Skip to main content

Observational and Physical Classification of Supernovae

  • Reference work entry
  • First Online:

Abstract

This chapter describes the current classification scheme of supernovae (SNe). This scheme has evolved over many decades and now includes numerous SN types and subtypes, many universally recognized, others controversial. The types are defined according to observational properties, mostly visible-light spectra near maximum light, as well as photometric properties. However, a long-term goal of SN classification is to associate observationally defined classes with specific physical explosive phenomena. We show here that this aspiration is now finally coming to fruition, and we establish the SN classification scheme upon direct observational evidence connecting SN groups with specific progenitor stars. Observationally, the broad class of Type II SNe contains objects showing strong spectroscopic signatures of hydrogen, while objects lacking such signatures are of Type I, which is further divided to numerous subclasses. Recently a class of superluminous SNe (SLSNe, typically ten times more luminous than standard events) has been identified. Finally we describe an alternative classification scheme that presents our emerging physical understanding of SN explosions, while clearly separating robust observational properties from physical inferences that can be debated. This new system is quantitative, with events distributed along a continuum, rather than divided into discrete classes. Thus, it may be more suitable to the coming era where SN numbers will reach millions.

This is a preview of subscription content, log in via an institution.

References

  • Arnett WD et al (1982) Type I supernovae. I – analytic solutions for the early part of the light curve. ApJ 253:785

    Google Scholar 

  • Arcavi I et al (2010) Core-collapse supernovae from the Palomar Transient Factory: indications for a different population in dwarf galaxies. ApJ 721:777

    Article  ADS  Google Scholar 

  • Arcavi I et al (2011) SN 2011dh: discovery of a Type IIb supernova from a compact progenitor in the nearby galaxy M51. ApJ 742:L18

    Article  ADS  Google Scholar 

  • Arcavi I et al (2012) Caltech Core-Collapse Project (CCCP) observations of Type II supernovae: evidence for three distinct photometric subtypes. ApJ 756:L30

    Article  ADS  Google Scholar 

  • Arcavi I et al (2016) Rapidly rising transients in the supernova-superluminous supernova gap. ApJ 819:35

    Article  ADS  Google Scholar 

  • Ashall C et al (2016) Luminosity distributions of Type Ia supernovae. MNRAS 460:3529

    Article  ADS  Google Scholar 

  • Barbon R et al (1979) Photometric properties of Type II supernovae. A&A 72:287

    ADS  Google Scholar 

  • Barbon R et al (1995) SN 1993J in M 81: one year of observations at Asiago. A&AS 110:513

    ADS  Google Scholar 

  • Ben-Ami S et al (2012) Discovery and early multi-wavelength measurements of the energetic Type Ic supernova PTF12gzk: a massive-star explosion in a dwarf host galaxy. ApJ 760:L33

    Article  ADS  Google Scholar 

  • Ben-Ami S et al (2014) SN 2010mb: direct evidence for a supernova interacting with a large amount of hydrogen-free circumstellar material. ApJ 785:37

    Article  ADS  Google Scholar 

  • Ben-Ami S et al (2015) Ultraviolet spectroscopy of Type IIb supernovae: diversity and the impact of circumstellar material. ApJ 803:40

    Article  ADS  Google Scholar 

  • Benetti S et al (2006) Supernova 2002ic: the collapse of a stripped-envelope, massive star in a dense medium? ApJ 653:L129

    Article  ADS  Google Scholar 

  • Benetti S et al (2011) The Type Ib SN 1999dn: one year of photometric and spectroscopic monitoring. MNRAS 411:2726

    Article  ADS  Google Scholar 

  • Benetti S et al (2014) The supernova CSS121015:004244+132827: a clue for understanding superluminous supernovae. MNRAS 441:289

    Article  ADS  Google Scholar 

  • Bianco FB et al (2014) Multi-color optical and near-infrared light curves of 64 stripped-envelope core-collapse supernovae. ApJS 213:19

    Article  ADS  Google Scholar 

  • Bietenholz MF, Bartel N (2005) An upper limit on the expansion velocity of gamma-ray burst candidate SN 2001em. ApJ 625:L99

    Article  ADS  Google Scholar 

  • Blondin S et al (2012) The spectroscopic diversity of Type Ia supernovae. AJ 143:126

    Article  ADS  Google Scholar 

  • Bloom JS et al (2012) A compact degenerate primary-star progenitor of SN 2011fe. ApJ 744:L17

    Article  ADS  Google Scholar 

  • Campana S et al (2006) The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442:1008–1010

    Article  ADS  Google Scholar 

  • Cao Y et al (2013) Discovery, progenitor and early evolution of a stripped envelope supernova iPTF13bvn. ApJ 775:L7

    Article  ADS  Google Scholar 

  • Cao Y et al (2015) A strong ultraviolet pulse from a newborn Type Ia supernova. Nature 521:328

