Advertisement

Glucosinolates: Novel Sources and Biological Potential

  • Ivica BlaževićEmail author
  • Sabine Montaut
  • Franko Burčul
  • Patrick Rollin
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

In this chapter, some of the most recent information on glucosinolate-containing plant families is presented. Glucosinolates (GLs) are structurally homogenous secondary metabolites present in the Brassicaceae, Capparidaceae, Moringaceae, and Resedaceae families, as well as in other less-studied families of the order Brassicales. Based on the GL contents, new subdivisions of GL-containing plants are suggested. It was shown that only a limited number of the reported ca 130 GLs are available in fair quantities, acceptable for further investigation of the biological potential. In recent years, degradation products of a limited number of GLs (e.g., gluconasturtiin, glucoraphanin, glucomoringin), mostly isothiocyanates, have been found to possess real pharmacological activity. Some of the biological aspects of GLs and isothiocyanates which have been in recent focus are presented.

Keywords

Glucosinolates Isothiocyanates Order Brassicales Biological activity 

Abbreviations

AD

Alzheimer’s disease

Ala

Alanine

APG

Angiosperm phylogeny group classification

ARE

Antioxidant response element

BCAA

Branched-chain amino acids

DS-GL

Desulfo-glucosinolate

ESI FTICR MS

Electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry

GC-MS

Gas chromatography–mass spectrometry

GL

Glucosinolate

GSH

Glutathione

HPLC

High-performance liquid chromatography

HPLC-ESI-MS

High-performance liquid chromatography–electrospray mass spectrometry

Ile

Isoleucine

ITC

Isothiocyanate

Leu

Leucine

Met

Methionine

Nrf2

Nuclear factor (erythroid-derived 2)-like 2

Phe

Phenylalanine

Rha

Rhamnose

SeCys

Selenocysteine

SeMet

Selenomethionine

Trp

Tryptophan

Tyr

Tyrosine

Val

Valine

References

  1. 1.
    Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51. doi: 10.1016/S0031-9422(00)00316-2 CrossRefGoogle Scholar
  2. 2.
    Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67(11):1053–1067. doi: 10.1016/j.phytochem.2006.02.024 CrossRefGoogle Scholar
  3. 3.
    Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods 2(4):310–325. doi: 10.1039/B9AY00280D CrossRefGoogle Scholar
  4. 4.
    Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45. doi: 10.1016/j.phytochem.2012.02.005 CrossRefGoogle Scholar
  5. 5.
    Bennett RN, Mellon FA, Kroon PA (2004) Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J Agric Food Chem 52(3):428–438. doi: 10.1021/jf030530p CrossRefGoogle Scholar
  6. 6.
    Rollin P, Tatibouët A (2011) Glucosinolates: the synthetic approach. C R Chim 14(2–3):194–210. doi: 10.1016/j.crci.2010.05.002 CrossRefGoogle Scholar
  7. 7.
    Avato P, Argentieri MP (2015) Brassicaceae: a rich source of health improving phytochemicals. Phytochem Rev 2015, 14(6):1019–1033. doi: 10.1007/s11101-015-9414-4
  8. 8.
    Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci 15(5):283–290. doi: 10.1016/j.tplants.2010.02.005 CrossRefGoogle Scholar
  9. 9.
    Wathelet J-P, Iori R, Leoni O, Rollin P, Quinsac A, Palmieri S (2004) Guidelines for glucosinolate analysis in green tissues used for biofumigation. Agroindustria 3(3):257–266Google Scholar
  10. 10.
    Songsak T, Lockwood GB (2002) Glucosinolates of seven medicinal plants from Thailand. Fitoterapia 73(3):209–216. doi: 10.1016/S0367-326X(02)00061-8 CrossRefGoogle Scholar
  11. 11.
    Kiddle G, Bennett RN, Botting NP, Davidson NE, Robertson AAB, Wallsgrove RM (2001) High-performance liquid chromatographic separation of natural and synthetic desulphoglucosinolates and their chemical vadation by UV, NMR and chemical ionisation-MS methods. Phytochem Anal 12(4):226–242. doi: 10.1002/pca.589 CrossRefGoogle Scholar
  12. 12.
    Bianco G, Agerbirk N, Losito I, Cataldi TRI (2014) Acylated glucosinolates with diverse acyl groups investigated by high resolution mass spectrometry and infrared multiphoton dissociation. Phytochemistry 100:92–102. doi: 10.1016/j.phytochem.2014.01.010 CrossRefGoogle Scholar
  13. 13.
    Bianco G, Lelario F, Battista FG, Bufo SA, Cataldi TRI (2012) Identification of glucosinolates in capers by LC-ESI-hybrid linear ion trap with fourier transform ion cyclotron resonance mass spectrometry (LC-ESI-LTQ-FTICR MS) and infrared multiphoton dissociation. J Mass Spectrom 47(9):1160–1169. doi: 10.1002/jms.2996 CrossRefGoogle Scholar
  14. 14.
    Bertelsen F, Gissel-Nielsen G, Kjær A, Skrydstrup T (1988) Selenoglucosinolates in nature: fact or myth? Phytochemistry 27(12):3743–3749. doi:10.1016/0031-9422(88)83010-3Google Scholar
  15. 15.
    Tian M, Xu X, Liu Y, Xie L, Pan S (2016) Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem 190:374–380. doi: 10.1016/j.foodchem.2015.05.098 CrossRefGoogle Scholar
  16. 16.
