Skip to main content

Strain Gradient Crystal Plasticity: Thermodynamics and Implementation

  • Living reference work entry
  • First Online:

Abstract

This chapter studies the thermodynamical consistency and the finite element implementation aspects of a rate-dependent nonlocal (strain gradient) crystal plasticity model, which is used to address the modeling of the size-dependent behavior of polycrystalline metallic materials. The possibilities and required updates for the simulation of dislocation microstructure evolution, grain boundary-dislocation interaction mechanisms, and localization leading to necking and fracture phenomena are shortly discussed as well. The development of the model is conducted in terms of the displacement and the plastic slip, where the coupled fields are updated incrementally through finite element method. Numerical examples illustrate the size effect predictions in polycrystalline materials through Voronoi tessellation.

This is a preview of subscription content, log in via an institution.

References

  • A. Acharya, J.L. Bassani, Lattice incompatibility and a gradient theory of crystal plasticity. J. Mech. Phys. Solids 48, 1565–1595 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • E.C. Aifantis, On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)

    Article  Google Scholar 

  • E.C. Aifantis, Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)

    Article  Google Scholar 

  • K. Aifantis, J. Senger, D. Weygand, M. Zaiser, Discrete dislocation dynamics simulation and continuum modeling of plastic boundary layers in tricrystal micropillars. IOP Conf. Ser. Mater. Sci. Eng. 3, 012025 (2009)

    Article  Google Scholar 

  • A. Arsenlis, D.M. Parks, R. Becker, V.V. Bulatov, On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals. J. Mech. Phys. Solids 52, 1213–1246 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • M.F. Ashby, The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)

    Article  Google Scholar 

  • ASTM, Annual Book of ASTM Standards (ASTM International, West Conshohocken, 2009)

    Google Scholar 

  • F. Aurenhammer, Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  • J.L. Bassani, Incompatibility and a simple gradient theory. J. Mech. Phys. Solids 49, 1983–1996 (2001)

    Article  MATH  Google Scholar 

  • E. Bayerschen, A.T. McBride, B.D. Reddy, T. Böhlke, Review on slip transmission criteria in experiments and crystal plasticity models. J. Mater. Sci. 51(5), 2243–2258 (2016)

    Article  Google Scholar 

  • C.J. Bayley, W.A.M. Brekelmans, M.G.D. Geers, A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids Struct. 43, 7268–7286 (2006)

    Article  MATH  Google Scholar 

  • P. van Beers, V. Kouznetsova, M. Geers, Defect redistribution within a continuum grain boundary plasticity model. J. Mech. Phys. Solids 83, 243–262 (2015a)

    Article  MathSciNet  Google Scholar 

  • P. van Beers, V. Kouznetsova, M. Geers, Grain boundary interfacial plasticity with incorporation of internal structure and energy. Mech. Mater. 90, 69–82 (2015b). Proceedings of the IUTAM Symposium on Micromechanics of Defects in Solids

    Google Scholar 

  • U. Borg, A strain gradient crystal plasticity analysis of grain size effects in polycrystals. Eur. J. Mech. A-Solid. 26, 313–324 (2007)

    Article  MATH  Google Scholar 

  • S.H. Chen, T.C. Wang, A new hardening law for strain gradient plasticity. Acta Mater. 48, 3997–4005 (2000)

    Article  Google Scholar 

  • A. Di Schino, J. Kenny, Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel. Mater. Lett. 57(21), 3182–3185 (2003)

    Article  Google Scholar 

  • F.P.E. Dunne, D. Rugg, A. Walker, Lengthscale-dependent, elastically anisotropic, physically-based HCP crystal plasticity: application to cold-dwell fatigue in Ti alloys. Int. J. Plast. 23, 1061–1083 (2007)

    Article  MATH  Google Scholar 

  • L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 52, 2379–2401 (2004)