    Article  ADS  Google Scholar 

  • Cao Y et al (2016) SN 2002es-like supernovae from different viewing angles. ApJ 832:86

    Article  ADS  Google Scholar 

  • Chevalier RA, Soderberg AM (2010) Type IIb supernovae with compact and extended progenitors. ApJ 711:L40

    Article  ADS  Google Scholar 

  • Childress MJ et al (2013) Spectroscopic observations of SN 2012fr: a luminous, normal Type Ia supernova with early high-velocity features and a late velocity plateau. ApJ 770:29

    Article  ADS  Google Scholar 

  • Chornock R et al (2011) The transitional stripped-envelope SN 2008ax: spectral evolution and evidence for large asphericity. ApJ 739:41

    Article  ADS  Google Scholar 

  • Chugai NN, Danziger IJ (1994) Supernova 1988Z – low-mass ejecta colliding with the clumpy wind. MNRAS 268:173

    Article  ADS  Google Scholar 

  • Clocchiatti A et al (1996) ApJ 462

    Google Scholar 

  • Corsi A et al (2012) Evidence for a compact Wolf-Rayet progenitor for the Type Ic supernova PTF 10vgv. ApJ 747:L5

    Article  ADS  Google Scholar 

  • Corsi A et al (2014) A multi-wavelength investigation of the radio-loud supernova. PTF11qcj and its circumstellar environment. ApJ 782:42

    Google Scholar 

  • Corsi A et al (2016) Radio observations of a sample of broad-lined Type Ic supernovae discovered by PTF/iPTF: a search for relativistic explosions. ApJ 830:42

    Article  ADS  Google Scholar 

  • Crockett RM et al (2008) The Type IIb SN 2008ax: the nature of the progenitor. MNRAS 391:L5

    ADS  Google Scholar 

  • Dessart L et al (2012) On the nature of supernovae Ib and Ic. MNRAS 424:2139

    Article  ADS  Google Scholar 

  • Dilday B et al (2012) PTF 11kx: a Type Ia supernova with a symbiotic nova progenitor. Science 337:942

    Article  ADS  Google Scholar 

  • Drake AJ et al (2010) Discovery of the extremely energetic supernova 2008fz. ApJ 718:L127

    Article  ADS  Google Scholar 

  • Drout MR et al (2011) The first systematic study of Type Ibc supernova multi-band light curves. ApJ 741:97

    Article  ADS  Google Scholar 

  • Drout MR et al (2013) The fast and furious decay of the peculiar Type Ic supernova. 2005ek. ApJ 774:58

    Google Scholar 

  • Drout MR (2014) Rapidly evolving and luminous transients from Pan-STARRS1. ApJ 794:23

    Article  ADS  Google Scholar 

  • Elias JH et al (1985) Type I supernovae in the infrared and their use as distance indicators. ApJ 296:379

    Article  ADS  Google Scholar 

  • Ergon M et al (2014) Optical and near-infrared observations of SN 2011dh: the first 100 days. A&A 562:17

    Article  Google Scholar 

  • Ergon M et al (2015) The Type IIb SN 2011dh: two years of observations and modelling of the lightcurves. A&A 580:142

    Article  Google Scholar 

  • Filippenko AV (1988) Supernova 1987K: Type II in youth, Type Ib in old age. AJ 96:1941

    Article  ADS  Google Scholar 

  • Filippenko AV (1989) The ‘Seyfert 1’ optical spectra of the Type II supernovae 1987F and 1988I. AJ 97:726

    Article  ADS  Google Scholar 

  • Filippenko AV et al (1992a) Early-time spectra of Type Ic supernovae: further evidence for the presence of hydrogen. ApJ 384:L37

    Article  ADS  Google Scholar 

  • Filippenko AV et al (1992b) The subluminous, spectroscopically peculiar Type IA supernova 1991bg in the elliptical galaxy NGC 4374. AJ 104:1543

    Article  ADS  Google Scholar 

  • Filippenko AV et al (1993) The “Type IIb” Supernova 1993J in M81: a close relative of Type Ib supernovae. ApJ 415:L103

    Article  ADS  Google Scholar 

  • Filippenko AV (1997) Optical spectra of supernovae. ARA&A 35:309

    Article  ADS  Google Scholar 

  • Filippenko AV, Chornock R (2001) Supernova 2001ez in PGC 17642. IAUC 7737

    Google Scholar 

  • Folatelli G et al (2006) SN 2005bf: a possible transition event between Type Ib/c supernovae and gamma-ray bursts. ApJ 641:1039

    Article  ADS  Google Scholar 

  • Folatelli G et al (2014) Supernova 2010as: the lowest-velocity member of a family of flat-velocity Type IIb supernovae. ApJ 792:7

    Article  ADS  Google Scholar 

  • Foley RJ et al (2003) A search for core-collapse supernova progenitors in Hubble Space Telescope images. PASP 115:1220