    Matich AJ, McKenzie MJ, Lill RE, McGhie TK, Chen RKY, Rowan DD (2015) Distribution of selenoglucosinolates and their metabolites in Brassica treated with sodium selenate. J Agric Food Chem 63(7):1896–1905. doi: 10.1021/jf505963c CrossRefGoogle Scholar
  17. 17.
    Avila FW, Yang Y, Faquin V, Ramos SJ, Guilherme LRG, Thannhauser TW, Li L (2014) Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem 165:578–586. doi: 10.1016/j.foodchem.2014.05.134 CrossRefGoogle Scholar
  18. 18.
    Matich AJ, Matich AJ, McKenzie MJ, Lill RE, Brummell DA, McGhie TK, Chen RKY, Rowan DD (2012) Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry 75:140–152. doi: 10.1016/j.phytochem.2011.11.021 CrossRefGoogle Scholar
  19. 19.
    Johnson SD, Griffiths ME, Peter CI, Lawes MJ (2009) Pollinators, “mustard oil” volatiles, and fruit production in flowers of the dioecious tree Drypetes natalensis (Putranjivaceae). Am J Bot 96(11):2080–2086. doi: 10.3732/ajb.0800362 CrossRefGoogle Scholar
  20. 20.
    Hu Y, Liang H, Yuan Q, Hong Y (2010) Determination of glucosinolates in 19 Chinese medicinal plants with spectrophotometry and high-pressure liquid chromatography. Nat Prod Res 24(13):1195–1205. doi: 10.1080/14786410902975681 CrossRefGoogle Scholar
  21. 21.
    Agnaniet H, Mounzeo H, Menut C, Bessiere JM, Criton M (2003) The essential oils of Rinorea subintegrifolia O. Ktze and Drypetes gossweileri S. Moore occurring in Gabon. Flavour Fragance J 18(3):207–210. doi: 10.1002/ffj.1185 CrossRefGoogle Scholar
  22. 22.
    Stevens PF (2001) Angiosperm Phylogeny Website. Version 13, September 2013. http://www.mobot.org/MOBOT/research/APweb/
  23. 23.
    McNaughton SA, Marks GC (2003) Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br J Nutr 90(3):687–697. doi: 10.1079/BJN2003917
  24. 24.
    Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, de Schrijver R, Hansen M, Gerhäuser C, Mithen R, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53(Suppl 2):219–265. doi: 10.1002/mnfr.200800065
  25. 25.
    Bennett RN, Mellon FA, Rosa EAS, Perkins L, Kroon PA (2004) Profiling glucosinolates, flavonoids, alkaloids, and other secondary metabolites in tissues of Azima tetracantha L. (Salvadoraceae). J Agric Food Chem 52(19):5856–5862. doi: 10.1021/jf040091+ CrossRefGoogle Scholar
  26. 26.
    Berhow MA, Polat U, Glinski JA, Glensk M, Vaughn SF, Isbell T, Ayala-Diaz I, Marek L, Gardner C (2013) Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Ind Crops Prod 43(2013):119–125. doi: 10.1016/j.indcrop.2012.07.018 CrossRefGoogle Scholar
  27. 27.
    Montaut S, Zhang W-D, Nuzillard J-M, De Nicola GR, Rollin P (2015) Glucosinolate diversity in Bretschneidera sinensis of Chinese origin. J Nat Prod. doi: 10.1021/acs.jnatprod.5b00338 Google Scholar
  28. 28.
    Mithen R, Bennett R, Marquez J (2010) Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71(17–18):2074–2086. doi: 10.1016/j.phytochem.2010.09.017 CrossRefGoogle Scholar
  29. 29.
    Al-Shehbaz Ihsan A (2001) Brassicaceae (Mustard Family). In: eLS. John Wiley & Sons Ltd, Chichester doi: 10.1002/9780470015902.a0003690.pub2
  30. 30.
    De Nicola G, Rollin P, Mazzon E, Iori R (2014) Novel gram-scale production of enantiopure R-sulforaphane from Tuscan black kale seeds. Molecules 19(6):6975. doi: 10.3390/molecules19066975 CrossRefGoogle Scholar
  31. 31.
    Abdulah R, Faried A, Kobayashi K, Yamazaki C, Suradji E, Ito K, Suzuki K, Murakami M, Kuwano H, Koyama H (2009) Selenium enrichment of broccoli sprout extract increases chemosensitivity and apoptosis of LNCaP prostate cancer cells. BMC Cancer 9(1):414. doi: 10.1186/1471-2407-9-414 CrossRefGoogle Scholar
  32. 32.
    Agneta R, Möllers C, De Maria S, Rivelli AR (2014) Evaluation of root yield traits and glucosinolate concentration of different Armoracia rusticana accessions in Basilicata region (southern Italy). Sci Hortic 170:249–255. doi: 10.1016/j.scienta.2014.03.025 CrossRefGoogle Scholar
  33. 33.
    Agerbirk N, Warwick SI, Hansen PR, Hansen PR, Olsen CE (2008) Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes. Phytochemistry 69(17):2937–2949. doi: 10.1016/j.phytochem.2008.08.014
  34. 34.
    Barillari J, Iori R, Rollin P, Hennion F (2005) Glucosinolates in the subantarctic crucifer Kerguelen cabbage (Pringlea antiscorbutica). J Nat Prod 68(2):234–236. doi: 10.1021/np049822q CrossRefGoogle Scholar
  35. 35.
    Blažević I, De Nicola GR, Montaut S, Rollin P (2013) Glucosinolates in two endemic plants of the Aurinia genus and their chemotaxonomic significance. Nat Prod Commun 8(10):1463–1466Google Scholar
  36. 36.
    De Nicola GR, Blažević I, Montaut S, Rollin P, Mastelić J, Iori R, Tatibouët A (2011) Glucosinolate distribution in aerial parts of Degenia velebitica. Chem Biodivers 8(11):2090–2096. doi: 10.1002/cbdv.201100114 CrossRefGoogle Scholar
  37. 37.
    Blažević I, Radonić A, Skočibušić M, De Nicola GR, Montaut S, Iori R, Rollin P, Mastelić J, Zekić M, Maravić A (2011) Glucosinolate profiling and antimicrobial screening of Aurinia leucadea (Brassicaceae). Chem Biodivers 8(12):2310–2321. doi: 10.1002/cbdv.201100169
  38. 38.
