Microvascular Networks and Models, In vitro Formation

  • Ulrich Blache
  • Julien Guerrero
  • Sinan Güven
  • Agnes Silvia Klar
  • Arnaud ScherberichEmail author
Living reference work entry
Part of the Reference Series in Biomedical Engineering book series (RSBE)


The microvasculature involves the part of the vascular system made of vessels with diameters inferior to 100 μm. There are many culture models allowing for the formation of microvascular networks in vitro, developed either to study cellular and/or molecular aspects of angiogenesis and vasculogenesis or to prevascularize engineered tissues. In this chapter, we describe the cellular (Sect. 2) and material (Sect. 3) components used to generate such in vitro models. Innovative, advanced bioengineering processes, based on bioprinting or microfluidics, to create microvascular networks are also described (Sect. 4).


  1. Almond A (2007) Hyaluronan. Cell Mol Life Sci 64(13):1591–1596CrossRefGoogle Scholar
  2. Alonzo LF, Moya ML, Shirure VS, George SC (2015) Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication. Lab Chip 15(17):3521–3529CrossRefGoogle Scholar
  3. Armulik A, Abramsson A, Betsholtz C (2005a) Endothelial/pericyte interactions. Circ Res 97(6):512–523CrossRefGoogle Scholar
  4. Armulik A, Abramsson A, Betsholtz C (2005b) Endothelial/pericyte interactions. Circ Res 97(6):512–523CrossRefGoogle Scholar
  5. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215CrossRefGoogle Scholar
  6. Arnaoutova I, Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 5(4):628–635CrossRefGoogle Scholar
  7. Arslan-Yildiz A, Assal RE, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8(1):014103CrossRefGoogle Scholar
  8. Asahara T, Murohara T, Sullivan A, Silver M, vanderZee R, Li T et al (1997a) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967CrossRefGoogle Scholar
  9. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997b) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967CrossRefGoogle Scholar
  10. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228CrossRefGoogle Scholar
  11. Au P, Tam J, Fukumura D, Jain RK (2008a) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111(9):4551–4558CrossRefGoogle Scholar
  12. Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM et al (2008b) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111(3):1302–1305CrossRefGoogle Scholar
  13. Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS (2013) Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13(16):3246–3252CrossRefGoogle Scholar
  14. Balconi G, Spagnuolo R, Dejana E (2000) Development of endothelial cell lines from embryonic stem cells: a tool for studying genetically manipulated endothelial cells in vitro. Arterioscler Thromb Vasc Biol 20(6):1443–1451CrossRefGoogle Scholar
  15. Bautch VL, Redick SD, Scalia A, Harmaty M, Carmeliet P, Rapoport R (2000) Characterization of the vasculogenic block in the absence of vascular endothelial growth factor-a. Blood 95(6):1979–1987Google Scholar
  16. Bayless KJ, Davis GE (2002) The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci 115(Pt 6):1123–1136Google Scholar
  17. Bayless KJ, Salazar R, Davis GE (2000) RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. Am J Pathol 156(5):1673–1683CrossRefGoogle Scholar
  18. Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA et al (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114(Pt 15):2755–2773Google Scholar
  19. Benton JA, DeForest CA, Vivekanandan V, Anseth KS (2009) Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng Part A 15(11):3221–3230CrossRefGoogle Scholar
  20. Bersini S, Yazdi IK, Talo G, Shin SR, Moretti M, Khademhosseini A (2016) Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol Adv 34(6):1113–1130CrossRefGoogle Scholar
  21. Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL et al (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13):2202–2211CrossRefGoogle Scholar
  22. Berthod F, Germain L, Tremblay N, Auger FA (2006) Extracellular matrix deposition by fibroblasts is necessary to promote capillary-like tube formation in vitro. J Cell Physiol 207(2):491–498CrossRefGoogle Scholar
  23. Betsholtz C, Lindblom P, Gerhardt H (2005) Role of pericytes in vascular morphogenesis. EXS (94):115–125Google Scholar
  24. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772CrossRefGoogle Scholar
  25. Blache U, Metzger S, Vallmajo-Martin Q, Martin I, Djonov V, Ehrbar M (2016) Dual role of mesenchymal stem cells allows for microvascularized bone tissue-like environments in PEG hydrogels. Adv Healthc Mater 5(4):489–498CrossRefGoogle Scholar
  26. Black AF, Berthod F, L'Heureux N, Germain L, Auger FA (1998) Vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12(13):1331–1340Google Scholar
  27. Bouis D, Hospers GA, Meijer C, Molema G, Mulder NH (2001) Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis 4(2):91–102CrossRefGoogle Scholar