    Article  ADS  Google Scholar 

  • Foley RJ et al (2007) SN 2006jc: a Wolf-Rayet star exploding in a dense He-rich circumstellar medium. ApJ 657:L105

    Article  ADS  Google Scholar 

  • Foley RJ et al (2013) Type Iax supernovae: a new class of stellar explosion. ApJ 767:57

    Article  ADS  Google Scholar 

  • Foley RJ et al (2016) Late-time spectroscopy of Type Iax supernovae. MNRAS 461:433

    Article  ADS  Google Scholar 

  • Galama TJ et al (1998) An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395:670

    Article  ADS  Google Scholar 

  • Gal-Yam A et al (2002) Supernova 2002ap: the first month. MNRAS 332:L73

    Article  ADS  Google Scholar 

  • Gal-Yam A et al (2007) On the progenitor of SN 2005gl and the nature of Type IIn supernovae. ApJ 656:372

    Article  ADS  Google Scholar 

  • Gal-Yam A & Leonard DC (2009) A massive hypergiant star as the progenitor of the supernova SN 2005gl. Nature 458:865

    Article  ADS  Google Scholar 

  • Gal-Yam A et al (2009) Supernova 2007bi as a pair-instability explosion. Nature 462:624

    Article  ADS  Google Scholar 

  • Gal-Yam A et al (2011) Real-time detection and rapid multiwavelength follow-up observations of a highly subluminous Type II-P supernova from the Palomar Transient Factory survey. ApJ 736:159

    Article  ADS  Google Scholar 

  • Gal-Yam A (2012) Luminous supernovae. Science 337:927

    Article  ADS  Google Scholar 

  • Gal-Yam A et al (2014) A Wolf-Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509:471

    Article  ADS  Google Scholar 

  • Ganot A et al (2017) The detection rate of early UV emission from supernovae: a dedicated Galex/PTF survey and calibrated theoretical estimates. ApJ 820:57

    Article  ADS  Google Scholar 

  • Ganeshalingam M et al (2012) The low-velocity, rapidly fading Type Ia supernova 2002es. ApJ 751:142

    Article  ADS  Google Scholar 

  • Gezari S et al (2009) Discovery of the ultra-bright Type II-L supernova 2008es. ApJ 690:1313

    Article  ADS  Google Scholar 

  • Gorbikov E et al (2014) iPTF13beo: the double-peaked light curve of a Type Ibn supernova discovered shortly after explosion. MNRAS 443:671

    Article  ADS  Google Scholar 

  • Granot J, Ramirez-Ruiz E (2004) The case for a misaligned relativistic jet from SN 2001em. ApJ 609:L9

    Article  ADS  Google Scholar 

  • Hachinger S et al (2012) How much H and He is ‘hidden’ in SNe Ib/c? I. Low-mass objects. MNRAS 422:70

    Google Scholar 

  • Hamuy M et al (2001) The distance to SN 1999em from the expanding photosphere method. ApJ 558:615

    Article  ADS  Google Scholar 

  • Hamuy M et al (2003) An asymptotic-giant-branch star in the progenitor system of a Type Ia supernova. Nature 424:651

    Article  ADS  Google Scholar 

  • Hicken M et al (2007) The luminous and carbon-rich supernova 2006gz: a double degenerate merger? ApJ 669:L17

    Article  ADS  Google Scholar 

  • Horesh A et al (2013) An early and comprehensive millimetre and centimetre wave and X-ray study of SN 2011dh: a non-equipartition blast wave expanding into a massive stellar wind. MNRAS 436:1258

    Article  ADS  Google Scholar 

  • Hosseinzadeh G et al (2016, submitted) Type Ibn supernovae show photometric homogeneity and evidence for two spectral subclasses. ApJ. arXiv:1608.01998

    Google Scholar 

  • Howell DA et al (2001) The progenitors of subluminous Type Ia supernovae. ApJ 554:L193

    Article  ADS  Google Scholar 

  • Howell DA et al (2006) The Type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443:308

    Article  ADS  Google Scholar 

  • Harkness RP et al (1987) The early spectral phase of Type Ib supernovae: evidence for helium. ApJ 317:355

    Article  ADS  Google Scholar 

  • Inserra C et al (2016a) On Type IIn/Ia-CSM supernovae as exemplified by SN 2012ca. MNRAS 459:2721

    Article  ADS  Google Scholar 

  • Inserra C et al (2016b, in press) On the nature of hydrogen-rich superluminous supernovae. MNRAS. arXiv:1604.01226

    Google Scholar 

  • Jencson JE et al (2016) Optical observations of the luminous Type IIn supernova 2010jl for over 900 d. MNRAS 456:2622

    Article  ADS  Google Scholar 

  • Kasliwal MM et al (2008) SN 2007ax: an extremely faint Type Ia supernova. ApJ 683:L29

    Article  ADS  Google Scholar 

  • Kasliwal MM et al (2010) Rapidly decaying supernova 2010X: a candidate “.Ia” explosion. ApJ 723:L98