    Article  MATH  Google Scholar 

  • X. Feaugas, H. Haddou, Grain-size effects on tensile behavior of nickel and AISI 316l stainless steel. Metall. Mater. Trans. A 34A, 2329–2340 (2003)

    Article  Google Scholar 

  • N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 184–251 (1997)

    MATH  Google Scholar 

  • N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  MATH  Google Scholar 

  • N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  • N.A. Fleck, J.W. Hutchinson, J.R. Willis, Strain gradient plasticity under non-proportional loading. Proc. R. Soc. A 470, 20140267 (2014)

    Article  Google Scholar 

  • M.G.D. Geers, W.A.M. Brekelmans, C.J. Bayley, Second-order crystal plasticity: internal stress effects and cyclic loading. Modell. Simul. Mater. Sci. Eng. 15, 133–145 (2007)

    Article  Google Scholar 

  • D. Gottschalk, A. McBride, B. Reddy, A. Javili, P. Wriggers, C. Hirschberger, Computational and theoretical aspects of a grain-boundary model that accounts for grain misorientation and grain-boundary orientation. Comput. Mater. Sci. 111, 443–459 (2016)

    Article  Google Scholar 

  • P. Gudmundson, A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin, A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. Int. J. Plast. 24, 702–725 (2008)

    Article  MATH  Google Scholar 

  • M.E. Gurtin, L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • C.S. Han, H. Gao, Y. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity – I. Theory. J. Mech. Phys. Solids 53, 1188–1203 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  • C.S. Han, H. Gao, Y. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity – II. Analysis. J. Mech. Phys. Solids 53, 1204–1222 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  • M.A. Haque, M.T.A. Saif, Strain gradient effect in nanoscale thin films. Acta Mater. 51, 3053–3061 (2003)

    Article  Google Scholar 

  • Y. Huang, S. Qu, K.C. Hwang, M. Li, H. Gao, A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20, 753–782 (2004)

    Article  MATH  Google Scholar 

  • J.W. Hutchinson, Generalizing j2 flow theory: fundamental issues in strain gradient plasticity. Acta Mech. Sinica 28, 1078–1086 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • B. Klusemann, T. Yalçinkaya, Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex helmholtz energy. Int. J. Plast. 48, 168–188 (2013)

    Article  Google Scholar 

  • B. Klusemann, T. Yalçinkaya, M.G.D. Geers, B. Svendsen, Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Comput. Mater. Sci. 80, 51–60 (2013)

    Article  Google Scholar 

  • M. Kuroda, V. Tvergaard, On the formulations of higher-order strain gradient crystal plasticity models. J. Mech. Phys. Solids 56, 1591–1608 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Lancioni, T. Yalçinkaya, A. Cocks, Energy-based non-local plasticity models for deformation patterning, localization and fracture. Proc. R. Soc. A 471: 20150275 (2015a)

    Article  Google Scholar 

  • G. Lancioni, G. Zitti, T. Yalcinkaya, Rate-independent deformation patterning in crystal plasticity. Key Eng. Mater. 651–653, 944–949 (2015b)

    Article  Google Scholar 

  • V. Levkovitch, B. Svendsen, On the large-deformation- and continuum-based formulation of models for extended crystal plasticity. Int. J. Solids Struct. 43, 7246–7267 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • L. Liang, F.P.E. Dunne, GND accumulation in bi-crystal deformation: crystal plasticity analysis and comparison with experiments. Int. J. Mech. Sci. 51, 326–333 (2009)

    Article  MATH  Google Scholar 

  • A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater. 54, 2169–2179 (2006)

    Article  Google Scholar 

  • H.B. Mühlhaus, E.C. Aifantis, A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    Article  MATH  Google Scholar 

  • T. Ohashi, Crystal plasticity analysis of dislocation emission from micro voids. Int. J. Plast. 21, 2071–2088 (2005)

