Advertisement

Cosserat Approach to Localization in Geomaterials

  • Ioannis Stefanou
  • Jean Sulem
  • Hadrien Rattez
Living reference work entry

Abstract

A renewed interest toward Cosserat or micropolar continuum has driven researchers to the development of specific models for upscaling discrete media such as masonry, granular assemblies, fault gouges, porous media, and biomaterials. Cosserat continuum is a special case of what is called micromorphic, generalized or higher-order continua. Due to the presence of internal lengths in its formulation, Cosserat continuum is quite attractive for addressing problems involving strain localization. It enables modeling the shear band thickness evolution, tracking the postlocalization regime, and correctly dissipating the energy when using numerical schemes. In this chapter, we summarize the fundamental governing equations of a Cosserat continuum under multiphysical couplings. Several examples of the numerical advantages of Cosserat continuum are also presented regarding softening behavior, strain localization, finite element formulation, reduced integration, and hourglass control. The classically used constitutive models in Cosserat elastoplasticity are presented and some common approaches for upscaling and homogenization in Cosserat continuum are discussed. Finally, a simple illustrative example of the adiabatic shearing of a rock layer under constant shear stress is presented in order to juxtapose a rate-independent Cosserat with a rate-dependent Cauchy formulation as far as it concerns strain localization.

Keywords

Cosserat continuum Plasticity Bifurcation theory Multiphysical couplings Strain localization Shear locking Upscaling Faults 