    Google Scholar 

  • Kasliwal MM et al (2012) Calcium-rich gap transients in the remote outskirts of galaxies. ApJ 755:161

    Article  ADS  Google Scholar 

  • Khazov D et al (2016) Flash spectroscopy: emission lines from the ionized circumstellar mMaterial around < 10-day-old Type II supernovae. ApJ 818:3

    Article  ADS  Google Scholar 

  • Kiewe M et al (2012) Caltech Core-Collapse Project (CCCP) observations of Type IIn supernovae: typical properties and implications for their progenitor stars. ApJ 744:10

    Article  ADS  Google Scholar 

  • Kleiser IK et al (2011) Peculiar Type II supernovae from blue supergiants. MNRAS 415:372

    Article  ADS  Google Scholar 

  • Leloudas G et al (2012) SN 2006oz: rise of a super-luminous supernova observed by the SDSS-II SN Survey. A&A 541:129

    Article  Google Scholar 

  • Leloudas G et al (2015a) Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. MNRAS 449:917

    Google Scholar 

  • Leloudas G et al (2015b) Supernova spectra below strong circumstellar interaction. A&A 574:61

    Article  Google Scholar 

  • Leonard DC et al (2002) The distance to SN 1999em in NGC 1637 from the expanding photosphere method. PASP 114:35

    Article  ADS  Google Scholar 

  • Li W et al (2001a) A high intrinsic peculiarity rate among Type IA supernovae. ApJ 546:734

    Article  ADS  Google Scholar 

  • Li W et al (2001b) The unique Type Ia supernova 2000cx in NGC 524. PASP 113:1178

    Article  ADS  Google Scholar 

  • Li W et al (2003) SN 2002cx: the most peculiar known Type Ia supernova. PASP 115:453

    Article  ADS  Google Scholar 

  • Li W et al (2011) Nearby supernova rates from the Lick Observatory supernova search: II. The observed luminosity functions and fractions of supernovae in a complete sample. MNRAS 412:1441

    Google Scholar 

  • Liu Y et al (2016) Analyzing the largest spectroscopic dataset of stripped supernovae to improve their identifications and constrain their progenitors. ApJ 827:90

    Article  ADS  Google Scholar 

  • Lunnan R et al (2014) Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. ApJ 787:138

    Article  ADS  Google Scholar 

  • Lunnan R et al (2015) Zooming in on the progenitors of superluminous supernovae with the HST. ApJ 804:90

    Article  ADS  Google Scholar 

  • Lunnan R et al (2016) PS1-14bj: a hydrogen-poor superluminous supernova with a long rise and slow decay. ApJ 831:144

    Article  ADS  Google Scholar 

  • Lunnan R et al (2017, submitted) Two new calcium-rich gap transients in group and cluster environments. ApJ. arXiv:1612.00454

    Google Scholar 

  • Lyman JD et al (2016) Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. MNRAS 457:328

    Article  ADS  Google Scholar 

  • Maeda K et al (2007) The unique Type Ib supernova 2005bf at nebular phases: a possible birth event of a strongly magnetized neutron star. ApJ 666:1069

    Article  ADS  Google Scholar 

  • Maeda K et al (2015) Type IIb supernova 2013df entering into an interaction phase: a link between the progenitor and the mass loss. ApJ 807:35

    Article  ADS  Google Scholar 

  • Maguire K et al (2011) PTF10ops – a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere. MNRAS 418:747

    Article  ADS  Google Scholar 

  • Maguire K et al (2014) Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory. MNRAS 444:3258

    Article  ADS  Google Scholar 

  • Margutti R et al (2016, submitted) Ejection of the massive Hydrogen-rich envelope timed with the collapse of the stripped SN 2014C. ApJ. arXiv:1601.06806

    Google Scholar 

  • Marion GH et al (2014) Type IIb supernova SN 2011dh: spectra and photometry from the ultraviolet to the near-infrared. ApJ 781:69

    Article  ADS  Google Scholar 

  • Matheson T et al (2001) Optical Spectroscopy of Type Ib/c supernovae. AJ 121:1648

    Article  ADS  Google Scholar 

  • Maund JR et al (2004) The massive binary companion star to the progenitor of supernova 1993J. Nature 427:129

    Article  ADS  Google Scholar 

  • Maund JR et al (2011) The yellow supergiant progenitor of the Type II supernova 2011dh in M51. ApJ 739:L37

    Article  ADS  Google Scholar 

  • Maund JR et al (2007) Spectropolarimetry of the Type Ib/c SN 2005bf. MNRAS 381:201

    Article  ADS  Google Scholar 

  • Mazzali PA et al (1995) A study of the properties of the peculiar SN IA 1991T through models of its evolving early-time spectrum. A&A 297:509