  28. Bray LJ, Binner M, Holzheu A, Friedrichs J, Freudenberg U, Hutmacher DW et al (2015) Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 53:609–620CrossRefGoogle Scholar
  29. Brudno Y, Ennett-Shepard AB, Chen RR, Aizenberg M, Mooney DJ (2013) Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials 34(36):9201–9209CrossRefGoogle Scholar
  30. Burdick JA (2011) Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41–H56CrossRefGoogle Scholar
  31. Caduff JH, Fischer LC, Burri PH (1986) Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216(2):154–164CrossRefGoogle Scholar
  32. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395CrossRefGoogle Scholar
  33. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH et al (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100(2):263–272CrossRefGoogle Scholar
  34. Chen X, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CC et al (2009) Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A 15(6):1363–1371CrossRefGoogle Scholar
  35. Chen X, Aledia AS, Popson SA, Him L, Hughes CC, George SC (2010) Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Eng Part A 16(2):585–594CrossRefGoogle Scholar
  36. Chen JY, Feng L, Zhang HL, Li JC, Yang XW, Cao XL et al (2012a) Differential regulation of bone marrow-derived endothelial progenitor cells and endothelial outgrowth cells by the notch signaling pathway. PLoS One 7(10):e43643CrossRefGoogle Scholar
  37. Chen YC, Lin RZ, Qi H, Yang Y, Bae H, Melero-Martin JM et al (2012b) Functional human vascular network generated in Photocrosslinkable Gelatin methacrylate hydrogels. Adv Funct Mater 22(10):2027–2039CrossRefGoogle Scholar
  38. Chen P, Luo Z, Guven S, Tasoglu S, Ganesan AV, Weng A et al (2014) Microscale assembly directed by liquid-based template. Adv Mater 26(34):5936–5941CrossRefGoogle Scholar
  39. Chen P, Guven S, Usta OB, Yarmush ML, Demirci U (2015) Biotunable acoustic node assembly of organoids. Adv Healthc Mater 4(13):1937–1943CrossRefGoogle Scholar
  40. Cheng CC, Chang SJ, Chueh YN, Huang TS, Huang PH, Cheng SM et al (2013) Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics 14:182CrossRefGoogle Scholar
  41. Choi K (2002) The hemangioblast: a common progenitor of hematopoietic and endothelial cells. J Hematother Stem Cell Res 11(1):91–101CrossRefGoogle Scholar
  42. Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M et al (2009) Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 27(3):559–567CrossRefGoogle Scholar
  43. Chung ES, Chauhan SK, Jin Y, Nakao S, Hafezi-Moghadam A, van Rooijen N et al (2009) Contribution of macrophages to angiogenesis induced by vascular endothelial growth factor receptor-3-specific ligands. Am J Pathol 175(5):1984–1992CrossRefGoogle Scholar
  44. Chwalek K, Tsurkan MV, Freudenberg U, Werner C (2014a) Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Sci Rep 4:4414CrossRefGoogle Scholar
  45. Chwalek K, Bray LJ, Werner C (2014b) Tissue-engineered 3D tumor angiogenesis models: potential technologies for anti-cancer drug discovery. Adv Drug Deliv Rev 79-80:30–39CrossRefGoogle Scholar
  46. Clough G (1991) Relationship between microvascular permeability and ultrastructure. Prog Biophys Mol Biol 55(1):47–69CrossRefGoogle Scholar
  47. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266CrossRefGoogle Scholar
  48. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313CrossRefGoogle Scholar
  49. Cuchiara MP, Gould DJ, McHale MK, Dickinson ME, West JL (2012) Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels. Adv Funct Mater 22(21):4511–4518CrossRefGoogle Scholar
  50. Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30(31):6221–6227CrossRefGoogle Scholar
  51. da Graca B, Filardo G (2011) Vascular bioprinting. Am J Cardiol 107(1):141–142CrossRefGoogle Scholar
  52. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97(11):1093–1107CrossRefGoogle Scholar
  53. Davis GE, Black SM, Bayless KJ (2000) Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices. In Vitro Cell Dev Biol Anim 36(8):513–519CrossRefGoogle Scholar
  54. Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165CrossRefGoogle Scholar
  55. Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E et al (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24(7):909–969Google Scholar
  56. Djonov V, Baum O, Burri PH (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314(1):107–117CrossRefGoogle Scholar
  57. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45Google Scholar
  58. Doulatov S, Notta F, Laurenti E, Dick JE (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10(2):120–136CrossRefGoogle Scholar
  59. Ehrbar M, Zeisberger SM, Raeber GP, Hubbell JA, Schnell C, Zisch AH (2008) The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials 29(11):1720–1729CrossRefGoogle Scholar
