic effects of glucosinolate degradation during food processing in Brassica. PhD dissertation, Wageningen UniversityGoogle Scholar
  16. 16.
    Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2006) Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. J Agric Food Chem 54:7628–7634CrossRefGoogle Scholar
  17. 17.
    Verkerk R, Knol JJ, Dekker M (2010) The effect of steaming on the glucosinolate content in broccoli. Acta Hort 867:37–46CrossRefGoogle Scholar
  18. 18.
    Ludikhuyze L, Ooms V, Weemaes C, Hendrickx M (1999) Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L. cv. Italica). J Agric Food Chem 47:1794–1800CrossRefGoogle Scholar
  19. 19.
    Hennig K, Verkerk R, Dekker M, Bonnema G (2013) Quantitative trait loci analysis of non-enzymatic glucosinolate degradation rates in Brassica oleracea during food processing. Theor Appl Genet 126:2323–2334CrossRefGoogle Scholar
  20. 20.
    Ludikhuyze L, Rodrigo L, Hendrickx M (2000) The activity of myrosinase from broccoli (Brassica oleracea L. cv. Italica): influence of intrinsic and extrinsic factors. J Food Protect 63:400–403CrossRefGoogle Scholar
  21. 21.
    Suzuki C, Ohnishi-Kameyama M, Sasaki K, Murata T, Yoshida M (2006) Behavior of glucosinolates in pickling cruciferous vegetables. J Agric Food Chem 54:9430–9436CrossRefGoogle Scholar
  22. 22.
    Van Eylen D, Oey I, Hendrickx M, Loey AV (2008) Effects of pressure/temperature treatments on stability and activity of endogenous broccoli (Brassica oleracea L. cv. Italica) myrosinase and on cell permeability. J Food Eng 89:178–186CrossRefGoogle Scholar
  23. 23.
    Springett M, Adams J (1989) Properties of Brussels sprouts thioglucosidase. Food Chem 33:173–186CrossRefGoogle Scholar
  24. 24.
    Yen G-C, Wei Q-K (1993) Myrosinase activity and total glucosinolate content of cruciferous vegetables, and some properties of cabbage myrosinase in Taiwan. J Sci Food Agr 61:471–475CrossRefGoogle Scholar
  25. 25.
    Dekker M, Verkerk R, Jongen WMF (2000) Predictive modelling of health aspects in the food production chain: a case study on glucosinolates in cabbage. Trends Food Sci Technol 11:174–181CrossRefGoogle Scholar
  26. 26.
    Conaway CC, Getahun SM, Liebes LL, Pusateri DJ, Topham DKW, Botero-Omary M, Chung F-L (2000) Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr Cancer 38:168–178CrossRefGoogle Scholar
  27. 27.
    Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282CrossRefGoogle Scholar
  28. 28.
    Oliviero T, Verkerk R, Vermeulen M, Dekker M (2014) In vivo formation and bioavailability of isothiocyanates from glucosinolates in broccoli as affected by processing conditions. Mol Nutr Food Res 58:1447–1456CrossRefGoogle Scholar
  29. 29.
    MacLeod AJ, Panesar SS, Gil V (1981) Thermal degradation of glucosinolates. Phytochemistry 20:977–980CrossRefGoogle Scholar
  30. 30.
    Chevolleau S, Gasc N, Rollin P, Tulliez J (1997) Enzymatic, chemical, and thermal breakdown of 3H-labeled glucobrassicin, the parent indole glucosinolate. J Agric Food Chem 45:4290–4296CrossRefGoogle Scholar
  31. 31.
    Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067CrossRefGoogle Scholar
  32. 32.
    Hayes JD, Kelleher MO, Eggleston IM (2008) The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur J Nutr 47:73–88CrossRefGoogle Scholar
  33. 33.
    Holst B, Williamson G (2008) Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotech 19:73–82CrossRefGoogle Scholar
  34. 34.
    Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123–201CrossRefGoogle Scholar
  35. 35.
    Van Esterik P (2008) Food culture in Southeast Asia. Greenwood Press, WesportGoogle Scholar
  36. 36.
    Jones RB, Faragher JD, Winkler S (2006) A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biol Technol 41:1–8CrossRefGoogle Scholar
  37. 37.
    Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2007) Effect of cooking Brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proc Nutr Soc 66:69–81CrossRefGoogle Scholar
  38. 38.
    Song L, Thornalley PJ (2007) Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45:216–224CrossRefGoogle Scholar
  39. 39.
    Verkerk R, Dekker M, Jongen WMF (2001) Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. J Sci Food Agric 81:953–958CrossRefGoogle Scholar
  40. 40.
    Lee SK, Kader AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220CrossRefGoogle Scholar
  41. 41.
    Vallejo F, Tomas-Barberan FA, Garcia-Viguera C (2002) Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. Eur Food Res Technol 215:310–316CrossRefGoogle Scholar
  42. 42.
    Borowski J, Szajdek A, Borowska EJ, Ciska E, Zielinski H (2008) Content of selected bioactive components and antioxidant properties of broccoli (Brassica oleracea L.). Eur Food Res Technol 226:459–465CrossRefGoogle Scholar
  43. 43.
    Pellegrini N, Chiavaro E, Gardana C et al (2010) Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen Brassica vegetables. J Agric Food Chem 58:4310–4321CrossRefGoogle Scholar
  44. 44.
    Galgano F, Favati F, Caruso M, Pietrafesa A, Natella S (2007) The influence of processing and preservation on the retention of health-promoting compounds in broccoli. J Food Sci 72:S130–S135CrossRefGoogle Scholar
  45. 45.
    Verkerk R, Dekker M (2004) Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem 52:7318–7323CrossRefGoogle Scholar
  46. 46.
    Oerlemans K, Barrett DM, Suades CB, Verkerk R, Dekker M (2006) Thermal degradation of glucosinolates in red cabbage. Food Chem 95:19–29CrossRefGoogle Scholar
  47. 47.
    Dekker M, Hennig K, Verkerk R (2009) Differences in thermal stability of glucosinolates in five Brassica vegetables. Czech J Food Sci 27:S85–S88Google Scholar
  48. 48.
    Volden J, Wicklund T, Verkerk R, Dekker M (2008) Kinetics of changes in glucosinolate concentrations during long-term cooking of white cabbage (Brassica oleracea L. ssp. capitata f. alba). J Agric Food Chem 56:2068–2073CrossRefGoogle Scholar
  49. 49.
    Sarvan I, Verkerk R, Dekker M (2012) Modelling the fate of glucosinolates during thermal processing of Brassica vegetables. Food Sci Technol LEB 49:178–183CrossRefGoogle Scholar
  50. 50.
    Cieslik E, Leszczynska T, Filipiak-Florkiewicz A, Sikora E, Pisulewski PM (2007) Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chem 105:976–981CrossRefGoogle Scholar
  51. 51.
    Rosa EAS, Heaney RK (1993) The effect of cooking and processing on the glucosinolate content: studies on four varieties of Portuguese cabbage and hybrid white cabbage. J Sci Food Agric 62:259–265CrossRefGoogle Scholar
  52. 52.
    Francisco M, Velasco P, Moreno DA, Garcia-Viguera C, Cartea ME (2010) Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Res Int 43:1455–1463CrossRefGoogle Scholar
  53. 53.
    Volden J, Borge GIA, Hansen M, Wicklund T, Bengtsson GB (2009) Processing (blanching, boiling, steaming) effects on the content of glucosinolates and antioxidant-related parameters in cauliflower (Brassica oleracea L. ssp. botrytis). Food Sci Technol LEB 42:63–73CrossRefGoogle Scholar
  54. 54.
    Ciska E, Kozłowska H (2001) The effect of cooking on the glucosinolates content in white cabbage. Eur Food Res Technol 212:582–587CrossRefGoogle Scholar
  55. 55.
    Kassahun BW, Velisek J, Davidec J (1996) The effect of cooking on cabbage glucosinolates. In: Proceeding Agri-food quality: an interdisciplinary approach. RCS, Cambridge, pp 329–331Google Scholar
  56. 56.