    Blažević I, De Nicola GR, Montaut S, Rollin P, Ruśčić M (2015) Glucosinolate profile of Fibigia triquetra (DC.) Boiss. Ex Prantl, Croatian stenoendemic plant of the brassicaceae family. Croat Chem Acta 88(3):307–314. doi: 10.5562/cca2687
  39. 39.
    Horvatić B (2015) Degenia velebitica (Degen) Hayek. Flora Croatica baza podataka. On-Line http://hirc.botanic.hr/fcd. Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu, Zagreb
  40. 40.
    Agerbirk N, Olsen CE, Cipollini D, Ørgaard M, Linde-Laursen I, Chew FS (2014) Specific glucosinolate analysis reveals variable levels of epimeric glucobarbarins, dietary precursors of 5-phenyloxazolidine-2-thiones, in watercress types with contrasting chromosome numbers. J Agric Food Chem 62(39):9586–9596. doi: 10.1021/jf5032795 CrossRefGoogle Scholar
  41. 41.
    Blazevic I, Montaut S, De Nicola GR, Rollin P (2015) Long-chain glucosinolates from Arabis turrita: enzymatic and non-enzymatic degradations. Nat Prod Commun 10(6):1043–1046Google Scholar
  42. 42.
    Griffiths DW, Deighton N, Birch AE, Patrian B, Baur R, Städler E (2001) Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species. Phytochemistry 57(5):693–700. doi: 10.1016/S0031-9422(01)00138-8 CrossRefGoogle Scholar
  43. 43.
    Radwan HM, El-Missiry MM, Al-Said WM, Ismael AS, Abdel Shafeek KA, Seif-El-Nasr MM (2007) Investigation of the glucosinolates of Lepidium sativum growing in Egypt and their biological activity. Res J Med Med Sci 2(2):127–132Google Scholar
  44. 44.
    Agerbirk N, Olsen CE, Chew FS, Ørgaard M (2010) Variable glucosinolate profiles of Cardamine pratensis (Brassicaceae) with equal chromosome numbers. J Agric Food Chem 58(8):4693–4700. doi: 10.1021/jf904362m CrossRefGoogle Scholar
  45. 45.
    O’Hare TJ, Wong LS, Irving DE (2005) Asian and Western horticultural species of the Brassica family with anti-cancer potential. In: International Society for Horticultural Science (ISHS), Leuven, pp 457–462. doi: 10.17660/ActaHortic.2005.694.75
  46. 46.
    de Graaf RM, Krosse S, Swolfs AEM, te Brinke E, Prill N, Leimu R, van Galen PM, Wang Y, Aarts MGM, van Dam NM (2015) Isolation and identification of 4-α-rhamnosyloxy benzyl glucosinolate in Noccaea caerulescens showing intraspecific variation. Phytochemistry 110:166–171. doi: 10.1016/j.phytochem.2014.11.016 CrossRefGoogle Scholar
  47. 47.
    Agerbirk N, Olsen CE (2011) Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus Barbarea. Phytochemistry 72(7):610–623. doi: 10.1016/j.phytochem.2011.01.034
  48. 48.
    Barillari J, Gueyrard D, Rollin P, Iori R (2001) Barbarea verna as a source of 2-phenylethyl glucosinolate, precursor of cancer chemopreventive phenylethyl isothiocyanate. Fitoterapia 72(7):760–764. doi: 10.1016/S0367-326X(01)00320-3 CrossRefGoogle Scholar
  49. 49.
    Radulović N, Zlatković B, Skropeta D, Palić R (2008) Chemotaxonomy of the peppergrass Lepidium coronopus (L.) Al-Shehbaz (syn. Coronopus squamatus) based on its volatile glucosinolate autolysis products. Biochem Syst Ecol 36(10):807–811. doi: 10.1016/j.bse.2008.07.006 CrossRefGoogle Scholar
  50. 50.
    Daxenbichler ME, Spencer GF, Carlson DG, Rose GB, Brinker AM, Powell RG (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30(8):2623–2638. doi: 10.1016/0031-9422(91)85112-D CrossRefGoogle Scholar
  51. 51.
    Kjær A, Wagnières M (1971) 3,4,5-Trimethoxybenzylglucosinolate: a constituent of Lepidium sordidum. Phytochemistry 10(9):2195–2198. doi: 10.1016/S0031-9422(00)97218-2
  52. 52.
    Kjær A, Schuster A, Park RJ (1971) Glucosinolates in Lepidium species from Queensland. Phytochemistry 10(2):455–457. doi: 10.1016/S0031-9422(00)94076-7
  53. 53.
    Galletti S, Bagatta M, Branca F, Argento S, De Nicola GR, Cianchetta S, Iori R, Ninfali P (2014) Isatis canescens is a rich source of glucobrassicin and other health-promoting compounds. J Sci Food Agric 95(1):158–164. doi: 10.1002/jsfa.6697 CrossRefGoogle Scholar
  54. 54.
    Agerbirk N, Petersen BL, Olsen CE, Halkier BA, Nielsen JK (2001) 1,4-Dimethoxyglucobrassicin in Barbarea and 4-hydroxyglucobrassicin in Arabidopsis and Brassica. J Agric Food Chem 49(3):1502–1507. doi: 10.1021/jf001256r
  55. 55.
    Mohn T, Cutting B, Ernst B, Hamburger M (2007) Extraction and analysis of intact glucosinolates-A validated pressurized liquid extraction/liquid chromatography-mass spectrometry protocol for Isatis tinctoria, and qualitative analysis of other cruciferous plants. J Chromatogr A 1166(1–2):142–151. doi: 10.1016/j.chroma.2007.08.028 CrossRefGoogle Scholar
  56. 56.
    Fréchard A, Fabre N, Péan C, Montaut S, Fauvel M-T, Rollin P, Fourasté I (2001) Novel indole-type glucosinolates from woad (Isatis tinctoria L.). Tetrahedron Lett 42(51):9015–9017. doi: 10.1016/S0040-4039(01)02015-9 CrossRefGoogle Scholar
  57. 57.
    Mohn T, Hamburger M (2008) Glucosinolate pattern in Isatis tinctoria and I. indigotica seeds. Planta Med 74(8):885–888. doi: 10.1055/s-2008-1074554 CrossRefGoogle Scholar
  58. 58.