    Article  MATH  Google Scholar 

  • I. Özdemir, T. Yalçinkaya, Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework. Comput. Mech. 54, 255–268 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Panteghini, L. Bardella, On the finite element implementation of higher-order gradient plasticity, with focus on theories based on plastic distortion incompatibility. Comput. Methods Appl. Mech. Eng. (2016). http://dx.doi.org/10.1016/j.cma.2016.07.045

    Google Scholar 

  • P. Perzyna, Temperature and rate dependent theory of plasticity of crystalline solids. Revue Phys. Appl. 23, 445–459 (1988)

    Article  Google Scholar 

  • B.D. Reddy, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 1: polycrystalline plasticity. Contin. Mech. Thermodyn. 23, 527–549 (2011a)

    Google Scholar 

  • B.D. Reddy, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity. Contin. Mech. Thermodyn. 23, 551–572 (2011b)

    Google Scholar 

  • J.R. Rice, Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  MATH  Google Scholar 

  • J.Y. Shu, N.A. Fleck, Strain gradient crystal plasticity: size-dependent deformation of bicrystals. J. Mech. Phys. Solids 47, 297–324 (1999)

    Article  MATH  Google Scholar 

  • M. Silhavy, The Mechanics and Thermodynamics of Continuous Media, 1st edn. (Springer, Berlin, 1997)

    Book  MATH  Google Scholar 

  • J.S. Stölken, A.G. Evans, A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  • B. Svendsen, On thermodynamic- and variational-based formulations of models for inelastic continua with internal length scales. Comput. Methods Appl. Mech. Eng. 193, 5429–5452 (2004)

    Article  MATH  Google Scholar 

  • B. Svendsen, S. Bargmann, On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58, 1253–1271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • J.G. Swadenera, E.P. Georgea, G.M. Pharra, The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)

    Article  Google Scholar 

  • G.I. Taylor, Plastic strain in metals. J. Inst. Met. 62, 307–325 (1938)

    Google Scholar 

  • C.A. Volkert, E.T. Lilleodden, Size effects in the deformation of sub-micron au columns. Philos. Mag. 86, 5567–5579 (2006)

    Article  Google Scholar 

  • G. Voyiadjis, R. Abu Al-Rub, Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42(14), 3998–4029 (2005)

    Article  MATH  Google Scholar 

  • J. Wang, J. Lian, J.R. Greer, W.D. Nix, K.S. Kim, Size effect in contact compression of nano- and microscale pyramid structures. Acta Mater. 54, 3973–3982 (2006)

    Article  Google Scholar 

  • T. Yalcinkaya, Microstructure evolution in crystal plasticity: strain path effects and dislocation slip patterning. PhD Thesis, Eindhoven University of Technology, 2011

    Google Scholar 

  • T. Yalçinkaya, Multi-scale modeling of microstructure evolution induced anisotropy in metals. Key Eng. Mater. 554–557, 2388–2399 (2013)

    Article  Google Scholar 

  • T. Yalcinkaya, G. Lancioni, Energy-based modeling of localization and necking in plasticity. Proc. Mater. Sci. 3, 1618–1625 (2014)

    Article  Google Scholar 

  • T. Yalcinkaya, W.A.M. Brekelmans, M.G.D. Geers, Deformation patterning driven by rate dependent nonconvex strain gradient plasticity. J. Mech. Phys. Solids 59, 1–17 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Yalcinkaya, W.A.M. Brekelmans, M.G.D. Geers, Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. Int. J. Solids Struct. 49, 2625–2636 (2012)

    Article  MATH  Google Scholar 

  • S. Yefimov, I. Groma, E. van der Giessena, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52, 279–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Tuncay Yalçinkaya gratefully acknowledges the support by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under the 3001 Programme (Grant No. 215M381).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuncay Yalçinkaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Yalçinkaya, T. (2016). Strain Gradient Crystal Plasticity: Thermodynamics and Implementation. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-22977-5_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22977-5_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22977-5

  • Online ISBN: 978-3-319-22977-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics