Skip to main content

Space-Time Geostatistics

Definition

Space-time geostatistics is concerned with the statistical modeling of environmental variables that vary in space as well as in time. It is an extension of conventional geostatistics, which only considers spatial variation. Common geostatistical concepts, such as the variogram, kriging, stochastic simulation, and sampling design optimization, have a natural extension in the space-time domain, although extra effort is required to model the joint variation in space and time effectively and realistically. The space-time variogram will have spatial and temporal components which may be very different because variation in space is not the same as variation in time. Space-time kriging takes these differences into account and yields optimal predictions at any point in the space-time domain of interest. The interpolation results can be displayed as a series or animations of spatial maps over time or as time series of predictions at as many spatial points as desired.

Space-time...

Keywords

  • Spatiotemporal Data
  • Spatiotemporal Covariance
  • Kriging With External Drift
  • Sample Variogram
  • Variogram Estimation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Space-Time Geostatistics, Fig. 1
Space-Time Geostatistics, Fig. 2
Space-Time Geostatistics, Fig. 3

Notes

  1. 1.

    The data are available from AirBase - The European air quality database.

References

  • Bakar KS, Sahu SK (2015) spTimer: spatio-temporal bayesian modelling using R. J Stat Softw 63:1–32

    CrossRef  Google Scholar 

  • Bardossy A, Pegram GGS (2009) Copula based multisite model for daily precipitation simulation. Hydrol Earth Syst Sci 13:2299–2314

    CrossRef  Google Scholar 

  • Brus DJ, Heuvelink GBM (2007) Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138:86–95

    CrossRef  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken

    MATH  Google Scholar 

  • De Cesare L, Myers DE, Posa D (2001) Estimating and modeling space-time correlation structures. Stat Probab Lett 51:9–14

    MathSciNet  CrossRef  MATH  Google Scholar 

  • De Cesare L, Myers DE, Posa D (2001) Product-sum covariance for space-time modeling: an environmental application. Environmetrics 12:11–23

    CrossRef  Google Scholar 

  • Erhardt TM, Czado C, Schepsmeier U (2015) R-vine models for spatial time series with an application to daily mean temperature. Biometrics 71:323–332

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Fuentes M, Chen L, Davis JM (2008) A class of nonseparable and nonstationary spatial temporal covariance functions. Environmetrics 19:487–507

    MathSciNet  CrossRef  Google Scholar 

  • Gasch CK, Hengl T, Gräler B, Meyer H, Magney TS, Brown DJ (2015) Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D+T: The Cook Agronomy Farm data set. Spat Stat 14:70–90

    MathSciNet  CrossRef  Google Scholar 

  • Gething PW, Noor AM, Goodman CA, Gikandi PW, Hay SI, Sharif SK, Atkinson PM, Snow RW (2007) Information for decision making from imperfect national data: tracking major changes in health care use in kenya using geostatistics. BMC Med 5:37

    CrossRef  Google Scholar 

  • Gneiting T (2002) Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 97:590–600

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Gräler B (2014) Modelling skewed spatial random fields through the spatial vine copula. Spat Stat 10:87–102

    MathSciNet  CrossRef  Google Scholar 

  • Gräler B, Pebesma E, Heuvelink GBM (2016, in review) Spatio-temporal interpolation using gstat. R Journal

    Google Scholar 

  • Heuvelink GBM, Griffith DA (2010) Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany. Geogr Anal 42:161–179

    CrossRef  Google Scholar 

  • Heuvelink GBM, van Egmond FM (2010) Space-time geostatistics for precision agriculture: a case study of NDVI mappping for a dutch potato field. In: Oliver MA (ed) Geostatistical applications for precision agriculture. Springer, Dordrecht/New York, pp 117–137

    CrossRef  Google Scholar 

  • Johannesson G, Cressie N, Huang H-C (2007) Dynamic multi-resolution spatial models. Environ Ecol Stat 14:5–25

    MathSciNet  CrossRef  Google Scholar 

  • Jost G, Heuvelink GBM, Papritz A (2005) Analysing the space-time distribution of soil water storage of a forest ecosystem using spatio-temporal kriging. Geoderma 128:258–273

    CrossRef  Google Scholar 

  • Kilibarda M, Hengl T, Heuvelink GBM, Gräler B, Pebesma E, Perčec Tadić M, Bajat B (2014) Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J Geophys Res Atmos 119:2294–2313

    Google Scholar 

  • Kyriakidis PC, Journel AG (1999) Geostatistical space-time models: a review. Math Geol 31:651–684

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Lindgren F, Rue H, Lindstrőm J (2011) An explicit link between gaussian random fields and gaussian markov random fields: the stochastic partial differential equation approach. J R Stat Soc B 73:423–498

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Mugglin AS, Cressie N, Gemmell I (2002) Hierarchical statistical modelling of influenza epidemic dynamics in space and time. Stat Med 21:2703–2721

    CrossRef  Google Scholar 

  • Pebesma E (2012) spacetime: spatio-temporal data in R. J Stat Softw 51:1–30

    CrossRef  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691

    CrossRef  Google Scholar 

  • Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic space–time covariance functions. Stoch Environ Res Risk Assess 21:113–122

    MathSciNet  CrossRef  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Schlather M, Malinowski A, Menck PJ, Oesting M, Strokorb K (2015) Analysis, simulation and prediction of multivariate random fields with package randomfields. J Stat Softw 63:1–25

    CrossRef  Google Scholar 

  • Sigrist F, Künsch HR, Stahel WA (2015) Spate: an R package for spatio-temporal modeling with a stochastic advection-diffusion process. J Stat Softw 63:1–23

    CrossRef  Google Scholar 

  • Snepvangers JJJC, Heuvelink GBM, Huisman JA (2003) Soil water content interpolation using spatio-temporal kriging with external drift. Geoderma 112:253–271

    CrossRef  Google Scholar 

  • Stein A, Kocks CG, Zadoks JC, Frinking HD, Ruissen MA, Myers DE (1994) A geostatistical analysis of the spatio-temporal development of downy mildew epidemics in cabbage. Ecol Epidemiol 84:1227–1239

    Google Scholar 

  • Stein ML (2005) Space-time covariance functions. J Am Stat Assoc 100:310–321

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Torabi M Spatiotemporal modeling of odds of disease. Environmetrics 25:341–350 (2014)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard B. M. Heuvelink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Heuvelink, G.B.M., Pebesma, E., Gräler, B. (2016). Space-Time Geostatistics. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-23519-6_1647-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23519-6_1647-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-23519-6

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering