Advertisement

Micropolar Crystal Plasticity

  • J. R. Mayeur
  • D. L. McDowell
  • S. Forest
Living reference work entry

Abstract

This chapter considers advances over the past 15 years achieved by the authors and coworkers on generalized crystal plasticity to address size and configuration effects in dislocation plasticity at the micron scale. The specific approaches addressed here focus on micropolar and micromorphic theories rather than adopting strain gradient theory as the starting point, as motivated by the pioneering ideas of Eringen (Eringen and Suhubi 1964; Eringen and Claus Jr 1969; Eringen 1999). It is demonstrated with examples that for isotropic elasticity and specific sets of slip systems, a dislocation-based formulation of micropolar or micromorphic type provides results comparable to discrete dislocation dynamics and has much in common with the structure of Gurtin’s slip gradient theory (Gurtin 2002; Gurtin et al. 2007).

Keywords

Micropolar Strain gradient GNDs Crystal plasticity Finite elements 

Notes

Acknowledgments

JRM acknowledges the support of Los Alamos National Laboratory, operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25936. This work benefited from the support of the Laboratory Directed Research and Development Early Career award 20150696ECR. DLM would like to acknowledge the support of the Carter N. Paden, Jr. Distinguished Chair in Metals Processing.

References

  1. Abaqus/Standard Version 6.7.1. Dassault Systèmes Simulia Corp. (2007)Google Scholar
  2. E. Aifantis, On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)CrossRefGoogle Scholar
  3. A. Arsenlis, D.M. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 47, 1597–1611 (1999)CrossRefGoogle Scholar
  4. M.F. Ashby, Deformation of plastically non-homogeneous materials. Philos. Mag. 21(170), 399–424 (1970)CrossRefGoogle Scholar
  5. E. Bittencourt, A. Needleman, M.E. Gurtin, E. van der Giessen, A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J. Mech. Phys. Solids 51, 281–310 (2003)MathSciNetCrossRefGoogle Scholar
  6. P. Cermelli, M. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539–1568 (2001)CrossRefGoogle Scholar
  7. J. Clayton, D. Bamman, D. McDowell, A geometric framework for the kinematics of crystals with defects. Philos. Mag. 85, 3983–4010 (2005)CrossRefGoogle Scholar
  8. H.H.M. Cleveringa, E. van der Giessen, A. Needleman, Comparison of discrete dislocation and continuum plasticity predictions for a composite material. Acta Mater. 45, 3163–3179 (1997)CrossRefGoogle Scholar
  9. H.H.M. Cleveringa, E. van der Giessen, A. Needleman, A discrete dislocation analysis of residual stresses in a composite material. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech Prop 79, 893–920 (1999)zbMATHGoogle Scholar
  10. B.D. Coleman, M.E. Gurtin, Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967)CrossRefGoogle Scholar
  11. N.M. Cordero, A. Gaubert, S. Forest, E.P. Busso, F. Gallerneau, S. Kruch, Size effects in generalised continuum crystal plasticity for two–phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010)MathSciNetCrossRefGoogle Scholar
  12. A. Eringen, Microcontinuum Field Theories I: Foundations and Solids (Springer, New York, 1999)CrossRefGoogle Scholar
  13. A.C. Eringen, W.D. Claus Jr., A micromorphic approach to dislocation theory and its relation to several existing theories. Technical Report TR-6, Princeton University Department of Aerospace and Mechanical Sciences (1969)Google Scholar
  14. A.C. Eringen, E.S. Suhubi, Nonlinear theory of simple micro-elastic solids-I. Int. J. Eng. Sci. 2, 189–203 (1964)MathSciNetCrossRefGoogle Scholar
  15. L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 52, 2379–2401 (2004)CrossRefGoogle Scholar
  16. S. Forest, Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. Philos. Mag. 88, 3549–3563 (2008)CrossRefGoogle Scholar
  17. S. Forest, Generalized continuum modelling of crystal plasticity, in Generalized Continua and Dislocation Theory (Springer, Vienna 2012), pp. 181–287CrossRefGoogle Scholar
  18. S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)CrossRefGoogle Scholar
  19. S. Forest, G. Cailletaud, R.W. Sievert, A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch. Mech. 49, 705–736 (1997)MathSciNetzbMATHGoogle Scholar
  20. S. Forest, F. Barbe, G. Cailletaud, Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct. 37(46), 7105–7126 (2000)MathSciNetCrossRefGoogle Scholar
