Skip to main content

Supernova 1604, Kepler’s Supernova, and its Remnant

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

Supernova 1604 is the last galactic supernova for which historical records exist. Johannes Kepler’s name is attached to it, as he published a detailed account of the observations made by himself and European colleagues. Supernova 1604 was very likely a type Ia supernova, which exploded 350–750 pc above the galactic plane. Its supernova remnant, known as Kepler’s supernova remnant, shows clear evidence for interaction with nitrogen-rich material in the north/northwest part of the remnant, which, given the height above the galactic plane, must find its origin in mass loss from the supernova progenitor system. The combination of a type Ia supernova and the presence of circumstellar material make Kepler’s supernova remnant a unique object to study the origin of type Ia supernovae. The evidence suggests that the progenitor binary system of Supernova 1604 consisted of a carbon-oxygen white dwarf and an evolved companion star, which most likely was in the (post)-asymptotic giant branch of its evolution. A problem with this scenario is that the companion star must have survived the explosion, but no trace of its existence has yet been found, despite a deep search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aharonian F, Akhperjanian AG, Barres de Almeida U, Bazer-Bachi AR, Behera B, Beilicke M et al (2008) HESS upper limits for Kepler’s supernova remnant. A&A 488:219–223. doi:10.1051/0004-6361:200809401. 0806.3347

  • Arnett WD (1979) On the theory of Type I supernovae. ApJ 230:L37–L40. doi:10.1086/182957

    Article  ADS  Google Scholar 

  • Baade W (1943) Nova Ophiuchi of 1604 as a supernova. ApJ 97:119

    Article  ADS  Google Scholar 

  • Bandiera R (1987) The origin of Kepler’s supernova remnant. ApJ 319:885–892. doi:10.1086/165505

    Article  ADS  Google Scholar 

  • Bandiera R, van den Bergh S (1991) Changes in the optical remnant of Kepler’s supernova during the period 1942–1989. ApJ 374:186–201

    Article  ADS  Google Scholar 

  • Blair WP, Long KS, Vancura O (1991) A detailed optical study of Kepler’s supernova remnant. ApJ 366:484–494

    Article  ADS  Google Scholar 

  • Blair WP, Ghavamian P, Long KS, Williams BJ, Borkowski KJ, Reynolds SP, Sankrit R (2007) Spitzer space telescope observations of Kepler’s supernova remnant: a detailed look at the circumstellar dust component. ApJ 662:998–1013. doi:10.1086/518414. arXiv:astro-ph/0703660

  • Borkowski KJ, Sarazin CL, Blondin JM (1994) On the X-ray spectrum of Kepler’s supernova remnant. ApJ 429:710–725

    Article  ADS  Google Scholar 

  • Braun R (1987) The structure and dynamics of young supernova remnants – new constraints from observations of shock-heated dust. A&A 171:233–251

    ADS  Google Scholar 

  • Burkey MT, Reynolds SP, Borkowski KJ, Blondin JM (2013) X-ray emission from strongly asymmetric circumstellar material in the remnant of Kepler’s supernova. ApJ 764:63. doi:10.1088/0004-637X/764/1/63. 1212.4534

    Article  ADS  Google Scholar 

  • Cappellaro E, Mazzali PA, Benetti S, Danziger IJ, Turatto M, della Valle M, Patat F (1997) SN IA light curves and radioactive decay. A&A 328:203–210. astro-ph/9707016

    Google Scholar 

  • Cassam-Chenaï G, Decourchelle A, Ballet J, Hwang U, Hughes JP, Petre R et al (2004) XMM-Newton observation of Kepler’s supernova remnant. A&A 414:545–558. doi:10.1051/0004-6361:20031551. astro-ph/0310687

  • Chevalier RA (1982) Self-similar solutions for the interaction of stellar ejecta with an external medium. ApJ 258:790–797

    Article  ADS  Google Scholar 

  • Chiotellis A, Schure KM, Vink J (2012) The imprint of a symbiotic binary progenitor on the properties of Kepler’s supernova remnant. A&A 537:A139. doi:10.1051/0004-6361/201014754. 1103.5487

    Article  ADS  Google Scholar 

  • Claeys JSW, Pols OR, Izzard RG, Vink J, Verbunt FWM (2014) Theoretical uncertainties of the Type Ia supernova rate. A&A 563:A83. doi:10.1051/0004-6361/201322714. 1401.2895