  60. Eming SA, Brachvogel B, Odorisio T, Koch M (2007) Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem 42(3):115–170CrossRefGoogle Scholar
  61. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840CrossRefGoogle Scholar
  62. Feder J, Marasa JC, Olander JV (1983) The formation of capillary-like tubes by calf aortic endothelial cells grown in vitro. J Cell Physiol 116(1):1–6CrossRefGoogle Scholar
  63. Feng Q, SJ L, Klimanskaya I, Gomes I, Kim D, Chung Y et al (2010) Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28(4):704–712CrossRefGoogle Scholar
  64. Flamme I, Risau W (1992) Induction of vasculogenesis and hematopoiesis in vitro. Development 116(2):435–439Google Scholar
  65. Flamme I, Baranowski A, Risau W (1993) A new model of vasculogenesis and angiogenesis in vitro as compared with vascular growth in the avian area vasculosa. Anat Rec 237(1):49–57CrossRefGoogle Scholar
  66. Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288(5791):551–556CrossRefGoogle Scholar
  67. Fuchs S, Hermanns MI, Kirkpatrick CJ (2006a) Retention of a differentiated endothelial phenotype by outgrowth endothelial cells isolated from human peripheral blood and expanded in long-term cultures. Cell Tissue Res 326(1):79–92CrossRefGoogle Scholar
  68. Fuchs S, Motta A, Migliaresi C, Kirkpatrick CJ (2006b) Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials 27(31):5399–5408CrossRefGoogle Scholar
  69. Fuchs S, Jiang X, Schmidt H, Dohle E, Ghanaati S, Orth C et al (2009) Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 30(7):1329–1338CrossRefGoogle Scholar
  70. Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638CrossRefGoogle Scholar
  71. Gallagher G, Sumpio BE (1997) Vascular endothelial cells. In: Sumpio BE, Sidawy AS (eds) Basic science of vascular disease. Futura Publishing Co, Mt. Kisco, pp 151–186Google Scholar
  72. Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F (2016) 4D bioprinting for biomedical applications. Trends BiotechnolGoogle Scholar
  73. Garvin KA, Dalecki D, Hocking DC (2011) Vascularization of three-dimensional collagen hydrogels using ultrasound standing wave fields. Ultrasound Med Biol 37(11):1853–1864CrossRefGoogle Scholar
  74. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M et al (2000) Vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95(10):3106–3112Google Scholar
  75. Ghajar CM, Chen X, Harris JW, Suresh V, Hughes CC, Jeon NL et al (2008) The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys J 94(5):1930–1941CrossRefGoogle Scholar
  76. Ghajar CM, Kachgal S, Kniazeva E, Mori H, Costes SV, George SC et al (2010) Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp Cell Res 316(5):813–825CrossRefGoogle Scholar
  77. Gobin AS, West JL (2002) Cell migration through defined, synthetic ECM analogs. FASEB J 16(7):751–753Google Scholar
  78. Grant DS, Tashiro K, Segui-Real B, Yamada Y, Martin GR, Kleinman HK (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58(5):933–943CrossRefGoogle Scholar
  79. Guerrero J, Oliveira H, Catros S, Siadous R, Derkaoui SM, Bareille R et al (2015) The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis. Tissue Eng Part A 21(5-6):861–874CrossRefGoogle Scholar
  80. Hanjaya-Putra D, Bose V, Shen YI, Yee J, Khetan S, Fox-Talbot K et al (2011) Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118(3):804–815CrossRefGoogle Scholar
  81. Hanjaya-Putra D, Wong KT, Hirotsu K, Khetan S, Burdick JA, Gerecht S (2012) Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials 33(26):6123–6131CrossRefGoogle Scholar
  82. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055Google Scholar
  83. Higashiyama S, Abraham JA, Klagsbrun M (1993) Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J Cell Biol 122(4):933–940CrossRefGoogle Scholar
  84. Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N, Nishikawa S (1999a) Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood 93(4):1253–1263Google Scholar
  85. Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N, Nishikawa SI (1999b) Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood 93(4):1253–1263Google Scholar
  86. Hirschi KK, Rohovsky SA, D'Amore PA (1998) PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141(3):805–814CrossRefGoogle Scholar
  87. Homma K, Sone M, Taura D, Yamahara K, Suzuki Y, Takahashi K et al (2010) Sirt1 plays an important role in mediating greater functionality of human ES/iPS-derived vascular endothelial cells. Atherosclerosis 212(1):42–47CrossRefGoogle Scholar
  88. Hsu CW, Poche RA, Saik JE, Ali S, Wang S, Yosef N et al (2015) Improved angiogenesis in response to localized delivery of macrophage-recruiting molecules. PLoS One 10(7):e0131643CrossRefGoogle Scholar
  89. Ingber DE, Folkman J (1989) Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 109(1):317–330CrossRefGoogle Scholar
  90. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760CrossRefGoogle Scholar