    ADS  Google Scholar 

  • Mazzali PA et al (1997) The properties of the peculiar Type IA supernova 1991bg: II. The amount of 56Ni and the total ejecta mass determined from spectrum synthesis and energetics considerations. MNRAS 284:151

    Google Scholar 

  • Mazzali PA et al (2002) The Type Ic hypernova SN 2002ap. ApJ 572:L61

    Article  ADS  Google Scholar 

  • Mazzali PA et al (2014) Hubble Space Telescope spectra of the Type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z < Z . MNRAS 439:1959

    Article  ADS  Google Scholar 

  • Mazzali PA et al (2015) Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core. Mon Not R Astron Soc 450: 2631–2643

    Article  ADS  Google Scholar 

  • Miller AA et al (2009) The exceptionally luminous Type II-Linear supernova 2008es. ApJ 690:1303

    Article  ADS  Google Scholar 

  • Milisavljevic D (2015) Metamorphosis of SN 2014C: delayed interaction between a hydrogen poor core-collapse supernova and a nearby circumstellar shell. ApJ 815:120

    Article  ADS  Google Scholar 

  • Minkowski R (1941) Spectra of supernovae. PASP 53:224

    Article  ADS  Google Scholar 

  • Modjaz M et al (2009) From shock breakout to peak and beyond: extensive panchromatic observations of the Type Ib supernova 2008D associated with Swift X-ray transient 080109. ApJ 702:226

    Article  ADS  Google Scholar 

  • Modjaz M et al (2014) Optical spectra of 73 stripped-envelope Core-collapse supernovae. AJ 147:99

    Article  ADS  Google Scholar 

  • Modjaz M et al (2016) The spectral SN-GRB connection: systematic spectral comparisons between Type Ic supernovae, and broad-lined Type Ic Supernovae with and without Gamma-Ray bursts. ApJ 832:108

    Article  ADS  Google Scholar 

  • Morales-Garoffolo A et al (2014) SN 2013df, a double-peaked IIb supernova from a compact progenitor and an extended H envelope. MNRAS 445:1647

    Article  ADS  Google Scholar 

  • Morales-Garoffolo A et al (2015) SN 2011fu: a type IIb supernova with a luminous double-peaked light curve. MNRAS 454:95

    Article  ADS  Google Scholar 

  • Nakar, E (2015) A unified picture for low-luminosity and long gamma-ray bursts based on the extended progenitor of llGRB 060218/SN 2006aj. ApJ 807:172

    Article  ADS  Google Scholar 

  • Neill JD (2011) The extreme hosts of extreme supernovae. ApJ 727:15

    Article  ADS  Google Scholar 

  • Nicholl M et al (2013) Slowly fading super-luminous supernovae that are not pair-instability explosions. Nature 502:346

    Article  ADS  Google Scholar 

  • Nicholl M et al (2015a) LSQ14bdq: a Type Ic super-luminous supernova with a double-peaked light curve. ApJ 807:L18

    Article  ADS  Google Scholar 

  • Nicholl M et al (2015b) On the diversity of superluminous supernovae: ejected mass as the dominant factor. MNRAS 452:3869

    Article  ADS  Google Scholar 

  • Nicholl M et al (2016) SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. ApJ 826:39

    Article  ADS  Google Scholar 

  • Nicholl M, Smartt SJ (2016) Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves. MNRAS 457:L79

    Article  ADS  Google Scholar 

  • Nomoto K et al (1993) A Type IIb model for supernova 1993J. Nature 364:507

    Article  ADS  Google Scholar 

  • Nugent PE et al (2011) Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star. Nature 480:344

    Article  ADS  Google Scholar 

  • Ofek EO et al (2007) SN 2006gy: an extremely luminous supernova in the galaxy NGC 1260. ApJ Lett 659:13

    Article  ADS  Google Scholar 

  • Ofek EO et al (2010) Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. ApJ 724:1396

    Article  ADS  Google Scholar 

  • Ofek EO et al (2013) X-Ray emission from supernovae in dense circumstellar matter environments: a search for collisionless shocks. ApJ 763:42

    Article  ADS  Google Scholar 

  • Ofek EO et al (2013) An outburst from a massive star 40 days before a supernova explosion. Nature 494:65

    Article  ADS  Google Scholar 

  • Ofek EO et al (2014a) Interaction-powered supernovae: rise-time versus peak-luminosity correlation and the shock-breakout velocity. ApJ 788:154

    Article  ADS  Google Scholar 

  • Ofek EO et al (2014b) Precursors prior to Type IIn supernova explosions are common: precursor rates, properties, and correlations. ApJ 789:104

    Article  ADS  Google Scholar 

  • Ofek EO et al (2017a) SN 2006gy: an extremely luminous supernova in the galaxy NGC 1260. ApJ 659:L13

    Article  ADS  Google Scholar 

  • Ofek EO et al (2017b) Interaction-powered supernovae: Hα emission line luminosity at maximum brightness. ApJ