    Agerbirk N, Olsen CE, Heimes C, Christensen S, Bak S, Hauser TP (2015) Multiple hydroxyphenethyl glucosinolate isomers and their tandem mass spectrometric distinction in a geographically structured polymorphism in the crucifer Barbarea vulgaris. Phytochemistry 115:130–142. doi: 10.1016/j.phytochem.2014.09.003 CrossRefGoogle Scholar
  59. 59.
    Survay NS, Kumar B, Upadhyaya CP, Ko E, Lee C, Choi JN, Yoon D-Y, Jung Y-S, Park SW (2010) Characterization of a cinnamoyl derivative from broccoli (Brassica oleracea L. var. italica) florets. Fitoterapia 81(8):1062–1066. doi: 10.1016/j.fitote.2010.06.030 CrossRefGoogle Scholar
  60. 60.
    Kliebenstein DJ, D’Auria JC, Behere AS, Kim JH, Gunderson KL, Breen JN, Lee G, Gershenzon J, Last RL, Jander G (2007) Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J 51(6):1062–1076. doi: 10.1111/j.1365-313X.2007.03205.x CrossRefGoogle Scholar
  61. 61.
    Lee S, Kaminaga Y, Cooper B, Pichersky E, Dudareva N, Chapple C (2012) Benzoylation and sinapoylation of glucosinolate R-groups in Arabidopsis. Plant J 72(3):411–422. doi: 10.1111/j.1365-313X.2012.05096.x
  62. 62.
    Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E, Tokuhisa J, Kliebenstein DJ, Mitchell-Olds T, Gershenzon J (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59(6):663–671. doi: 10.1016/S0031-9422(02)00014-6 CrossRefGoogle Scholar
  63. 63.
    Gull T, Anwar F, Sultana B, Alcayde MAC, Nouman W (2015) Capparis species: a potential source of bioactives and high-value components: a review. Ind Crop Prod 67:81–96. doi: 10.1016/j.indcrop.2014.12.059
  64. 64.
    Hall JC (2008) Systematics of Capparaceae and Cleomaceae: an evaluation of the generic delimitations of Capparis and Cleome using plastid DNA sequence data. Botany 86(7):682–696. doi: 10.1139/B08-026
  65. 65.
    Matthäus B, Özcan M (2005) Glucosinolates and fatty acid, sterol, and tocopherol composition of seed oils from Capparis spinosa var. spinosa and Capparis ovata Desf. var. canescens (Coss.) Heywood. J Agric Food Chem 53(18):7136–7141. doi: 10.1021/jf051019u
  66. 66.
    Argentieri M, Macchia F, Papadia P, Fanizzi FP, Avato P (2012) Bioactive compounds from Capparis spinosa subsp. rupestris. Ind Crop Prod 36(1):65–69. doi: 10.1016/j.indcrop.2011.08.007
  67. 67.
    Bor M, Ozkur O, Ozdemir F, Turkan I (2009) Identification and characterization of the glucosinolate–myrosinase system in caper (Capparis ovata Desf.). Plant Mol Biol Rep 27(4):518–525. doi: 10.1007/s11105-009-0117-0 CrossRefGoogle Scholar
  68. 68.
    Gueye MT, Seck D, Diallo A, Trisman D, Fischer C, Barthelemy J-P, Wathelet J-P, Lognay G (2013) Development of a performant method for glucocapparin determination in Boscia senegalensis Lam Ex. Poir.: a study of the variability. Am J Anal Chem 4(2):7. doi: 10.4236/ajac.2013.42014 CrossRefGoogle Scholar
  69. 69.
    Antunes Carvalho F, Renner SS (2012) A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Mol Phylogenet Evol 65(1):46–53. doi: 10.1016/j.ympev.2012.05.019 CrossRefGoogle Scholar
  70. 70.
    Rodman J, Karol K, PRice R, Conti E, Systma K (1994) Nucleotide sequences of rbcL confirm the capparalean affinity of the Australian endemis Gyrostemonaceae. Aust Syst Bot 7(1):57–69. doi: 10.1071/SB9940057 CrossRefGoogle Scholar
  71. 71.
    Rodman J, Price RA, Karol K, Conti E, Systma KJ, Palmer JD (1993) Nucleotide sequences of the rbcL gene indicate Missouri of mustard oil plants. Ann Missouri Bot Gard 80(3):686–699. doi: 10.2307/2399854
  72. 72.
    Rodman JE, Karol KG, Price RA, Sytsma KJ (1996) Molecules, morphology, and Dahlgren’s expanded order capparales. Syst Bot 21(3):289–307CrossRefGoogle Scholar
  73. 73.
    Rodman J, Soltis P, Soltis D, Sytsma K, Karol K (1998) Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am J Bot 85(7):997CrossRefGoogle Scholar
  74. 74.
    Verkerk R, Dekker M (2008) Glucosinolates. In: Bioactive compounds in foods, Gilbert J, Senyuva HZ (eds). John Wiley & Sons Ltd, ChichesterGoogle Scholar
  75. 75.
    Frisch T, Motawia MS, Olsen CE, Agerbirk N, Møller BL, Bjarnholt N (2015) Diversified glucosinolate metabolism: biosynthesis of hydrogen cyanide and of the hydroxynitrile glucoside alliarinoside in relation to sinigrin metabolism in Alliaria petiolata. Front Plant Sci 6:1–16. doi: 10.3389/fpls.2015.00926
  76. 76.
    Shahzad A, Shaheen A, Kozgar MI, Sahai A, Sharma S (2013) Phytoactive Compounds from In Vitro Derived Tissues. In: Recent trends in biotechnology and therapeutic applications of medicinal plants, Shahid M, Shahzad A, Malik A, Sahai A (eds). Springer, New York, doi: 10.1007/978-94-007-6603-7
  77. 77.
    Williams DJ, Pun S, Chaliha M, Scheelings P, O’Hare T (2013) An unusual combination in papaya (Carica papaya): the good (glucosinolates) and the bad (cyanogenic glycosides). J Food Compos Anal 29(1):82–86. doi: 10.1016/j.jfca.2012.06.007 CrossRefGoogle Scholar
  78. 78.
    Patchell MJ, Roalson EH, Hall JC (2014) Resolved phylogeny of Cleomaceae based on all three genomes. Taxon 63(2):315–328. doi: 10.12705/632.17 CrossRefGoogle Scholar