  91. Irwin D, Helm K, Campbell N, Imamura M, Fagan K, Harral J et al (2007) Neonatal lung side population cells demonstrate endothelial potential and are altered in response to hyperoxia-induced lung simplification. Am J Physiol Lung Cell Mol Physiol 293(4):L941–L951CrossRefGoogle Scholar
  92. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M et al (2000) Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med 6(2):88–95Google Scholar
  93. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693CrossRefGoogle Scholar
  94. Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6(30):1–10CrossRefGoogle Scholar
  95. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M et al (2015) Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A 112(1):214–219CrossRefGoogle Scholar
  96. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17(1):109–118CrossRefGoogle Scholar
  97. Kachgal S, Putnam AJ (2011) Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis 14(1):47–59CrossRefGoogle Scholar
  98. Kachgal S, Carrion B, Janson IA, Putnam AJ (2012) Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1-MMP. J Cell Physiol 227(11):3546–3555CrossRefGoogle Scholar
  99. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97(7):3422–3427CrossRefGoogle Scholar
  100. Kamath S, Lip GY (2003) Fibrinogen: biochemistry, epidemiology and determinants. QJM 96(10):711–729CrossRefGoogle Scholar
  101. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 98(19):10716–10721CrossRefGoogle Scholar
  102. Khetan S, Burdick JA (2010) Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31(32):8228–8234CrossRefGoogle Scholar
  103. Kim KW, Song JH (2017) Emerging roles of lymphatic vasculature in immunity. Immune Netw 17(1):68–76CrossRefGoogle Scholar
  104. Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13(8):1489–1500CrossRefGoogle Scholar
  105. Klar AS, Guven S, Biedermann T, Luginbuhl J, Bottcher-Haberzeth S, Meuli-Simmen C et al (2014) Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials 35(19):5065–5078CrossRefGoogle Scholar
  106. Klar AS, Guven S, Zimoch J, Zapiorkowska NA, Biedermann T, Bottcher-Haberzeth S et al (2016) Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute. Pediatr Surg Int 32(1):17–27CrossRefGoogle Scholar
  107. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15(5):378–386CrossRefGoogle Scholar
  108. Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21(24):6188–6193CrossRefGoogle Scholar
  109. Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW et al (1986) Basement membrane complexes with biological activity. Biochemistry 25(2):312–318CrossRefGoogle Scholar
  110. Kleinstreuer NC, Judson RS, Reif DM, Sipes NS, Singh AV, Chandler KJ et al (2011) Environmental impact on vascular development predicted by high-throughput screening. Environ Health Perspect 119(11):1596–1603CrossRefGoogle Scholar
  111. Kniazeva E, Putnam AJ (2009) Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am J Physiol Cell Physiol 297(1):C179–C187CrossRefGoogle Scholar
  112. Koh W, Stratman AN, Sacharidou A, Davis GE (2008) Vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443:83–101CrossRefGoogle Scholar
  113. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130CrossRefGoogle Scholar
  114. Krah K, Mironov V, Risau W, Flamme I (1994) Induction of vasculogenesis in quail blastodisc-derived embryoid bodies. Dev Biol 164(1):123–132CrossRefGoogle Scholar
  115. Kreuger J, Phillipson M (2016) Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov 15(2):125–142CrossRefGoogle Scholar
  116. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107(4):1589–1598CrossRefGoogle Scholar
  117. Kucukgul C, Ozler SB, Inci I, Karakas E, Irmak S, Gozuacik D et al (2015) 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol Bioeng 112(4):811–821CrossRefGoogle Scholar
  118. Kunder CA, St John AL, Abraham SN (2011) Mast cell modulation of the vascular and lymphatic endothelium. Blood 118(20):5383–5393CrossRefGoogle Scholar
  119. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470CrossRefGoogle Scholar
  120. Kusuma S, Shen YI, Hanjaya-Putra D, Mali P, Cheng L, Gerecht S (2013) Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci U S A 110(31):12601–12606CrossRefGoogle Scholar
  121. Lesman A, Koffler J, Atlas R, Blinder YJ, Kam Z, Levenberg S (2011) Engineering vessel-like networks within multicellular fibrin-based constructs. Biomaterials 32(31):7856–7869CrossRefGoogle Scholar
  122. Levenberg S (2005) Engineering blood vessels from stem cells: recent advances and applications. Curr Opin Biotechnol 16(5):516–523CrossRefGoogle Scholar
  123. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 99(7):4391–4396CrossRefGoogle Scholar
  124. Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci U S A 100(22):12741–12746CrossRefGoogle Scholar
  125. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23(7):879–884CrossRefGoogle Scholar