    Google Scholar 

  • Pan Y-C et al (2015) 500 days of SN 2013dy: spectra and photometry from the ultraviolet to the infrared. MNRAS 452:4307

    Article  ADS  Google Scholar 

  • Parrent JT et al (2016) Line identifications of Type I supernovae: on the detection of Si II for these hydrogen-poor events. ApJ 820:75

    Article  ADS  Google Scholar 

  • Pastorello A et al (2004) Low-luminosity Type II supernovae: spectroscopic and photometric evolution. MNRAS 347:74

    Article  ADS  Google Scholar 

  • Pastorello A et al (2005) SN 1998A: explosion of a blue supergiant. MNRAS 360:950

    Article  ADS  Google Scholar 

  • Pastorello A et al (2006) SN 2005cs in M51 – I. The first month of evolution of a subluminous SN II plateau. MNRAS 370:1752

    Google Scholar 

  • Pastorello A et al (2007) A giant outburst two years before the core-collapse of a massive star. Nature 447:829

    Article  ADS  Google Scholar 

  • Pastorello A et al (2008a) Massive stars exploding in a He-rich circumstellar medium – I. Type Ibn (SN 2006jc-like) events. MNRAS 389:113

    Google Scholar 

  • Pastorello A et al (2008b) Massive stars exploding in a He-rich circumstellar medium – II. The transitional case of SN 2005la. MNRAS 389:131

    Google Scholar 

  • Pastorello A et al (2008c) The Type IIb SN 2008ax: spectral and light curve evolution. MNRAS 389:955

    Article  ADS  Google Scholar 

  • Pastorello A et al (2009) SN 2005cs in M51 – II. Complete evolution in the optical and the near-infrared. MNRAS 394:2266

    Google Scholar 

  • Pastorello A et al (2010) Ultra-bright optical transients are linked with Type Ic supernovae. ApJ 724:L16

    Article  ADS  Google Scholar 

  • Pastorello A et al (2012) SN 2009E: a faint clone of SN 1987A. A&A 537:A141

    Article  ADS  Google Scholar 

  • Pastorello A et al (2016) Massive stars exploding in a He-rich circumstellar medium – IX. SN 2014av, and characterization of Type Ibn SNe. MNRAS 456:853

    Google Scholar 

  • Patat F et al (2001) The Metamorphosis of SN 1998bw. ApJ 555:900–917

    Article  ADS  Google Scholar 

  • Perets HB et al (2010) A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465:322

    Article  ADS  Google Scholar 

  • Perley DA et al (2016) Host-galaxy properties of 32 Low-redshift superluminous supernovae from the Palomar Transient Factory. ApJ 830:13

    Article  ADS  Google Scholar 

  • Pian E et al (2006) An optical supernova associated with the X-ray flash XRF 060218. Nature 442:1011–1013

    Article  ADS  Google Scholar 

  • Podsiadlowski Ph et al (1993) The progenitor of supernova 1993J – A stripped supergiant in a binary system? Nature 364:509

    Article  ADS  Google Scholar 

  • Poznanski D et al (2010) An unusually fast-evolving supernova. Science 327:58

    Article  ADS  Google Scholar 

  • Prentice SJ et al (2016) The bolometric light curves and physical parameters of stripped-envelope supernovae. MNRAS 458:2973

    Article  ADS  Google Scholar 

  • Pun J et al (1995) Ultraviolet observations of SN 1987A with the IUE satellite. ApJS 99:223

    Article  ADS  Google Scholar 

  • Quimby RM et al (2011) Hydrogen-poor superluminous stellar explosions. Nature 474:487

    Article  ADS  Google Scholar 

  • Rajala AM et al (2005) Photometric typing analyses of three young supernovae observed with the robotic Palomar 60 Inch Telescope. PASP 117:132

    Article  ADS  Google Scholar 

  • Rest A et al (2011) Pushing the boundaries of conventional core-collapse supernovae: the extremely energetic supernova SN 2003ma. ApJ 729:88

    Article  ADS  Google Scholar 

  • Roming PWA et al (2009) Multi-wavelength properties of the Type IIb SN 2008ax. ApJ 704:L118

    Article  ADS  Google Scholar 

  • Rubin A et al (2016) Type II supernova energetics and comparison of light curves to shock-cooling models. ApJ 820:33

    Article  ADS  Google Scholar 

  • Rubin A, Gal-Yam A (2016) Unsupervised clustering of Type II supernova light curves. ApJ 828:111

    Article  ADS  Google Scholar 

  • Ruiz-Lapuente P et al (1992) Modeling the iron-dominated spectra of the Type IA supernova SN 1991T at premaximum. ApJ 387:L33

    Article  ADS  Google Scholar 

  • Ruiz-Lapuente P et al (1993) A possible low-mass Type Ia supernova. Nature 365:728

    Article  ADS  Google Scholar 

  • Sahu DK et al (2013) One year of monitoring of the Type IIb supernova SN 2011dh. MNRAS 433:2