  79. 79.
    Blua MJ, Hanscom Z 3rd, Collier BD (1988) Glucocapparin variability among four populations of Isomeris arborea Nutt. J Chem Ecol 14(2):623–633. doi: 10.1007/BF01013911
  80. 80.
    Lazzeri L, Manici LM, Leoni O, Palmieri S (1998) Soil-borne phytopathogenic fungi control by Cleome hassleriana green manure. In: International Society for Horticultural Science (ISHS), Leuven, pp 53–62. doi: 10.17660/ActaHortic.1998.513.5
  81. 81.
    Velasco P, Slabaugh MB, Reed R, Kling J, Kishore VK, Stevens JF, Knapp SJ (2011) Glucosinolates in the new oilseed crop meadowfoam: natural variation in Section Inflexae of Limnanthes, a new glucosinolate in L. floccosa, and QTL analysis in L. alba. Plant Breed 130(3):352–359. doi: 10.1111/j.1439-0523.2010.01830.x
  82. 82.
    Stevens JF, Reed RL, Alber S, Pritchett L, Machado S (2009) Herbicidal activity of glucosinolate degradation products in fermented meadowfoam (Limnanthes alba) seed meal. J Agric Food Chem 57(5):1821–1826. doi: 10.1021/jf8033732 CrossRefGoogle Scholar
  83. 83.
    Bennett RN, Mellon FA, Foidl N, Pratt JH, Dupont MS, Perkins L, Kroon PA (2003) Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish Tree) and Moringa stenopetala L. J Agric Food Chem 51(12):3546–3553. doi: 10.1021/jf0211480 CrossRefGoogle Scholar
  84. 84.
    Maldini M, Maksoud SA, Natella F, Montoro P, Petretto GL, Foddai M, De Nicola GR, Chessa M, Pintore G (2014) Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry. J Mass Spectrom 49(9):900–910. doi: 10.1002/jms.3437
  85. 85.
    Ronse De Craene LP (2002) Floral development and anatomy of Pentadiplandra (Pentadiplandraceae): a key genus in the identification of floral morphological trends in the core Brassicales. Can J Bot 80(5):443–459. doi: 10.1139/b02-021
  86. 86.
    Hall JC, Iltis HH, Sytsma KJ (2004) Molecular phylogenetics of core brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. Syst Bot 29(3):654–669. doi: 10.1600/0363644041744491
  87. 87.
    De Nicola GR, Nyegue M, Montaut S, Iori R, Menut C, Tatibouët A, Rollin P, Ndoyé C, Zollo P-HA (2012) Profile and quantification of glucosinolates in Pentadiplandra brazzeana Baillon. Phytochemistry 73(1):51–56. doi: 10.1016/j.phytochem.2011.09.006 CrossRefGoogle Scholar
  88. 88.
    Martín-Bravo S, Jiménez-Mejías P (2013) Reseda minoica (Resedaceae), a New species from the Eastern Mediterranean Region. Ann Bot Fenn 50(1–2):55–60. doi: 10.5735/085.050.0108 CrossRefGoogle Scholar
  89. 89.
    Schraudolf H, Bäuerle R (1986) 1N-acetyl-S-indolylmethylglucosinolate in Seedlings of Tovaria pendula Ruiz et Pay. Z Naturforsch C 41(5–6):526–528. doi: 10.1515/znc-1986-5-605
  90. 90.
    MacLeod AJ, Panchasara SD (1983) Volatile aroma components, particularly glucosinolate products, of cooked edible mushroom (Agaricus bisporus) and cooked dried mushroom. Phytochemistry 22(3):705–709. doi: 10.1016/S0031-9422(00)86966-6 CrossRefGoogle Scholar
  91. 91.
    Larsen LM, Olsen O, Sørensen H (1983) Failure to detect glucosinolates in Plantago species. Phytochemistry 22(10):2314–2315. doi: 10.1016/S0031-9422(00)80170-3
  92. 92.
    Bjerg B, Fenwick GR, Spinks A, Sørensen H (1987) Failure to detect glucosinolates in cocoa. Phytochemistry 26(2):567–568. doi: 10.1016/S0031-9422(00)81456-9 CrossRefGoogle Scholar
  93. 93.
    Hanschen FS, Lamy E, Schreiner M, Rohn S (2014) Reactivity and stability of glucosinolates and their breakdown products in foods. Angew Chem Int Ed 53(43):11430–11450. doi: 10.1002/anie.201402639 CrossRefGoogle Scholar
  94. 94.
    Kissen R, Rossiter J, Bones A (2009) The “mustard oil bomb”: not so easy to assemble?! localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8(1):69–86. doi: 10.1007/s11101-008-9109-1 CrossRefGoogle Scholar
  95. 95.
    Jones AME, Winge P, Bones AM, Cole R, Rossiter JT (2002) Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem Mol Biol 32(3):275–284. doi: 10.1016/S0965-1748(01)00088-1 CrossRefGoogle Scholar
  96. 96.
    Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (2001) Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomarkers Prev 10(5):501–508Google Scholar
  97. 97.
    Krul C, Humblot C, Philippe C, Vermeulen M, van Nuenen M, Havenaar R, Rabot S (2002) Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis 23(6):1009–1016. doi: 10.1093/carcin/23.6.1009 CrossRefGoogle Scholar
  98. 98.
    Saha S, Hollands W, Teucher B, Needs PW, Narbad A, Ortori CA, Barrett DA, Rossiter JT, Mithen RF, Kroon PA (2012) Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli. Mol Nutr Food Res 56(12):1906–1916. doi: 10.1002/mnfr.201200225 CrossRefGoogle Scholar
  99. 99.
    Palop ML, Smiths JP, ten Brink B (1995) Degradation of sinigrin by Lactobacillus agilis strain R16. Int J Food Microbiol 26(2):219–229. doi: 10.1016/0168-1605(95)00123-2 CrossRefGoogle Scholar
  100. 100.