  126. Li S, Li B, Jiang H, Wang Y, Qu M, Duan H et al (2013) Macrophage depletion impairs corneal wound healing after autologous transplantation in mice. PLoS One 8(4):e61799CrossRefGoogle Scholar
  127. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105(1):71–77CrossRefGoogle Scholar
  128. Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T, Tamura T et al (2008) Characterization of adipose tissue-derived cells isolated with the Celution system. Cytotherapy 10(4):417–426CrossRefGoogle Scholar
  129. Liu Y, Teoh SH, Chong MS, Lee ES, Mattar CN, Randhawa NK et al (2012) Vasculogenic and osteogenesis-enhancing potential of human umbilical cord blood endothelial colony-forming cells. Stem Cells 30(9):1911–1924CrossRefGoogle Scholar
  130. Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA et al (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc 11(4):727–746CrossRefGoogle Scholar
  131. Looney MR, Matthay MA (2009) Neutrophil sandwiches injure the microcirculation. Nat Med 15(4):364–366CrossRefGoogle Scholar
  132. Lord ST (2007) Fibrinogen and fibrin: scaffold proteins in hemostasis. Curr Opin Hematol 14(3):236–241CrossRefGoogle Scholar
  133. Lutolf MP, Hubbell JA (2003) Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4(3):713–722CrossRefGoogle Scholar
  134. Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R et al (2003a) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518CrossRefGoogle Scholar
  135. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB et al (2003b) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100(9):5413–5418CrossRefGoogle Scholar
  136. Maciag T, Kadish J, Wilkins L, Stemerman MB, Weinstein R (1982) Organizational behavior of human umbilical vein endothelial cells. J Cell Biol 94(3):511–520CrossRefGoogle Scholar
  137. Madri JA, Williams SK (1983) Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol 97(1):153–165CrossRefGoogle Scholar
  138. Majka SM, Jackson KA, Kienstra KA, Majesky MW, Goodell MA, Hirschi KK (2003) Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J Clin Invest 111(1):71–79CrossRefGoogle Scholar
  139. Marino D, Luginbuhl J, Scola S, Meuli M, Reichmann E (2014) Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6(221):221ra14CrossRefGoogle Scholar
  140. Masuda H, Asahara T (2003) Post-natal endothelial progenitor cells for neovascularization in tissue regeneration. Cardiovasc Res 58(2):390–398CrossRefGoogle Scholar
  141. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular Astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103CrossRefGoogle Scholar
  142. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H et al (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15(20):5647–5658Google Scholar
  143. Medina RJ, O'Neill CL, Sweeney M, Guduric-Fuchs J, Gardiner TA, Simpson DA et al (2010) Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genet 3:18Google Scholar
  144. Melchiorri AJ, Nguyen BNB, Fisher JP (2014) Mesenchymal stem cells: roles and relationships in vascularization. Tissue Eng Part B-Re 20(3):218–228CrossRefGoogle Scholar
  145. Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110(3):349–355CrossRefGoogle Scholar
  146. Mironov V, Kasyanov V, Markwald RR (2008) Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol 26(6):338–344CrossRefGoogle Scholar
  147. Montano I, Schiestl C, Schneider J, Pontiggia L, Luginbuhl J, Biedermann T et al (2010) Formation of human capillaries in vitro: the engineering of prevascularized matrices. Tissue Eng Part A 16(1):269–282CrossRefGoogle Scholar
  148. Montesano R, Orci L (1985) Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42(2):469–477CrossRefGoogle Scholar
  149. Montesano R, Orci L, Vassalli P (1983) Vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97(5 Pt 1):1648–1652CrossRefGoogle Scholar
  150. Montesano R, Mouron P, Orci L (1985) Vascular outgrowths from tissue explants embedded in fibrin or collagen gels: a simple in vitro model of angiogenesis. Cell Biol Int Rep 9(10):869–875CrossRefGoogle Scholar
  151. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A 83(19):7297–7301CrossRefGoogle Scholar
  152. Montesano R, Pepper MS, Vassalli JD, Orci L (1987) Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J Cell Physiol 132(3):509–516CrossRefGoogle Scholar
  153. Moon JJ, Saik JE, Poche RA, Leslie-Barbick JE, Lee SH, Smith AA et al (2010) Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31(14):3840–3847CrossRefGoogle Scholar
  154. Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A et al (2008) A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res 314(3):430–440CrossRefGoogle Scholar
  155. Naldini A, Carraro F (2005) Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy 4(1):3–8CrossRefGoogle Scholar
  156. Nguyen DH, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA et al (2013) Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A 110(17):6712–6717CrossRefGoogle Scholar