    Article  ADS  Google Scholar 

  • Sanders NE et al (2012) SN 2010ay is a luminous and broad-lined Type Ic supernova within a low-metallicity host galaxy. ApJ 756:184

    Article  ADS  Google Scholar 

  • Scalzo RA et al (2010) Nearby supernova factory observations of SN 2007if: first total mass measurement of a super-Chandrasekhar-Mass progenitor. ApJ 713:1073

    Article  ADS  Google Scholar 

  • Schlegel EM (1990) A new subclass of Type II supernovae? MNRAS 244:269

    ADS  Google Scholar 

  • Schmidt BP et al (1993) The unusual supernova SN 1993J in the galaxy M81. Nature 364:600

    Article  ADS  Google Scholar 

  • Shivvers I (2015) Early emission from the Type IIn supernova 1998S at high resolution. ApJ 806:213

    Article  ADS  Google Scholar 

  • Silverman JM et al (2011) Berkeley supernova Ia program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae. MNRAS 425:1789

    Google Scholar 

  • Silverman JM et al (2012) Berkeley supernova Ia program – II. Initial analysis of spectra obtained near maximum brightness. MNRAS 425:1819

    Google Scholar 

  • Silverman JM et al (2013a) Type Ia supernovae strongly interacting with their circumstellar medium. ApJS 207:3

    Article  ADS  Google Scholar 

  • Silverman JM et al (2013b) Late-time spectral observations of the strongly interacting Type Ia supernova PTF11kx. ApJ 772:125

    Article  ADS  Google Scholar 

  • Silverman JM et al (2013c) SN 2000cx and SN 2013bh: extremely rare, nearly twin Type Ia supernovae. MNRAS 436:1225

    Article  ADS  Google Scholar 

  • Smartt SJ (2009) Progenitors of core-collapse supernovae. ARA&A 47:63

    Article  ADS  Google Scholar 

  • Smartt SJ et al (2015) PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. A&A 579:A40

    Article  ADS  Google Scholar 

  • Smith M et al (2016) DES14X3taz: a Type I superluminous supernova showing a luminous, rapidly cooling initial pre-peak bump. ApJ 818:L8

    Article  ADS  Google Scholar 

  • Smith N et al (2007) SN 2006gy: discovery of the most luminous supernova ever recorded, powered by the death of an extremely massive star like? Carinae. ApJ 666:1116

    Article  ADS  Google Scholar 

  • Smith N et al (2008) SN 2006tf: precursor eruptions and the optically thick regime of extremely luminous Type IIn supernovae. ApJ 686:467

    Article  ADS  Google Scholar 

  • Smith N et al (2011) A massive progenitor of the luminous Type IIn supernova 2010jl. ApJ 732:63

    Article  ADS  Google Scholar 

  • Smith N (2014) Mass loss: its effect on the evolution and fate of high-mass stars. ARA&A 52:487

    Article  ADS  Google Scholar 

  • Smith N et al (2015) PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae. MNRAS 449:1876

    Article  ADS  Google Scholar 

  • Soderberg AM et al (2004) Type Ic SN 2001em (off-axis GRB jet?), optical spectrum. GCN 2586

    Google Scholar 

  • Soderberg AM et al (2006) Late-time radio observations of 68 Type Ibc supernovae: strong constraints on off-axis gamma-ray bursts. ApJ 638:930

    Article  ADS  Google Scholar 

  • Soderberg AM et al (2008) An extremely luminous X-ray outburst at the birth of a supernova. Nature 453:469

    Article  ADS  Google Scholar 

  • Soderberg AM et al (2012) Panchromatic observations of SN 2011dh point to a compact progenitor star. ApJ 752:78

    Article  ADS  Google Scholar 

  • Stritzinger M et al (2009) The He-rich core-collapse supernova 2007Y: observations from X-ray to radio wavelengths. ApJ 696:713

    Article  ADS  Google Scholar 

  • Stritzinger M et al (2012) Multi-wavelength observations of the enduring Type IIn supernovae 2005ip and 2006jd. ApJ 756:173

    Article  ADS  Google Scholar 

  • Strotjohann NL et al (2015) Search for Precursor Eruptions among Type IIB Supernovae. ApJ 811:117

    Article  ADS  Google Scholar 

  • Sullivan M et al (2011) The subluminous and peculiar Type Ia supernova PTF 09dav. ApJ 732:118

    Article  ADS  Google Scholar 

  • Swartz DA et al (1993) Supernova 1993J as a spectroscopic link between Type II and Type Ib supernovae. Nature 365:232

    Article  ADS  Google Scholar 

  • Taddia F et al (2012) The Type II supernovae 2006V and 2006au: two SN 1987A-like events. A&A 537:A140

    Article  ADS  Google Scholar 

  • Taddia F et al (2013) Carnegie supernova project: observations of Type IIn supernovae. A&A 555:10