    Article  ADS  Google Scholar 

  • Clark DH, Stephenson FR (1977) The historical supernovae. Pergamon Press, Oxford/New York

    Google Scholar 

  • Dado S, Dar A (2015) Analytical expressions for light curves of ordinary and superluminous Type Ia supernovae. ApJ 809:32. doi:10.1088/0004-637X/809/1/32

    Article  ADS  Google Scholar 

  • Danziger IJ, Goss WM (1980) The distance of Kepler’s supernova remnant. MNRAS 190:47P–49P

    Article  ADS  Google Scholar 

  • Delaney T, Rudnick L (2003) The first measurement of Cassiopeia A’s forward shock expansion rate. ApJ 589:818

    Article  ADS  Google Scholar 

  • Dennefeld M (1982) A spectrophotometric study of Kepler supernova remnant. A&A 112:215–222

    ADS  Google Scholar 

  • Dickel JR, Sault R, Arendt RG, Korista KT, Matsui Y (1988) The evolution of the radio emission from Kepler’s Supernova remnant. ApJ 330:254–263

    Article  ADS  Google Scholar 

  • Douvion T, Lagage PO, Cesarsky CJ, Dwek E (2001) Dust in the Tycho, Kepler and Crab supernova remnants. A&A 373:281–291

    Article  ADS  Google Scholar 

  • Draine BT (1981) Infrared emission from dust in shocked gas. ApJ 245:880–890. doi:10.1086/158864

    Article  ADS  Google Scholar 

  • Drout MR et al (2013) The fast and furious decay of the peculiar Type Ic Supernova 2005ek. ApJ 774:58. doi:10.1088/0004-637X/774/1/58. 1306.2337

    Article  ADS  Google Scholar 

  • Dwek E (1987) The infrared diagnostic of a dusty plasma with applications to supernova remnants. ApJ 322:812–821. doi:10.1086/165774

    Article  ADS  Google Scholar 

  • Feldmeier JJ, Jacoby GH, Phillips MM (2007) Calibrating Type Ia supernovae using the planetary nebula luminosity function. I. Initial results. ApJ 657:76–94. doi:10.1086/510897. astro-ph/0611231

    Article  Google Scholar 

  • Fesen RA, Becker RH, Blair WP (1987) Discovery of fast-moving nitrogen-rich ejecta in the supernova remnant Cassiopeia A. ApJ 313:378–388

    Article  ADS  Google Scholar 

  • Gomez HL, Dunne L, Ivison RJ, Reynoso EM, Thompson MA, Sibthorpe B et al (2009) Accounting for the foreground contribution to the dust emission towards Kepler’s supernova remnant. MNRAS 397:1621–1632. doi:10.1111/j.1365-2966.2009.15061.x. 0905.2564

    Article  ADS  Google Scholar 

  • Gomez HL, Clark CJR, Nozawa T, Krause O, Gomez EL, Matsuura M et al (2012) Dust in historical galactic Type Ia supernova remnants with Herschel. MNRAS 420:3557–3573. doi:10.1111/j.1365-2966.2011.20272.x. 1111.6627

    Article  ADS  Google Scholar 

  • Gómez M, Richtler T (2004) The globular cluster system of NGC 4374. A&A 415:499–508. doi:10.1051/0004-6361:20034610. astro-ph/0311188

  • González Hernández JI, Ruiz-Lapuente P, Tabernero HM, Montes D, Canal R, Méndez J, Bedin LR (2012) No surviving evolved companions of the progenitor of SN 1006. Nature 489:533–536. doi:10.1038/nature11447. 1210.1948

    Article  ADS  Google Scholar 

  • Granada MA (2005) The discussion between Kepler and Roeslin on the Nova of 1604. In: Turatto M, Benetti S, Zampieri L, Shea W (eds) 1604–2004: supernovae as cosmological lighthouses. Astronomical society of the pacific conference series, vol 342. Astronomical Society of the Pacific, San Francisco, p 30

    Google Scholar 

  • Green DA, Reynolds SP, Borkowski KJ, Hwang U, Harrus I, Petre R (2008) The radio expansion and brightening of the very young supernova remnant G1.9+0.3. MNRAS 387:L54–L58. doi:10.1111/j.1745-3933.2008.00484.x. 0804.2317

    Article  ADS  Google Scholar 

  • Helder EA, Vink J, Bykov AM, Ohira Y, Raymond JC, Terrier R (2012) Observational signatures of particle acceleration in supernova remnants. Space Sci Rev 173:369–431. doi:10.1007/s11214-012-9919-8. 1206.1593

    Article  ADS  Google Scholar 

  • Hwang U, Gotthelf EV (1997) X-ray emission-line imaging and spectroscopy of Tycho’s supernova remnant. ApJ 475:665

    Article  ADS  Google Scholar 

  • Ilkov M, Soker N (2012) Type Ia supernovae from very long delayed explosion of core-white dwarf merger. MNRAS 419:1695–1700. doi:10.1111/j.1365-2966.2011.19833.x. 1106.2027

    Article  ADS  Google Scholar 

  • Karakas AI (2010) Updated stellar yields from asymptotic giant branch models. MNRAS 403:1413–1425. doi:10.1111/j.1365-2966.2009.16198.x. 0912.2142

    Article  ADS  Google Scholar 

  • Katsuda S, Tsunemi H, Uchida H, Kimura M (2008) Forward shock proper motions of Kepler’s supernova remnant. ApJ 689:225–230. doi:10.1086/592376. 0812.0339

    Article  ADS  Google Scholar 

  • Katsuda S, Mori K, Maeda K, Tanaka M, Koyama K, Tsunemi H, Nakajima H, Maeda Y, Ozaki M, Petre R (2015) Kepler’s supernova: an overluminous Type Ia event interacting with a massive circumstellar medium at a very late phase. ApJ 808:49. doi:10.1088/0004-637X/808/1/49. 1506.03135

    Article  ADS  Google Scholar 

  • Kerzendorf WE, Yong D, Schmidt BP, Simon JD, Jeffery CS, Anderson J et al (2013) A high-resolution spectroscopic search for the remaining donor for Tycho’s supernova. ApJ 774:99. doi:10.1088/0004-637X/774/2/99. 1210.2713

    Article  ADS  Google Scholar 

  • Kerzendorf WE, Childress M, Scharwächter J, Do T, Schmidt BP (2014) A reconnaissance of the possible donor stars to the Kepler supernova. ApJ 782:27. doi:10.1088/0004-637X/782/1/27. 1309.5964

    Article  ADS  Google Scholar 

  • Kinugasa K, Tsunemi H (1999) ASCA observation of Kepler’s supernova remnant. PASJ 51: 239–252

    Article  ADS  Google Scholar 

  • Kosenko D, Helder EA, Vink J (2010) The kinematics and chemical stratification of the type Ia supernova remnant 0519-69.0. An XMM-Newton and Chandra study. A&A 519:A11+. doi:10.1051/0004-6361/200913903. 1001.0983

  • Lagage PO, Claret A, Ballet J, Boulanger F, Cesarsky CJ, Cesarsky D, Fransson C, Pollock A (1996) Dust formation in the Cassiopeia A supernova. A&A 315:L273–L276

    ADS  Google Scholar 

  • Leibowitz EM, Danziger IJ (1983) Spectrophotometry in the galactic supernova remnants RCW 86, 103 and Kepler. MNRAS 204:273–287

    Article  ADS  Google Scholar 

  • Leonard PJT, Duncan MJ (1990) Runaway stars from young star clusters containing initial binaries. II – a mass spectrum and a binary energy spectrum. AJ 99:608–616. doi:10.1086/115354

    Article  Google Scholar 

  • Maoz D, Mannucci F, Nelemans G (2014) Observational clues to the progenitors of Type Ia supernovae. Ann. Rev. A&A 52:107–170. doi:10.1146/annurev-astro-082812-141031. 1312.0628

    Article  ADS  Google Scholar 

  • Martin DC et al (2007) A turbulent wake as a tracer of 30,000 years of Mira’s mass loss history. Nature 448:780–783. doi:10.1038/nature06003

    Article  ADS  Google Scholar 

  • McSaveney JA, Wood PR, Scholz M, Lattanzio JC, Hinkle KH (2007) Abundances in intermediate-mass AGB stars undergoing third dredge-up and hot-bottom burning. MNRAS 378:1089–1100. doi:10.1111/j.1365-2966.2007.11845.x. 0704.1907