  157. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544CrossRefGoogle Scholar
  158. Nicosia RF, Madri JA (1987) The microvascular extracellular matrix. Developmental changes during angiogenesis in the aortic ring-plasma clot model. Am J Pathol 128(1):78–90Google Scholar
  159. Nicosia RF, Tchao R, Leighton J (1982) Histotypic angiogenesis in vitro: light microscopic, ultrastructural, and radioautographic studies. In Vitro 18(6):538–549CrossRefGoogle Scholar
  160. Nicosia RF, Tchao R, Leighton J (1986) Interactions between newly formed endothelial channels and carcinoma cells in plasma clot culture. Clin Exp Metastasis 4(2):91–104CrossRefGoogle Scholar
  161. Nishikawa S, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H (1998) Progressive lineage analysis by cell sorting and culture identifies FLK1(+)VE-cadherin(+) cells at a diverging point of endothelial and hemopoietic lineages. Development 125(9):1747–1757Google Scholar
  162. Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S et al (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 21(12):1546–1558CrossRefGoogle Scholar
  163. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917CrossRefGoogle Scholar
  164. Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63(4-5):300–311CrossRefGoogle Scholar
  165. Olander JV, Bremer ME, Marasa JC, Feder J (1985) Fibrin-enhanced endothelial cell organization. J Cell Physiol 125(1):1–9CrossRefGoogle Scholar
  166. Oyama T, Nagai T, Wada H, Naito AT, Matsuura K, Iwanaga K et al (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176(3):329–341CrossRefGoogle Scholar
  167. Park KM, Gerecht S (2014) Harnessing developmental processes for vascular engineering and regeneration. Development 141(14):2760–2769CrossRefGoogle Scholar
  168. Park HJ, Zhang Y, Georgescu SP, Johnson KL, Kong D, Galper JB (2006) Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev 2(2):93–102CrossRefGoogle Scholar
  169. Park YK, TY T, Lim SH, Clement IJ, Yang SY, Kamm RD (2014) Microvessel growth and Remodeling within a three-dimensional microfluidic environment. Cell Mol Bioeng 7(1):15–25CrossRefGoogle Scholar
  170. Peck M, Gebhart D, Dusserre N, McAllister TN, L'Heureux N (2012) The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 195(1-2):144–158CrossRefGoogle Scholar
  171. Pedersen TO, Blois AL, Xue Y, Xing Z, Sun Y, Finne-Wistrand A et al (2014) Mesenchymal stem cells induce endothelial cell quiescence and promote capillary formation. Stem Cell Res Ther 5(1):23CrossRefGoogle Scholar
  172. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95(3):952–958Google Scholar
  173. Pelletier L, Regnard J, Fellmann D, Charbord P (2000) An in vitro model for the study of human bone marrow angiogenesis: role of hematopoietic cytokines. Lab Invest 80(4):501–511CrossRefGoogle Scholar
  174. Phelps EA, Garcia AJ (2010) Engineering more than a cell: vascularization strategies in tissue engineering. Curr Opin Biotechnol 21(5):704–709CrossRefGoogle Scholar
  175. Phelps EA, Landazuri N, Thule PM, Taylor WR, Garcia AJ (2010) Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci U S A 107(8):3323–3328CrossRefGoogle Scholar
  176. Piskin S, Undar A, Pekkan K (2015) Computational Modeling of neonatal cardiopulmonary bypass Hemodynamics with full circle of Willis anatomy. Artif Organs 39(10):E164–E175CrossRefGoogle Scholar
  177. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R et al (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109(5):656–663CrossRefGoogle Scholar
  178. Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9(4):259–270CrossRefGoogle Scholar
  179. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712CrossRefGoogle Scholar
  180. Rafii S, Shapiro F, Rimarachin J, Nachman RL, Ferris B, Weksler B et al (1994) Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84(1):10–19Google Scholar
  181. Rao RR, Peterson AW, Ceccarelli J, Putnam AJ, Stegemann JP (2012) Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis 15(2):253–264CrossRefGoogle Scholar
  182. Rathjen PD, Lake J, Whyatt LM, Bettess MD, Rathjen J (1998) Properties and uses of embryonic stem cells: prospects for application to human biology and gene therapy. Reprod Fert Develop 10(1):31–47CrossRefGoogle Scholar
  183. Risau W (1991) Embryonic angiogenesis factors. Pharmacol Therapeut 51(3):371–376CrossRefGoogle Scholar
  184. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674CrossRefGoogle Scholar
  185. Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R et al (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102(3):471–478Google Scholar
  186. Roudsari LC, Jeffs SE, Witt AS, Gill BJ, West JL (2016) A 3D poly(ethylene glycol)-based tumor angiogenesis model to study the influence of vascular cells on lung tumor cell behavior. Sci Rep 6:32726CrossRefGoogle Scholar