    Article  Google Scholar 

  • Taddia F et al (2015) Early-time light curves of Type Ib/c supernovae from the SDSS-II supernova survey. A&A 574:60

    Article  Google Scholar 

  • Taddia F et al (2016a) Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project. A&A 588:A5

    Article  ADS  Google Scholar 

  • Taddia F et al (2016b) iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor. A&A 592:A89

    Article  ADS  Google Scholar 

  • Tanaka M et al (2010) Spectropolarimetry of extremely luminous Type Ia supernova 2009dc: nearly spherical explosion of super-Chandrasekhar Mass white dwarf. ApJ 714:1209

    Article  ADS  Google Scholar 

  • Taubenberger S et al (2006) SN 2004aw: confirming diversity of Type Ic supernovae. MNRAS 371:1459

    Article  ADS  Google Scholar 

  • Taubenberger S et al (2009) Nebular emission-line profiles of Type Ib/c supernovae – probing the ejecta asphericity. MNRAS 397:677

    Article  ADS  Google Scholar 

  • Taubenberger S et al (2011) High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios. MNRAS 412:2735

    Article  ADS  Google Scholar 

  • Taubenberger S et al (2011) The He-rich stripped-envelope core-collapse supernova 2008ax. MNRAS 413:2140

    Article  ADS  Google Scholar 

  • Taubenberger S et al (2013) [O I] ⋋ ⋋ 6300, 6364 in the nebular spectrum of a subluminous Type Ia supernova. ApJ 775:L43

    Google Scholar 

  • Terreran G et al (2016) The multi-faceted Type II-L supernova 2014G from pre-maximum to nebular phase. MNRAS 462:137

    Article  ADS  Google Scholar 

  • Tominaga N et al (2005) The unique Type Ib upernova 2005bf: a WN star explosion model for peculiar light curves and spectra. ApJ 633:L97

    Article  ADS  Google Scholar 

  • Valenti S et al (2008) The carbon-rich Type Ic SN 2007gr: the photospheric phase. ApJL 673:L155

    Article  ADS  Google Scholar 

  • Valenti S et al (2011) SN 2009jf: a slow-evolving stripped-envelope core-collapse supernova. MNRAS 416:3138

    Article  ADS  Google Scholar 

  • Valenti S et al (2012) A spectroscopically normal Type Ic supernova from a very massive progenitor. ApJ 749:L28

    Article  ADS  Google Scholar 

  • Van Dyk SD et al (2011) The progenitor of supernova 2011dh/PTF11eon in Messier 51. ApJ 741:L28

    Article  ADS  Google Scholar 

  • Van Dyk SD et al (2014) The Type IIb supernova 2013df and its Cool Supergiant Progenitor. AJ 147:37

    Article  ADS  Google Scholar 

  • Vreeswijk PM et al (2014) The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission. ApJ 797:24

    Article  ADS  Google Scholar 

  • Vreeswijk PM et al (2016, in press) On the early-time excess emission in hydrogen-poor superluminous supernovae. ApJ. arXiv:1609.08145

    Google Scholar 

  • Waxman E et al (2007) GRB 060218: a relativistic supernova shock breakout. ApJ 667:351

    Article  ADS  Google Scholar 

  • Wheeler JC, Levreault R (1985) The peculiar Type I supernova in NGC 991. ApJ 294:L17

    Article  ADS  Google Scholar 

  • Wheeler JC, Harkness RP (1990) Type I supernovae. RPPh 53:1467

    ADS  Google Scholar 

  • White CJ et al (2015) Slow-speed supernovae from the Palomar Transient Factory: two channels. ApJ 799:52

    Article  ADS  Google Scholar 

  • Woosley SE, Bloom JS (2006) The supernova gamma-ray burst connection. ARA&A 44:507

    Article  ADS  Google Scholar 

  • Yan L et al (2015) Detection of broad H? emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. ApJ 814:108

    Article  ADS  Google Scholar 

  • Yaron O, Gal-Yam A (2012) WISeREP-an interactive supernova data repository. PASP 124:668

    Article  ADS  Google Scholar 

  • Yaron O et al (2017, in press) Nature. arXiv:1701.02596

    Google Scholar 

  • Zhang T et al (2012) Type IIn supernova SN 2010jl: optical observations for over 500 Days after explosion. AJ 144:131

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from the Kimmel Award. I thank A. Rubin, M. Sullivan, A. V. Filippenko, and I. Shivvers for contributing data, analysis, and advice. This work benefited enormously from that WISeREP spectroscopic database (Yaron and Gal-Yam 2012) that would not have been made possible without the vision, creativity, and skill of O. Yaron, the hard work of I. Manulis, and the numerous members of the supernova research community that made their data publicly available, for which I deeply thank them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishay Gal-Yam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gal-Yam, A. (2017). Observational and Physical Classification of Supernovae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_35

Download citation

Publish with us

Policies and ethics