    Nugon-Baudon L, Rabot S, Wal J-M, Szylit O (1990) Interactions of the intestinal microflora with glucosinolates in rapeseed meal toxicity: first evidence of an intestinal Lactobacillus possessing a myrosinase-like activity in vivo. J Sci Food Agric 52(4):547–559. doi: 10.1002/jsfa.2740520412
  101. 101.
    Elfoul L, Rabot S, Khelifa N, Quinsac A, Duguay A, Rimbault A (2001) Formation of allyl isothiocyanate from sinigrin in the digestive tract of rats monoassociated with a human colonic strain of Bacteroides thetaiotaomicron. FEMS Microbiol Lett 197(1):99–103. doi: 10.1111/j.1574-6968.2001.tb10589.x CrossRefGoogle Scholar
  102. 102.
    Brabban AD, Edwards C (1994) Isolation of glucosinolate degrading microorganisms and their potential for reducing the glucosinolate content of rapemeal. FEMS Microbiol Lett 119(1–2):83–88. doi:http://dx.doi.org/10.1111/j.1574-6968.1994.tb06871.x
  103. 103.
    Cheng DL, Hashimoto K, Uda Y (2004) In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food Chem Toxicol 42(3):351–357. doi: 10.1016/j.fct.2003.09.008
  104. 104.
    Tani N, Ohtsuru M, Hata T (1974) Isolation of myrosinase producing microorganism. Agric Biol Chem 38(9):1617–1622. doi: 10.1080/00021369.1974.10861387 Google Scholar
  105. 105.
    Tani N, Ohtsuru M, Hata T (1974) Purification and general characteristics of bacterial myrosinase produced by Enterobacter cloacae. Agric Biol Chem 38(9):1623–1630. doi: 10.1080/00021369.1974.10861388 Google Scholar
  106. 106.
    Luang-In V, Narbad A, Nueno-Palop C, Mithen R, Bennett M, Rossiter JT (2014) The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. Mol Nutr Food Res 58(4):875–883. doi: 10.1002/mnfr.201300377 CrossRefGoogle Scholar
  107. 107.
    Luang-In V, Narbad A, Cebeci F, Bennett M, Rossiter J (2015) Identification of proteins possibly involved in glucosinolate metabolism in L. agilis R16 and E. coli VL8. Protein J 34(2):135–146. doi: 10.1007/s10930-015-9607-0 CrossRefGoogle Scholar
  108. 108.
    Mullaney JA, Kelly WJ, McGhie TK, Ansell J, Heyes JA (2013) Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from enterobacteriaceae. J Agric Food Chem 61(12):3039–3046. doi: 10.1021/jf305442j CrossRefGoogle Scholar
  109. 109.
    Combourieu B, Elfoul L, Delort AM, Rabot S (2001) Identification of new derivatives of sinigrin and glucotropaeolin produced by the human digestive microflora using 1H NMR spectroscopy analysis of in vitro incubations. Drug Metab Dispos 29(11):1440–1445Google Scholar
  110. 110.
    Olaimat AN, Sobhi B, Holley RA (2014) Influence of temperature, glucose, and iron on sinigrin degradation by Salmonella and Listeria monocytogenes. J Food Prot 77(12):2133–2138. doi: 10.4315/0362-028X.JFP-14-210 CrossRefGoogle Scholar
  111. 111.
    Blažević I, Radonić A, Mastelić J, Zekić M, Skočibušić M, Maravić A (2010) Glucosinolates, glycosidically bound volatiles and antimicrobial activity of Aurinia sinuata (Brassicaceae). Food Chem 121(4):1020–1028. doi: 10.1016/j.foodchem.2010.01.041 CrossRefGoogle Scholar
  112. 112.
    Blažević I, Radonić A, Mastelić J, Zekić M, Skočibušić M, Maravić A (2010) Hedge mustard (Sisymbrium officinale): chemical diversity of volatiles and their antimicrobial activity. Chem Biodivers 7(8):2023–2034. doi: 10.1002/cbdv.200900234 CrossRefGoogle Scholar
  113. 113.
    Mastelić J, Blažević I, Kosalec I (2010) Chemical composition and antimicrobial activity of volatiles from Degenia velebitica, a European stenoendemic plant of the Brassicaceae family. Chem Biodivers 7(11):2755–2765. doi: 10.1002/cbdv.201000053 CrossRefGoogle Scholar
  114. 114.
    Radonić A, Blažević I, Mastelić J, Zekić M, Skočibušić M, Maravić A (2011) Phytochemical analysis and antimicrobial activity of Cardaria draba (L.) desv. volatiles. Chem Biodivers 8(6):1170–1181. doi: 10.1002/cbdv.201000370 CrossRefGoogle Scholar
  115. 115.
    Dufour V, Stahl M, Baysse C (2015) The antibacterial properties of isothiocyanates. Microbiology 161(2):229–243. doi: 10.1099/mic.0.082362-0 CrossRefGoogle Scholar
  116. 116.
    Haristoy X, Fahey JW, Scholtus I, Lozniewski A (2005) Evaluation of the antimicrobial effects of several isothiocyanates on Helicobacter pylori. Planta Med 71(4):326–330. doi: 10.1055/s-2005-864098 CrossRefGoogle Scholar
  117. 117.
    Fahey JW, Stephenson KK, Wade KL, Talalay P (2013) Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates. Biochem Biophys Res Commun 435(1):1–7. doi: 10.1016/j.bbrc.2013.03.126 CrossRefGoogle Scholar
  118. 118.
    Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18(6):337–347. doi: 10.1016/j.molmed.2012.04.003 CrossRefGoogle Scholar
  119. 119.
    Angelino D, Dosz EB, Sun J, Hoeflinger JL, Van Tassell ML, Chen P, Harnly JM, Miller MJ, Jeffery EH (2015) Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Front Plant Sci 6:1–6. doi: 10.3389/fpls.2015.00831
  120. 120.
    Podhradsky D, Drobnica L, Kristian P (1979) Reactions of cysteine, its derivatives, glutathione coenzyme A, and dihydrolipoic acid with isothiocyanates. Experientia 35(2):154–155. doi: 10.1007/BF01920581 CrossRefGoogle Scholar
  121. 121.