  187. Rouwkema J, Khademhosseini A (2016) Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol. 34(9):733–45.
  188. Sage EH, Vernon RB (1994) Regulation of angiogenesis by extracellular matrix: the growth and the glue. Journal of hypertension supplement : official journal of the international society of. Hypertension 12(10):S145–S152Google Scholar
  189. Sakaguchi K, Shimizu T, Horaguchi S, Sekine H, Yamato M, Umezu M et al (2013) In vitro engineering of vascularized tissue surrogates. Sci Rep 3:1316CrossRefGoogle Scholar
  190. Sala A, Hanseler P, Ranga A, Lutolf MP, Voros J, Ehrbar M et al (2011) Engineering 3D cell instructive microenvironments by rational assembly of artificial extracellular matrices and cell patterning. Integr Biol 3(11):1102–1111CrossRefGoogle Scholar
  191. Salazar R, Bell SE, Davis GE (1999) Coordinate induction of the actin cytoskeletal regulatory proteins gelsolin, vasodilator-stimulated phosphoprotein, and profilin during capillary morphogenesis in vitro. Exp Cell Res 249(1):22–32CrossRefGoogle Scholar
  192. Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S (2003) VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 101(1):168–172CrossRefGoogle Scholar
  193. Scherberich A, Galli R, Jaquiery C, Farhadi J, Martin I (2007) Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells 25(7):1823–1829CrossRefGoogle Scholar
  194. Scherberich A, Muller AM, Schafer DJ, Banfi A, Martin I (2010) Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts. J Cell Physiol 225(2):348–353CrossRefGoogle Scholar
  195. Schuh AC, Faloon P, QL H, Bhimani M, Choi K (1999) Vitro hematopoietic and endothelial potential of flk-1(−/−) embryonic stem cells and embryos. Proc Natl Acad Sci U S A 96(5):2159–2164CrossRefGoogle Scholar
  196. Shepherd BR, Chen HY, Smith CM, Gruionu G, Williams SK, Hoying JB (2004) Rapid perfusion and network remodeling in a microvascular construct after implantation. Arterioscler Thromb Vasc Biol 24(5):898–904CrossRefGoogle Scholar
  197. Shi Q, Rafii S, MH W, Wijelath ES, Yu C, Ishida A et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92(2):362–367Google Scholar
  198. Shi Y, Kramer G, Schroder A, Kirkpatrick CJ, Seekamp A, Schmidt H et al (2014) Early endothelial progenitor cells as a source of myeloid cells to improve the pre-vascularisation of bone constructs. Eur Cell Mater 27:64–79. discussion 79–80CrossRefGoogle Scholar
  199. Shin Y, Jeon JS, Han S, Jung GS, Shin S, Lee SH et al (2011) In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab Chip 11(13):2175–2181CrossRefGoogle Scholar
  200. Sieminski AL, Hebbel RP, Gooch KJ (2004) The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp Cell Res 297(2):574–584CrossRefGoogle Scholar
  201. Sieveking DP, Buckle A, Celermajer DS, Ng MK (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51(6):660–668CrossRefGoogle Scholar
  202. Sims DE (1986) The pericyte – a review. Tissue Cell 18(2):153–174CrossRefGoogle Scholar
  203. Sims DE (1991) Recent advances in pericyte biology – implications for health and disease. Can J Cardiol 7(10):431–443Google Scholar
  204. Singh RK, Seliktar D, Putnam AJ (2013) Capillary morphogenesis in PEG-collagen hydrogels. Biomaterials 34(37):9331–9340CrossRefGoogle Scholar
  205. Skardal A, Zhang J, Prestwich GD (2010) Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31(24):6173–6181CrossRefGoogle Scholar
  206. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21(32-33):3307–3329CrossRefGoogle Scholar
  207. Smith AG (1992) Mouse embryo stem cells: their identification, propagation and manipulation. Semin Cell Biol 3(6):385–399CrossRefGoogle Scholar
  208. Smith AO, Bowers SL, Stratman AN, Davis GE (2013) Hematopoietic stem cell cytokines and fibroblast growth factor-2 stimulate human endothelial cell-pericyte tube co-assembly in 3D fibrin matrices under serum-free defined conditions. PLoS One 8(12):e85147CrossRefGoogle Scholar
  209. Sobrino A, Phan DT, Datta R, Wang X, Hachey SJ, Romero-Lopez M et al (2016) 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 6:31589CrossRefGoogle Scholar
  210. Sooppan R, Paulsen SJ, Han J, Ta AH, Dinh P, Gaffey AC et al (2016) In vivo anastomosis and perfusion of a three-dimensionally-printed construct containing microchannel networks. Tissue Eng Part C Methods 22(1):1–7CrossRefGoogle Scholar