    Article  ADS  Google Scholar 

  • Minkowski R (1959) Optical observations of nonthermal galactic radio sources. In: Bracewell RN (ed) URSI symposium 1: Paris symposium on radio astronomy, IAU symposium, vol 9. Stanford University Press, Stanford, p 315

    Google Scholar 

  • Morgan HL, Dunne L, Eales SA, Ivison RJ, Edmunds MG (2003) Cold dust in Kepler’s supernova remnant. ApJ 597:L33–L36. doi:10.1086/379639. astro-ph/0309233

    Article  ADS  Google Scholar 

  • Park S, Badenes C, Mori K, Kaida R, Bravo E, Schenck A et al (2013) A super-solar metallicity for the progenitor of Kepler’s supernova. ApJ 767:L10. doi:10.1088/2041-8205/767/1/L10. 1302.5435

    Article  ADS  Google Scholar 

  • Pastorello A et al (2007) ESC and KAIT observations of the transitional Type Ia SN 2004eo. MNRAS 377:1531–1552. doi:10.1111/j.1365-2966.2007.11700.x. astro-ph/0702565

  • Patnaude DJ, Badenes C, Park S, Laming JM (2012) The origin of Kepler’s supernova remnant. ApJ 756:6. doi:10.1088/0004-637X/756/1/6. 1206.6799

    Article  ADS  Google Scholar 

  • Rest, A., Matheson, T., Blondin, S.; Bergmann, M., Welch, D. L.; Suntzeff, N. B., Smith, R. C., Olsen, K., Prieto, J. L.; Garg, A., Challis, P., Stubbs, C.; Hicken, M., Modjaz, M., Wood-Vasey, W. M.; Zenteno, A., Damke, G.; Newman, A., Huber, M., Cook, K. H.; Nikolaev, S., Becker, A. C., Miceli, A., Covarrubias, R., Morelli, L., Pignata, G.; Clocchiatti, A., Minniti, D., Foley, R. J. (2008) Spectral identification of an ancient supernova using light echoes in the large magellanic cloud. ApJ 680:1137–1148. doi:10.1086/587158. 0801.4762

    Article  ADS  Google Scholar 

  • Reynolds SP, Borkowski KJ, Hwang U, Hughes JP, Badenes C, Laming JM, Blondin JM (2007) A deep Chandra observation of Kepler’s supernova remnant: a Type Ia event with circumstellar interaction. ApJ 668:L135–L138. doi:10.1086/522830. arXiv:0708.3858

  • Reynoso EM, Goss WM (1999) A new determination of the distance to Kepler’s supernova remnant. AJ 118:926–929

    Article  ADS  Google Scholar 

  • Ruiz-Lapuente P (2004) Tycho Brahe’s supernova: light from centuries past. ApJ 612:357–363

    Article  ADS  Google Scholar 

  • Salvo ME, Cappellaro E, Mazzali PA, Benetti S, Danziger IJ, Patat F, Turatto M (2001) The template Type Ia supernova 1996X. MNRAS 321:254–268. arXiv:astro-ph/0009065

    Google Scholar 

  • Sankrit R, Blair WP, Delaney T, Rudnick L, Harrus IM, Ennis JA (2005) HST/ACS imaging of a Balmer-dominated shock in Kepler’s supernova remnant. Adv Space Res 35:1027–1030. doi:10.1016/j.asr.2004.11.018

    Article  ADS  Google Scholar 

  • Sankrit R, Blair WP, Frattare LM, Rudnick L, DeLaney T, Harrus IM, Ennis JA (2008) Hubble space telescope/advanced camera for surveys narrowband imaging of the Kepler supernova remnant. AJ 135:538–547. doi:10.1088/0004-6256/135/2/538

    Article  ADS  Google Scholar 

  • Sasdelli M, Mazzali PA, Pian E, Nomoto K, Hachinger S, Cappellaro E, Benetti S (2014) Abundance stratification in Type Ia supernovae – IV. The luminous, peculiar SN 1991T. MNRAS 445:711–725. doi:10.1093/mnras/stu1777. 1409.0116