References

  1. W.B. Anderson, R.S. Lakes, Size effects due to Cosserat elasticity and surface damage iin closed-cell polymethacrylimide foam. J. Mater. Sci. 29, 3–9 (1994)CrossRefGoogle Scholar
  2. A. Bacigalupo, L. Gambarotta, Computational two-scale homogenization of periodic masonry: characteristic lengths and dispersive waves. Comput. Methods Appl. Mech. Eng. 213–216, 16–28 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. A. Bacigalupo, L. Gambarotta, Multi-scale modelling of periodic masonry: characteristic lengths and dispersive waves, in AIMETA 2011: 20th Conference of the Italian Association of Theoretical and Applied Mechanics. University of Bologna. ISBN 978-88-906340-0-0 (2011)Google Scholar
  4. N. Bakhvalov, G. Panasenko, Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials (Springer, Berlin, 1989)MATHGoogle Scholar
  5. D. Baraldi, S. Bullo, A. Cecchi, Continuous and discrete strategies for the modal analysis of regular masonry. Int. J. Solids Struct. 84, 82–98 (2016)CrossRefGoogle Scholar
  6. J.P. Bardet, I. Vardoulakis, The asymmetry of stress in granular media. Int. J. Solids Struct. 38(2), 353–367 (2001)CrossRefMATHGoogle Scholar
  7. J.P. Bardet, I. Vardoulakis, Reply to discussion by Dr. Katalin Bagi. Int. J. Solids Struct. 40, 7683–7683 (2003)Google Scholar
  8. D. Besdo, Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums. Acta Mech. 20, 105–131 (1974)MathSciNetCrossRefMATHGoogle Scholar
  9. M.L. Blanpied, D.A. Lockner, J.D. Byerlee, Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. 100(B7), 13045 (1995)CrossRefGoogle Scholar
  10. N. Brantut, J. Sulem, A. Schubnel, Effect of dehydration reactions on earthquake nucleation: stable sliding, slow transients, and unstable slip. J. Geophys. Res. Solid Earth 116, 1–16 (2011) July 2010Google Scholar
  11. N. Brantut, I. Stefanou, J. Sulem, Dehydration-induced instabilities at intermediate depths in subduction zones. J. Geophys. Res. Solid Earth 122(8), 6087–6107 (2017)Google Scholar
  12. P. de Buhan, B. Sudret, Micropolar multiphase model for materials reinforced by linear inclusions. Eur. J. Mech. A/Solids 19(4), 669–687 (2000)CrossRefMATHGoogle Scholar
  13. N. Charalambakis, Homogenization techniques and micromechanics. A survey and perspectives. Appl. Mech. Rev. 63(3), 30803 (2010)CrossRefGoogle Scholar
  14. F.M. Chester, N.G. Higgs, Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions. J. Geophys. Res. 97(B2), 1859 (1992)CrossRefGoogle Scholar
  15. O. Coussy, Poromechanics (Wiley, West Sussex, 2004)Google Scholar
  16. R. de Borst, Possibilities and limitations of finite elements for limit analysis. Géotechnique (2), 199–210 (1984)Google Scholar
  17. R. de Borst, Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8(4), 317–332 (1991)CrossRefGoogle Scholar
  18. R. de Borst, L. J. Sluys, Localisation in a Cosserat continuum under static and dynamic loading conditions. Comput. Methods Appl. Mech. Eng. 90(1–3), 805–827 (1991)Google Scholar
  19. R. de Borst, L.J. Sluys, H.B. Mühlhaus, J. Pamin, Fundamental issues in finite element analyses of localization of deformation. Eng. Comput. 10(2), 99–121 (1993)Google Scholar
  20. A.-C. Eringen, Microcontinuum Field Thoeries (Springer Verlag, New York, 1999)CrossRefMATHGoogle Scholar
  21. S. Forest, K. Sab, Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 25(4), 449–454 (1998)MathSciNetCrossRefMATHGoogle Scholar
  22. S. Forest, R. Dendievel, G.R. Canova, Estimating the overall properties of heterogeneous Cosserat materials. Model. Simul. Mater. Sci. Eng. 7(5), 829–840 (1999)CrossRefGoogle Scholar
  23. S. Forest, F. Pradel, K. Sab, Asymptotic analysis of heterogeneous Cosserat media. Int. J. Solids Struct. 38(26–27), 4585–4608 (2001)MathSciNetCrossRefMATHGoogle Scholar
  24. P. Germain, The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)CrossRefMATHGoogle Scholar
