Bakar KS, Sahu SK (2015) spTimer: spatio-temporal bayesian modelling using R. J Stat Softw 63:1–32
CrossRef
Google Scholar
Bardossy A, Pegram GGS (2009) Copula based multisite model for daily precipitation simulation. Hydrol Earth Syst Sci 13:2299–2314
CrossRef
Google Scholar
Brus DJ, Heuvelink GBM (2007) Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138:86–95
CrossRef
Google Scholar
Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken
MATH
Google Scholar
De Cesare L, Myers DE, Posa D (2001) Estimating and modeling space-time correlation structures. Stat Probab Lett 51:9–14
MathSciNet
CrossRef
MATH
Google Scholar
De Cesare L, Myers DE, Posa D (2001) Product-sum covariance for space-time modeling: an environmental application. Environmetrics 12:11–23
CrossRef
Google Scholar
Erhardt TM, Czado C, Schepsmeier U (2015) R-vine models for spatial time series with an application to daily mean temperature. Biometrics 71:323–332
MathSciNet
CrossRef
MATH
Google Scholar
Fuentes M, Chen L, Davis JM (2008) A class of nonseparable and nonstationary spatial temporal covariance functions. Environmetrics 19:487–507
MathSciNet
CrossRef
Google Scholar
Gasch CK, Hengl T, Gräler B, Meyer H, Magney TS, Brown DJ (2015) Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D+T: The Cook Agronomy Farm data set. Spat Stat 14:70–90
MathSciNet
CrossRef
Google Scholar
Gething PW, Noor AM, Goodman CA, Gikandi PW, Hay SI, Sharif SK, Atkinson PM, Snow RW (2007) Information for decision making from imperfect national data: tracking major changes in health care use in kenya using geostatistics. BMC Med 5:37
CrossRef
Google Scholar
Gneiting T (2002) Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 97:590–600
MathSciNet
CrossRef
MATH
Google Scholar
Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York
Google Scholar
Gräler B (2014) Modelling skewed spatial random fields through the spatial vine copula. Spat Stat 10:87–102
MathSciNet
CrossRef
Google Scholar
Gräler B, Pebesma E, Heuvelink GBM (2016, in review) Spatio-temporal interpolation using gstat. R Journal
Google Scholar
Heuvelink GBM, Griffith DA (2010) Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany. Geogr Anal 42:161–179
CrossRef
Google Scholar
Heuvelink GBM, van Egmond FM (2010) Space-time geostatistics for precision agriculture: a case study of NDVI mappping for a dutch potato field. In: Oliver MA (ed) Geostatistical applications for precision agriculture. Springer, Dordrecht/New York, pp 117–137
CrossRef
Google Scholar
Johannesson G, Cressie N, Huang H-C (2007) Dynamic multi-resolution spatial models. Environ Ecol Stat 14:5–25
MathSciNet
CrossRef
Google Scholar
Jost G, Heuvelink GBM, Papritz A (2005) Analysing the space-time distribution of soil water storage of a forest ecosystem using spatio-temporal kriging. Geoderma 128:258–273
CrossRef
Google Scholar
Kilibarda M, Hengl T, Heuvelink GBM, Gräler B, Pebesma E, Perčec Tadić M, Bajat B (2014) Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J Geophys Res Atmos 119:2294–2313
Google Scholar
Kyriakidis PC, Journel AG (1999) Geostatistical space-time models: a review. Math Geol 31:651–684
MathSciNet
CrossRef
MATH
Google Scholar
Lindgren F, Rue H, Lindstrőm J (2011) An explicit link between gaussian random fields and gaussian markov random fields: the stochastic partial differential equation approach. J R Stat Soc B 73:423–498
MathSciNet
CrossRef
MATH
Google Scholar
Mugglin AS, Cressie N, Gemmell I (2002) Hierarchical statistical modelling of influenza epidemic dynamics in space and time. Stat Med 21:2703–2721
CrossRef
Google Scholar
Pebesma E (2012) spacetime: spatio-temporal data in R. J Stat Softw 51:1–30
CrossRef
Google Scholar
Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691
CrossRef
Google Scholar
Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic space–time covariance functions. Stoch Environ Res Risk Assess 21:113–122
MathSciNet
CrossRef
Google Scholar
R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Google Scholar
Schlather M, Malinowski A, Menck PJ, Oesting M, Strokorb K (2015) Analysis, simulation and prediction of multivariate random fields with package randomfields. J Stat Softw 63:1–25
CrossRef
Google Scholar
Sigrist F, Künsch HR, Stahel WA (2015) Spate: an R package for spatio-temporal modeling with a stochastic advection-diffusion process. J Stat Softw 63:1–23
CrossRef
Google Scholar
Snepvangers JJJC, Heuvelink GBM, Huisman JA (2003) Soil water content interpolation using spatio-temporal kriging with external drift. Geoderma 112:253–271
CrossRef
Google Scholar
Stein A, Kocks CG, Zadoks JC, Frinking HD, Ruissen MA, Myers DE (1994) A geostatistical analysis of the spatio-temporal development of downy mildew epidemics in cabbage. Ecol Epidemiol 84:1227–1239
Google Scholar
Stein ML (2005) Space-time covariance functions. J Am Stat Assoc 100:310–321
MathSciNet
CrossRef
MATH
Google Scholar
Torabi M Spatiotemporal modeling of odds of disease. Environmetrics 25:341–350 (2014)
MathSciNet
CrossRef
Google Scholar