    Article  ADS  Google Scholar 

  • Schaefer BE (1996) Peak brightnesses of historical supernovae and the hubble constant. ApJ 459:438. doi:10.1086/176906

    Article  ADS  Google Scholar 

  • Schaefer BE, Pagnotta A (2012) An absence of ex-companion stars in the Type Ia supernova remnant SNR 0509-67.5. Nature 481:164–166. doi:10.1038/nature10692

    Article  ADS  Google Scholar 

  • Silverman JM, Ganeshalingam M, Li W, Filippenko AV, Miller AA, Poznanski D (2011) Fourteen months of observations of the possible super-Chandrasekhar mass Type Ia supernova 2009dc. MNRAS 410:585–611. doi:10.1111/j.1365-2966.2010.17474.x. 1003.2417

    Article  ADS  Google Scholar 

  • Sollerman J, Ghavamian P, Lundqvist P, Smith RC (2003) High resolution spectroscopy of Balmer-dominated shocks in the RCW 86, Kepler and SN 1006 supernova remnants. A&A 407: 249–257

    Article  ADS  Google Scholar 

  • Stephenson FR, Green DA (2002) Historical supernovae and their remnants. Clarendon Press, Oxford

    Book  Google Scholar 

  • Toledo-Roy JC, Esquivel A, Velázquez PF, Reynoso EM (2014) A 3D numerical model for Kepler’s supernova remnant. MNRAS 442:229–238. doi:10.1093/mnras/stu880

    Article  ADS  Google Scholar 

  • Tsebrenko D, Soker N (2013) Type Ia supernovae inside planetary nebulae: shaping by jets. MNRAS 435:320–328. doi:10.1093/mnras/stt1301. 1305.1845

    Article  ADS  Google Scholar 

  • Turatto M, Benetti S, Cappellaro E, Danziger IJ, Della Valle M, Gouiffes C, Mazzali PA, Patat F (1996) The properties of the peculiar type Ia supernova 1991bg. I. Analysis and discussion of two years of observations. MNRAS 283:1–17. astro-ph/9605178

    Google Scholar 

  • van Adelsberg M, Heng K, McCray R, Raymond JC (2008) Spatial structure and collisionless electron heating in Balmer-dominated shocks. ApJ 689:1089–1104. doi:10.1086/592680. 0803.2521

    Article  ADS  Google Scholar 

  • van den Bergh S, Kamper KW (1977) The remnant of Kepler’s supernova. ApJ 218:617–619. doi:10.1086/155719

    Article  ADS  Google Scholar 

  • van den Bergh S, Marscher AP, Terzian Y (1973) An optical Atlas of galactic supernova remnants. ApJS 26:19. doi:10.1086/190278

    Article  ADS  Google Scholar 

  • Vink J (2008) The kinematics of Kepler’s supernova remnant as revealed by Chandra. ApJ 689:231–241. doi:10.1086/592375. 0803.4011

    Article  ADS  Google Scholar 

  • Vink J, Yamazaki R, Helder EA, Schure KM (2010) The relation between post-shock temperature, cosmic ray pressure, and cosmic ray escape for non-relativistic shocks. ApJ 722:1727–1734. doi:10.1088/0004-637X/722/2/1727. 1008.4367

    Article  ADS  Google Scholar 

  • Williams BJ, Borkowski KJ, Reynolds SP, Ghavamian P, Blair WP, Long KS, Sankrit R (2012) Dust in a Type Ia supernova progenitor: Spitzer spectroscopy of Kepler’s supernova remnant. ApJ 755:3. doi:10.1088/0004-637X/755/1/3. 1206.1054

    Article  ADS  Google Scholar 

  • Woosley SE, Kasen D, Blinnikov S, Sorokina E (2007) Type Ia supernova light curves. ApJ 662:487–503. doi:10.1086/513732. arXiv:astro-ph/0609562

Download references

Acknowledgements

This chapter is born out of a long fascination for Kepler’s supernova remnant; and my view on the supernova remnant was influenced by my collaboration with my former graduate students Alexandros Chiotellis and Klara Schure. During this collaboration also discussions with Onno Pols about the evolution of binary stars and the process of hot bottom burning were much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacco Vink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vink, J. (2017). Supernova 1604, Kepler’s Supernova, and its Remnant. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_49

Download citation

Publish with us

Policies and ethics