  25. M. Godio, I. Stefanou, K. Sab, J. Sulem, Cosserat elastoplastic finite elements for masonry structures. Key Eng. Mater. 624, 131–138 (2014)CrossRefGoogle Scholar
  26. M. Godio, I. Stefanou, K. Sab, J. Sulem, Dynamic finite element formulation for Cosserat elastic plates. Int. J. Numer. Methods Eng. 101(13), 992–1018 (2015)MathSciNetCrossRefMATHGoogle Scholar
  27. M. Godio, I. Stefanou, K. Sab, J. Sulem, Multisurface plasticity for Cosserat materials: plate element implementation and validation. Int. J. Numer. Methods Eng. 108(5), 456–484 (2016a)MathSciNetCrossRefGoogle Scholar
  28. M. Godio, I. Stefanou, K. Sab, J. Sulem, S. Sakji, A limit analysis approach based on Cosserat continuum for the evaluation of the in-plane strength of discrete media: application to masonry. Eur. J. Mech. A/Solids 66, 168–192 (2016b)Google Scholar
  29. R.E. Goodman, Introduction to Rock Mechanics (Wiley, New York, 1989), pp. 293–334Google Scholar
  30. G.T. Houlsby, A.M. Puzrin, A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast. 16(9), 1017–1047 (2000)CrossRefMATHGoogle Scholar
  31. H. Kanamori, E.E. Brodsky, The physics of earthquakes. Rep. Prog. Phys. 67(8), 1429–1496 (2004)MathSciNetCrossRefGoogle Scholar
  32. K. Mam S. Quennehen, Réactivation de faille par géothermie profonde Implémentation d’une loi de frottement sous ABAQUS. Master Thesis, Ecole des Ponts ParisTech (2016)Google Scholar
  33. R. Masiani, P. Trovalusci, Cosserat and Cauchy materials as continuum models of brick masonry. Meccanica 31(4), 421–432 (1996)CrossRefMATHGoogle Scholar
  34. R.D. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1) (1964)Google Scholar
  35. H.-B. Mühlhaus, I. Vardoulakis, The thickness of shear bands in granular materials. Géotechnique 37(3), 271–283 (1987)CrossRefGoogle Scholar
  36. H.B. Mühlhaus, I. Vardoulakis, The thickness of shear hands in granular materials. Géotechnique 38(3), 331–331 (1988)CrossRefGoogle Scholar
  37. P.C. Papanastasiou, I. Vardoulakis, Numerical treatment of progressive localization in relation to borehole stability. Int. J. Numer. Anal. Methods Geomech. 16(6), 389–424 (1992)CrossRefGoogle Scholar
  38. P. Papanastasiou, A. Zervos, Wellbore stability analysis: from linear elasticity to postbifurcation modeling. Int. J. Geomech. 4(1), 2–12 (2004)CrossRefGoogle Scholar
  39. E. Pasternak, A.V. Dyskin, H.B. Mühlhaus, Cracks of higher modes in Cosserat continua. Int. J. Fract. 140(1), 189–199 (2006a)CrossRefMATHGoogle Scholar
  40. E. Pasternak, A.V. Dyskin, Y. Estrin, Deformations in transform faults with rotating crustal blocks. Pure Appl. Geophys. 163(9), 2011–2030 (2006b)CrossRefGoogle Scholar
  41. J. Pinho-da-Cruz, J.A. Oliveira, F. Teixeira-Dias, Asymptotic homogenisation in linear elasticity. Part I: mathematical formulation and finite element modelling. Comput. Mater. Sci. 45(4), 1073–1080 (2009)CrossRefGoogle Scholar
  42. F. Pradel, K. Sab, Cosserat modelling of elastic periodic lattice structures. C. R. Acad. Sci. Ser. IIB Mech. 326(11), 699–704 (1998)Google Scholar
  43. H. Rattez, I. Stefanou, J. Sulem, E. Veveakis, T. Poulet, Insight into the different couplings involved in the weakening of faults and their effect on earthquake nucleation, in American Geophysical Union Fall Meeting (2016a)Google Scholar
  44. H. Rattez, I. Stefanou, J. Sulem, Thermo-hydro mechanical couplings and strain localisation in 3D continua with microstructure. Part I : theory and linear stability analysis, under Prep. (2016b)Google Scholar
  45. R. Rezakhani, G. Cusatis, Asymptotic expansion homogenization of discrete fine-scale models with rotational degrees of freedom for the simulation of quasi-brittle materials. J. Mech. Phys. Solids 88, 320–345 (2016)MathSciNetCrossRefGoogle Scholar
  46. J.R. Rice, J.W. Rudnicki, J.D. Platt, Stability and localization of rapid shear in fluid-saturated fault gouge: 1. Linearized stability analysis. J. Geophys. Res. Solid Earth 119(5), 4311–4333 (2014)CrossRefGoogle Scholar