    Steinbrecher A, Rohrmann S, Timofeeva M, Risch A, Jansen E, Linseisen J (2010) Dietary glucosinolate intake, polymorphisms in selected biotransformation enzymes, and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 19(1):135–143. doi: 10.1158/1055-9965.epi-09-0660 CrossRefGoogle Scholar
  122. 122.
    Fofaria NM, Ranjan A, Kim S-H, Srivastava SK (2015) Chapter five – Mechanisms of the anticancer effects of isothiocyanates. In: The enzymes, Mechanism of the anticancer effect of phytochemicals, Bathaie SZ, Fuyuhiko T (eds) Elsevier Inc., Academic press, London, 37:111–137. doi: 10.1016/bs.enz.2015.06.001
  123. 123.
    Valgimigli L, Iori R (2009) Antioxidant and pro-oxidant capacities of ITCs. Environ Mol Mutagen 50(3):222–237. doi: 10.1002/em.20468 CrossRefGoogle Scholar
  124. 124.
    Giacoppo S, Galuppo M, Montaut S, Iori R, Rollin P, Bramanti P, Mazzon E (2015) An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia 106:12–21. doi: 10.1016/j.fitote.2015.08.001 CrossRefGoogle Scholar
  125. 125.
    Steinbrecher A, Linseisen J (2009) Dietary intake of individual glucosinolates in participants of the EPIC-Heidelberg Cohort Study. Ann Nutr Metab 54(2):87–96. doi: 10.1159/000209266 CrossRefGoogle Scholar
  126. 126.
    Clarke JD, Hsu A, Williams DE, Dashwood RH, Stevens JF, Ho E (2011) Metabolism and tissue distribution of sulforaphane in Nrf2 knockout and wild-type mice. Pharm Res 28(12):3171–3179. doi: 10.1007/s11095-011-0500-z CrossRefGoogle Scholar
  127. 127.
    Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernandez-Ruiz J, Cuadrado A (2011) Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal 14(12):2347–2360. doi: 10.1089/ars.2010.3731 CrossRefGoogle Scholar
  128. 128.
    Xiang J, Alesi GN, Zhou N, Keep RF (2012) Protective effects of isothiocyanates on blood-CSF barrier disruption induced by oxidative stress. Am J Physiol Regul Integr Comp Physiol 303(1):R1–R7. doi: 10.1152/ajpregu.00518.2011 CrossRefGoogle Scholar
  129. 129.
    Tarozzi A, Morroni F, Bolondi C, Sita G, Hrelia P, Djemil A, Cantelli-Forti G (2012) Neuroprotective effects of erucin against 6-hydroxydopamine-induced oxidative damage in a dopaminergic-like neuroblastoma cell line. Int J Mol Sci 13(9):10899–10910. doi: 10.3390/ijms130910899 CrossRefGoogle Scholar
  130. 130.
    Tarozzi A, Angeloni C, Malaguti M, Morroni F, Hrelia S, Hrelia P (2013) Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid Med Cell Longev, pp 1–10. doi: 10.1155/2013/415078
  131. 131.
    Burns A, Iliffe S (2009) Alzheimer’s disease. BMJ 338:467–471. doi: 10.1136/bmj.b158 Google Scholar
  132. 132.
    World Health Organization (2016) Fact sheet N°362 - Dementia. Retrieved on May 25th 2016 from http://www.who.int/mediacentre/factsheets/fs362/en/
  133. 133.
    Blazevic I, Burcul F, Ruscic M, Mastelic J (2013) Glucosinolates, volatile constituents, and acetylcholinesterase inhibitory activity of Alyssoides utriculata. Chem Nat Comd 49(2):374–378. doi: 10.1007/s10600-013-0613-1 CrossRefGoogle Scholar
  134. 134.
    Burčul F, Mekinić IG, Đulović A, Kardum I, Brekalo J, Stojanov D, Ruščić M, Nicola GRD, Montaut S, Rollin P, Blažević I (2015) Isothiocyanates as acetylcholinesterase inhibitors and their sources from Croatian wild-growing plants. In: Ukić Š, Bolanča T (eds) 24. Croatian meeting of chemical engineers. Croatian Socieiety of Chemical Engineers and Technologists Croatian Chemical Society, Zagreb, pp 142–143Google Scholar
  135. 135.
    Agneta R, Lelario F, De Maria S, Möllers C, Bufo SA, Rivelli AR (2014) Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry 106:178–187. doi: 10.1016/j.phytochem.2014.06.019 CrossRefGoogle Scholar
  136. 136.
    Radojčić Redovniković I, Peharec P, Krsnik-Rasol M, Delonga K, Brkić K, Vorkapić-Furač J (2008) Glucosinolate profiles, myrosinase and peroxidase activity in horseradish (Armoracia lapathifolia Gilib.) plantlets, tumour and teratoma tissues. Food Technol Biotechnol 46(3):317–321.Google Scholar
  137. 137.
    Ahmed ZF, Rizk AM, Hammouda FM, Seif El-Nasr MM (1972) Glucosinolates of egyptian Capparis species. Phytochemistry 11(1):251–256. doi: 10.1016/S0031-9422(00)89999-9
  138. 138.
    Schuster A, Friedt W (1998) Glucosinolate content and composition as parameters of quality of Camelina seed. Ind Crop Prod 7(2–3):297–302. doi: 10.1016/S0926-6690(97)00061-7
  139. 139.
    Montaut S, Grandbois J, Righetti L, Barillari J, Iori R, Rollin P (2009) Updated glucosinolate profile of Dithyrea wislizenii. J Nat Prod 72(5):889–893. doi: 10.1021/np800738w CrossRefGoogle Scholar
  140. 140.
    Mohn T, Suter K, Hamburger M (2008) Seasonal changes and effect of harvest on glucosinolates in Isatis leaves. Planta Med 74(5):582–587. doi: 10.1055/s-2008-1074504
  141. 141.
    Angelini LG, Tavarini S, Antichi D, Bagatta M, Matteo R, Lazzeri L (2015) Fatty acid and glucosinolate patterns of seed from Isatis indigotica fortune as bioproducts for green chemistry. Ind Crop Prod 75(part B):51–58. doi: 10.1016/j.indcrop.2015.04.010
  142. 142.