    Rungapamestry V, Duncan A, Fuller Z, Ratcliffe B (2008) Influence of blanching and freezing broccoli (Brassica oleracea var. italica) prior to storage and cooking on glucosinolate concentrations and myrosinase activity. Eur Food Res Technol 227:37–44CrossRefGoogle Scholar
  57. 57.
    D'Antuono LF, Elementi S, Neri R (2007) Sensory attributes, health promoting aspects and new uses of edible Brassicaceae. In: International information system for the agricultural science and technology. vol 741, pp 65–72Google Scholar
  58. 58.
    Goodrich RM, Anderson JL, Stoewsand GS (1989) Glucosinolate changes in blanched broccoli and Brussels sprouts. J Food Process Pres 13:275–280CrossRefGoogle Scholar
  59. 59.
    Wathelet JP, Mabon N, Foucart M, Marlier M (1996) Influence du blanchiment sur la qualite du chou de Bruxelles (Brassica oleracea L. cv. gemmifera). Sci Aliments 16:393–402Google Scholar
  60. 60.
    Volden J, Borge GIA, Bengtsson GB, Hansen M, Thygesen IE, Wicklund T (2008) Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (Brassica oleracea L. ssp. capitata f. rubra). Food Chem 109:595–605CrossRefGoogle Scholar
  61. 61.
    Gliszczyñska-šwiglo A, Ciska E, Pawlak-Lemanska K, Chmielewski J, Borkowski T, Tyrakowska B (2006) Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit Contam 23:1088–1098CrossRefGoogle Scholar
  62. 62.
    Miglio C, Chiavaro E, Visconti A, Fogliano V, Pellegrini N (2008) Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J Agric Food Chem 56:139–147CrossRefGoogle Scholar
  63. 63.
    Nugrahedi P, Dekker M, Widianarko B, Verkerk R (2016) Quality of cabbage during long term steaming; phytochemical, texture and colour evaluation. Food Sci Technol LEB 65:421–427CrossRefGoogle Scholar
  64. 64.
    Jones RB, Frisina CL, Winkler S, Imsic M, Tomkins RB (2010) Cooking method significantly effects glucosinolate content and sulforaphane production in broccoli florets. Food Chem 123:237–242CrossRefGoogle Scholar
  65. 65.
    Yuan G-f, Sun B, Yuan J, Wang Q-m (2009) Effects of different cooking methods on health-promoting compounds of broccoli. J Zhejiang Univ Sci B 10:580–588CrossRefGoogle Scholar
  66. 66.
    Fellows P (2000) Food processing technology; principles and practice, 2nd edn. Woodhead Publishing Limited, CambridgeGoogle Scholar
  67. 67.
    Nugrahedi P, Oliviero T, Heising J, Dekker M, Verkerk R (2015) Stir-frying retains glucosinolate content in Chinese cabbage (Brassica rapa ssp pekinensis) and pakchoi (Brassica rapa ssp chinensis) (Submitted for Eur Food Res Technol)Google Scholar
  68. 68.
    Ohlsson T, Bengtsson N (2001) Microwave technology and foods. In: Taylor SL (ed) Advances in food and nutrition research. Academic, San DiegoGoogle Scholar
  69. 69.
    Fuller Z, Louis P, Mihajlovski A, Rungapamestry V, Ratcliffe B, Duncan AJ (2007) Influence of cabbage processing methods and prebiotic manipulation of colonic microflora on glucosinolate breakdown in man. Br J Nutr 98:364–372CrossRefGoogle Scholar
  70. 70.
    López-Berenguer C, Carvajal M, Moreno DA, GarcÃa-Viguera C (2007) Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences. J Agric Food Chem 55:10001–10007CrossRefGoogle Scholar
  71. 71.
    Volden J, Bengtsson GB, Wicklund T (2009) Glucosinolates, l-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem 112:967–976CrossRefGoogle Scholar
  72. 72.
    Rodrigues AS, Rosa EAS (1999) Effect of post-harvest treatments on the level of glucosinolates in broccoli. J Sci Food Agric 79:1028–1032CrossRefGoogle Scholar
  73. 73.
    Oliviero T, Verkerk R, Dekker M (2012) Effect of water content and temperature on glucosinolate degradation kinetics in broccoli (Brassica oleracea var. italica). Food Chem 132:2037–2045CrossRefGoogle Scholar
  74. 74.
    Oliviero T, Verkerk R, Van Boekel M, Dekker M (2014) Effect of water content and temperature on inactivation kinetics of myrosinase in broccoli (Brassica oleracea var. italica). Food Chem 163:197–201CrossRefGoogle Scholar
  75. 75.
    Mrkic V, Redovnikovic I, Jolic S, Delonga K, Dragovic-Uzelac V (2010) Effect of drying conditions on indole glucosinolate level in broccoli. Acta Aliment 39:167–174CrossRefGoogle Scholar
  76. 76.
    Jin X, Oliviero T, van der Sman RGM, Verkerk R, Dekker M, van Boxtel AJB (2014) Impact of different drying trajectories on degradation of nutritional compounds in broccoli (Brassica oleracea var. italica). Food Sci Technol LEB 59:189–195CrossRefGoogle Scholar
  77. 77.
    Tolonen M, Taipale M, Viander B, Pihlava J-M, Korhonen H, Ryhanen E-L (2002) Plant-derived biomolecules in fermented cabbage. J Agric Food Chem 50:6798–6803CrossRefGoogle Scholar
  78. 78.
    Puspito H, Fleet GH (1985) Microbiology of sayur asin fermentation. Appl Microbiol Biotechnol 22:442–445CrossRefGoogle Scholar
  79. 79.
    Chen YS, Yanagida F, Hsu JS (2006) Isolation and characterization of lactic acid bacteria from suan‐tsai (fermented mustard), a traditional fermented food in Taiwan. J Appl Microbiol 101:125–130CrossRefGoogle Scholar
  80. 80.
    Lee C-H (1997) Lactic acid fermented foods and their benefits in Asia. Food Control 8:259–269CrossRefGoogle Scholar
  81. 81.
    Ciska E, Pathak DR (2004) Glucosinolate derivatives in stored fermented cabbage. J Agric Food Chem 52:7938–7943CrossRefGoogle Scholar
  82. 82.
    Daxenbichler ME, VanEtten CH, Williams PH (1980) Glucosinolate products in commercial sauerkraut. J Agric Food Chem 28:809–811CrossRefGoogle Scholar
  83. 83.
    Martinez-Villaluenga C, Peñas E, Frias J et al (2009) Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. J Food Sci 74:C62–C67CrossRefGoogle Scholar
  84. 84.
    Sarvan I, Valerio F, Lonigro SL, de Candia S, Verkerk R, Dekker M, Lavermicocca P (2013) Glucosinolate content of blanched cabbage (Brassica oleracea var. capitata) fermented by the probiotic strain Lactobacillus paracasei LMG-P22043. Food Res Int 54:706–710CrossRefGoogle Scholar
  85. 85.
    Nugrahedi PY, Widianarko B, Dekker M, Verkerk R, Oliviero T (2015) Retention of glucosinolates during fermentation of Brassica juncea: a case study on production of sayur asin. Eur Food Res Technol 240:559–565CrossRefGoogle Scholar
  86. 86.
    Van Eylen D, Bellostas N, Strobel BW et al (2009) Influence of pressure/temperature treatments on glucosinolate conversion in broccoli (Brassica oleraceae L. cv Italica) heads. Food Chem 112:646–653CrossRefGoogle Scholar
  87. 87.
    Silva E, Gerritsen L, Dekker M, van der Linden E, Scholten E (2013) High amounts of broccoli in pasta-like products: nutritional evaluation and sensory acceptability. Food Funct 4:1700–1708CrossRefGoogle Scholar
  88. 88.
    Oliviero T (2013) Food processing and health: a case on the glucosinolate-myrosinase system in dried broccoli. PhD dissertation, Wageningen UniversityGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Probo Yulianto Nugrahedi
    • 1
    Email author
  • Matthijs Dekker
    • 2
  • Ruud Verkerk
    • 2
  1. 1.Department of Food TechnologySOEGIJAPRANATA Catholic University (Unika) of SemarangSemarangIndonesia
  2. 2.Food Quality and Design Group, Department of Agrotechnology and Food SciencesWageningen UniversityWageningenThe Netherlands

Personalised recommendations