  47. K. Sab, F. Pradel, Homogenisation of periodic Cosserat media. Int. J. Comput. Appl. Technol. 34(1), 60 (2009)CrossRefGoogle Scholar
  48. E. Sánchez-Palencia, Homogenization in mechanics. A survey of solved and open problems. Rend. Sem. Mat. Univ 44, 1–46 (1986)MathSciNetMATHGoogle Scholar
  49. C.H. Scholz, The Mechanics of Earthquakes and Faulting, 2nd edn. (Cambridge University Press, Cambridge, 2002)CrossRefGoogle Scholar
  50. I. Stefanou S. Alevizos, Fundamentals of bifurcation theory and stability analysis, in Modelling of Instabilities and Bifurcation in Geomechanics, ALERT Geomaterials Doctoral School 2016, ed. by J. Sulem, I. Stefanou, E. Papamichos, E. Veveakis (Aussois, 2016), http://alertgeomaterials.eu/data/school/2016/2016_ALERT_schoolbook.pdf
  51. I. Stefanou, J. Sulem, Chemically induced compaction bands: triggering conditions and band thickness. J. Geophys. Res. Solid Earth 119(2), 880–899 (2014)CrossRefGoogle Scholar
  52. I. Stefanou, J. Sulem, Existence of a threshold for brittle grains crushing strength: two-versus three-parameter Weibull distribution fitting. Granul. Matter 18(2), 14 (2016)CrossRefGoogle Scholar
  53. I. Stefanou, J. Sulem, I. Vardoulakis, Three-dimensional Cosserat homogenization of masonry structures: elasticity. Acta Geotech. 3(1), 71–83 (2008)CrossRefGoogle Scholar
  54. I. Stefanou, J. Sulem, I. Vardoulakis, Homogenization of interlocking masonry structures using a generalized differential expansion technique. Int. J. Solids Struct. 47(11–12), 1522–1536 (2010)CrossRefMATHGoogle Scholar
  55. J. Sulem, V. Famin, Thermal decomposition of carbonates in fault zones: slip-weakening and temperature-limiting effects. J. Geophys. Res. 114(B3), B03309 (2009)CrossRefGoogle Scholar
  56. J. Sulem, I. Stefanou, Thermal and chemical effects in shear and compaction bands. Geomech. Energy Environ. 6, 4–21 (2016)CrossRefGoogle Scholar
  57. J. Sulem, I. Vardoulakis, Bifurcation analysis of the triaxial test on rock specimens. A theoretical model for shape and size effect. Acta Mech. 83(3–4), 195–212 (1990)CrossRefMATHGoogle Scholar
  58. J. Sulem, I. Stefanou, E. Veveakis, Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure. Granul. Matter 13(3), 261–268 (2011)CrossRefGoogle Scholar
  59. P. Trovalusci, M. Ostoja-Starzewski, M.L. De Bellis, A. Murrali, Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A/Solids 49, 396–407 (2015)CrossRefGoogle Scholar
  60. I. Vardoulakis, Lecture notes on Cosserat continuum mechanics with application to the mechanics of granular media (NTU, Athens, 2009)Google Scholar
  61. I. Vardoulakis, J. Sulem, Bifurcation Analysis in Geomechanics (Blackie, Glascow, 1995)Google Scholar
  62. E. Veveakis, J. Sulem, I. Stefanou, Modeling of fault gouges with Cosserat continuum mechanics: influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms. J. Struct. Geol. 38, 254–264 (2012)CrossRefGoogle Scholar
  63. E. Veveakis, I. Stefanou, J. Sulem, Failure in shear bands for granular materials: thermo-hydro-chemo-mechanical effects. Géotech. Lett. 3, 31–36 (2013)CrossRefGoogle Scholar
  64. W.M. Wang, L.J. Sluys, R. De Borst, Interaction between material length scale and imperfection size for localisation phenomena in viscoplastic media. Eur. J. Mech. A/Solids 15(3), 447–464 (1996)MATHGoogle Scholar
  65. A. Zervos, P. Papanastasiou, I. Vardoulakis, Modelling of localisation and scale effect in thick-walled cylinders with gradient elastoplasticity. Int. J. Solids Struct. 38(30–31), 5081–5095 (2001)CrossRefMATHGoogle Scholar
  66. O.C. Zienkiewicz, R.L. Taylor, J.M. Too, Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Methods Eng. 3(2), 275–290 (1971)CrossRefMATHGoogle Scholar
  67. O.C. Zienkiewicz, R.L. Taylur, J.Z. Zhu, The Finite Element Method (Elsevier, Oxford, 2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Navier (CERMES), UMR 8205, Ecole des Ponts, IFSTTAR, CNRSChamps-sur-MarneFrance

Personalised recommendations