    Matthäus B, Angelini LG (2005) Anti-nutritive constituents in oilseed crops from Italy. Ind Crop Prod 21(1):89–99. doi: 10.1016/j.indcrop.2003.12.021 CrossRefGoogle Scholar
  143. 143.
    Yábar E, Pedreschi R, Chirinos R, Campos D (2011) Glucosinolate content and myrosinase activity evolution in three maca (Lepidium meyenii Walp.) ecotypes during preharvest, harvest and postharvest drying. Food Chem 127(4):1576–1583. doi: 10.1016/j.foodchem.2011.02.021 CrossRefGoogle Scholar
  144. 144.
    Li G, Ammermann U, Quirós C (2001) Glucosinolate contents in maca (Lepidium peruvianum Chacón) seeds, sprouts, mature plants and several derived commercial products. Econ Bot 55(2):255–262. doi: 10.1007/BF02864563 CrossRefGoogle Scholar
  145. 145.
    Esparza E, Hadzich A, Kofer W, Mithöfer A, Cosio EG (2015) Bioactive maca (Lepidium meyenii) alkamides are a result of traditional andean postharvest drying practices. Phytochemistry 116:138–148. doi: 10.1016/j.phytochem.2015.02.030 CrossRefGoogle Scholar
  146. 146.
    Asad SA, Young S, West H (2013) Effect of nickel and cadmium on glucosinolate production in Thlaspi caerulescens. Pak J Bot 45(S1):495–500Google Scholar
  147. 147.
    Voelckel C, Mirzaei M, Reichelt M, Luo Z, Pascovici D, Heenan PB, Schmidt S, Janssen B, Haynes PA, Lockhart PJ (2010) Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon. BMC Evol Biol 10 (1):1–15. doi: 10.1186/1471-2148-10-151
  148. 148.
    Rivera-Vega LJ, Krosse S, de Graaf RM, Garvi J, Garvi-Bode RD, van Dam NM (2015) Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water. Front Plant Sci 6 (July). doi: 10.3389/fpls.2015.00532
  149. 149.
    Matthäus B, Özcan M (2002) Glucosinolate composition of young shoots and flower buds of capers (Capparis species) growing wild in Turkey. J Agric Food Chem 50(25):7323–7325. doi: 10.1021/jf020530+
  150. 150.
    Ikeura H, Kobayashi ZF, Hayata Y (2010) Attractant and oviposition stimulant of Crataeva religiosa Forst. to Pierisrapae. Asian J Plant Sci 9(8):492–497. doi: 10.3923/ajps.2010.492.497
  151. 151.
    Tang CS (1973) Localization of benzyl glucosinolate and thioglucosidase in Carica papaya fruit. Phytochemistry 12(4):769–773. doi: 10.1016/0031-9422(73)80676-4 CrossRefGoogle Scholar
  152. 152.
    Nakamura Y, Yoshimoto M, Murata Y, Shimoishi Y, Asai Y, Park EY, Sato K, Nakamura Y (2007) Papaya seed represents a rich source of biologically active isothiocyanate. J Agric Food Chem 55(11):4407–4413. doi: 10.1021/jf070159w CrossRefGoogle Scholar
  153. 153.
    Li Z-Y, Wang Y, Shen W-T, Zhou P (2012) Content determination of benzyl glucosinolate and anti–cancer activity of its hydrolysis product in Carica papaya L. Asian Pac J Trop Med 5(3):231–233. doi: 10.1016/S1995-7645(12)60030-3 CrossRefGoogle Scholar
  154. 154.
    Rossetto MRM, Oliveira do Nascimento JR, Purgatto E, Fabi JP, Lajolo FM, Cordenunsi BR (2008) Benzylglucosinolate, benzylisothiocyanate, and myrosinase activity in papaya fruit during development and ripening. J Agric Food Chem 56(20):9592–9599. doi: 10.1021/jf801934x CrossRefGoogle Scholar
  155. 155.
    Förster N, Ulrichs C, Schreiner M, Müller CT, Mewis I (2015) Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera. Food Chem 166(1):456–464. doi: 10.1016/j.foodchem.2014.06.043
  156. 156.
    Amaglo NK, Bennett RN, Lo Curto RB, Rosa EAS, Lo Turco V, Giuffrida A, Curto AL, Crea F, Timpo GM (2010) Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem 122(4):1047–1054. doi: 10.1016/j.foodchem.2010.03.073 CrossRefGoogle Scholar
  157. 157.
    Kleinwächter M, Schnug E, Selmar D (2008) The glucosinolate-myrosinase system in nasturtium (Tropaeolum majus L.): variability of biochemical parameters and screening for clones feasible for pharmaceutical utilization. J Agric Food Chem 56(23):11165–11170. doi: 10.1021/jf802053n CrossRefGoogle Scholar
  158. 158.
    Ortega OR, Kliebenstein DJ, Arbizu C, Ortega R, Quiros CF (2006) Glucosinolate survey of cultivated and feral mashua (Tropaeolum tuberosum Ruíz & Pavón) in the cuzco region of Peru. Econ Bot 60(3):254–264. doi: 10.1663/0013-0001(2006)60[254:GSOCAF]2.0.CO;2 CrossRefGoogle Scholar
  159. 159.
    Ramallo R, Wathelet JP, Le Boulengé E, Torres E, Marlier M, Ledent JF, Guidi A, Larondelle Y (2004) Glucosinolates in isaño (Tropaeolum tuberosum) tubers: qualitative and quantitative content and changes after maturity. J Sci Food Agric 84(7):701–706. doi: 10.1002/jsfa.1691 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Ivica Blažević
    • 1
    Email author
  • Sabine Montaut
    • 2
  • Franko Burčul
    • 3
  • Patrick Rollin
    • 4
  1. 1.Department of Organic Chemistry, Faculty of Chemistry and TechnologyUniversity of SplitSplitCroatia
  2. 2.Department of Chemistry and Biochemistry, Biomolecular Sciences ProgrammeLaurentian UniversitySudburyCanada
  3. 3.Department of Biochemistry, Faculty of Chemistry and TechnologyUniversity of SplitSplitCroatia
  4. 4.Université d’Orléans et CNRS, ICOAOrléansFrance

Personalised recommendations