  21. P. Germain, The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)CrossRefGoogle Scholar
  22. W. Günther, Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschw. Wiss. Ges. 10, 195–213 (1958)zbMATHGoogle Scholar
  23. M.E. Gurtin, A gradient theory of single–crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)MathSciNetCrossRefGoogle Scholar
  24. M.E. Gurtin, L. Anand, S.P. Lele, Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids 55, 1853–1878 (2007)MathSciNetCrossRefGoogle Scholar
  25. E. Kröner, On the physical reality of torque stresses in continuum mechanics. Int. J. Eng. Sci. 1, 261–278 (1963)CrossRefGoogle Scholar
  26. E. Kröner, Initial studies of a plasticity theory based upon statistical mechanics, in Inelastic Behaviour of Solids, ed. by M. Kanninen, W. Adler, A. Rosenfield, R. Jaffee (McGraw-Hill, New York 1969), pp. 137–147Google Scholar
  27. M. Kuroda, V. Tvergaard, A finite deformation theory of higher-order gradient crystal plasticity. J. Mech. Phys. Solids 56(8), 2573–2584 (2008)MathSciNetCrossRefGoogle Scholar
  28. S. Limkumnerd, E. van der Giessen, Study of size effects in thin films by means of a crystal plasticity theory based on DiFT. J. Mech. Phys. Solids 56, 3304–3314 (2008)CrossRefGoogle Scholar
  29. J.R. Mayeur, Generalized continuum modeling of scale-dependent crystalline plasticity. Ph.D. thesis, Georgia Institute of Technology, 2010Google Scholar
  30. J.R. Mayeur, D.L. McDowell, Bending of single crystal thin films modeled with micropolar crystal plasticity. Int. J. Eng. Sci. 49, 1357–1366 (2011)CrossRefGoogle Scholar
  31. J.R. Mayeur, D.L. McDowell, An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear. J. Mech. Phys. Solids 61, 1935–1954 (2013)MathSciNetCrossRefGoogle Scholar
  32. J.R. Mayeur, D.L. McDowell, A comparison of Gurtin type and micropolar theories of generalized single crystal plasticity. Int. J. Plast. 57, 29–51 (2014)CrossRefGoogle Scholar
  33. J.R. Mayeur, D.L. McDowell, Micropolar crystal plasticity simulation of particle strengthening. Model. Simul. Mater. Sci. Eng. 23, 065007 (2015)CrossRefGoogle Scholar
  34. J.R. Mayeur, D.L. McDowell, D.J. Bammann, Dislocation-based micropolar single crystal plasticity: comparison of multi- and single criterion theories. J. Mech. Phys. Solids 59, 398–422 (2011)MathSciNetCrossRefGoogle Scholar
  35. H. Mecking, U.F. Kocks, Kinetics of flow and strain-hardening. Acta Metall. 29, 1865–1875 (1981)CrossRefGoogle Scholar
  36. J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)CrossRefGoogle Scholar
  37. B.D. Reddy, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity. Contin. Mech. Thermodyn. 23, 551–572 (2011)MathSciNetCrossRefGoogle Scholar
  38. H. Schäfer, Eine Feldtheorie der Versetzungen im Cosserat-Kontinuum. Z. Angew. Math. Phys. 20, 891–899 (1969)CrossRefGoogle Scholar
  39. J.Y. Shu, N.A. Fleck, E. van der Giessen, A. Needleman, Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity. J. Mech. Phys. Solids 49, 1361–1395 (2001)CrossRefGoogle Scholar
  40. R. Sievert, S. Forest, R. Trostel, Finite deformation Cosserat-type modelling of dissipative solids and its application to crystal plasticity. J. Phys. IV 8, 357–364 (1998)Google Scholar
  41. C. Teodosiu, F. Sidoroff, A theory of finite elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 14, 165–176 (1976)CrossRefGoogle Scholar
  42. S. Yefimov, E. van der Giessen, Multiple slip in a strain-gradient plasticity model motivated by a statistical-mechanics description of dislocations. Int. J. Solids Struct. 42, 3375–3394 (2005a)CrossRefGoogle Scholar
  43. S. Yefimov, E. van der Giessen, Size effects in single crystal thin films: nonlocal crystal plasticity simulations. Eur. J. Mech. A Solids 24, 183–193 (2005b)CrossRefGoogle Scholar
  44. S. Yefimov, I. Groma, E. van der Giessen, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52, 279–300 (2004a)MathSciNetCrossRefGoogle Scholar
  45. S. Yefimov, E. van der Giessen, I. Groma, Bending of a single crystal: discrete dislocation and nonlocal crystal plasticity simulations. Model. Simul. Mater. Sci. Eng. 12, 1069 (2004b)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Woodruff School of Mechanical Engineering, School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Centre des Matériaux UMR 7633Mines ParisTech CNRSEvryFrance

Personalised recommendations