  211. Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW et al (2014) The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15):4477–4488CrossRefGoogle Scholar
  212. Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114(24):5091–5101CrossRefGoogle Scholar
  213. Stratman AN, Davis MJ, Davis GE (2011) VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood 117(14):3709–3719CrossRefGoogle Scholar
  214. Sun G, Shen YI, Kusuma S, Fox-Talbot K, Steenbergen CJ, Gerecht S (2011) Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 32(1):95–106CrossRefGoogle Scholar
  215. Susienka MJ, Medici D (2013) Vascular endothelium as a novel source of stem cells for bioengineering. Biomatter 3(3):e24647CrossRefGoogle Scholar
  216. Szoke K, Beckstrom KJ, Brinchmann JE (2012) Human adipose tissue as a source of cells with angiogenic potential. Cell Transplant 21(1):235–250CrossRefGoogle Scholar
  217. Taura D, Sone M, Homma K, Oyamada N, Takahashi K, Tamura N et al (2009) Induction and isolation of vascular cells from human induced pluripotent stem cells–brief report. Arterioscler Thromb Vasc Biol 29(7):1100–1103CrossRefGoogle Scholar
  218. ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8(11):857–869CrossRefGoogle Scholar
  219. Tennent GA, Brennan SO, Stangou AJ, O'Grady J, Hawkins PN, Pepys MB (2007) Human plasma fibrinogen is synthesized in the liver. Blood 109(5):1971–1974CrossRefGoogle Scholar
  220. Tice RR, Austin CP, Kavlock RJ, Bucher JR (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect 121(7):756–765CrossRefGoogle Scholar
  221. Tille JC, Pepper MS (2002) Mesenchymal cells potentiate vascular endothelial growth factor-induced angiogenesis in vitro. Exp Cell Res 280(2):179–191CrossRefGoogle Scholar
  222. Tremblay PL, Berthod F, Germain L, Auger FA (2005a) Vitro evaluation of the angiostatic potential of drugs using an endothelialized tissue-engineered connective tissue. J Pharmacol Exp Ther 315(2):510–516CrossRefGoogle Scholar
  223. Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA (2005b) Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5(5):1002–1010CrossRefGoogle Scholar
  224. Tsurkan MV, Chwalek K, Prokoph S, Zieris A, Levental KR, Freudenberg U et al (2013) Defined polymer-peptide conjugates to form cell-instructive starPEG-heparin matrices in situ. Adv Mater 25(18):2606–2610CrossRefGoogle Scholar
  225. Unger RE, Krump-Konvalinkova V, Peters K, Kirkpatrick CJ (2002) In vitro expression of the endothelial phenotype: comparative study of primary isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R. Microvasc Res 64(3):384–397CrossRefGoogle Scholar
  226. Unger RE, Peters K, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ (2004a) Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials 25(21):5137–5146CrossRefGoogle Scholar
  227. Unger RE, Wolf M, Peters K, Motta A, Migliaresi C, James Kirkpatrick C (2004b) Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering. Biomaterials 25(6):1069–1075CrossRefGoogle Scholar
  228. Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M et al (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28(27):3965–3976CrossRefGoogle Scholar
  229. Unger RE, Ghanaati S, Orth C, Sartoris A, Barbeck M, Halstenberg S et al (2010) The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials 31(27):6959–6967CrossRefGoogle Scholar
  230. Vailhe B, Ronot X, Tracqui P, Usson Y, Tranqui L (1997) In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta3 integrin localization. In Vitro Cell Dev Biol Anim 33(10):763–773CrossRefGoogle Scholar
  231. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJA (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170(3):818–829CrossRefGoogle Scholar
  232. Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1(1):31–38CrossRefGoogle Scholar
  233. Vernon RB, Sage EH (1995) Between molecules and morphology. Extracellular matrix and creation of vascular form. Am J Pathol 147(4):873–883Google Scholar
  234. Vernon RB, Lara SL, Drake CJ, Iruela-Arispe ML, Angello JC, Little CD et al (1995) Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell Dev Biol Anim 31(2):120–131CrossRefGoogle Scholar
  235. Vigen M, Ceccarelli J, Putnam AJ (2014) Protease-sensitive PEG hydrogels regulate vascularization in vitro and in vivo. Macromol Biosci 14(10):1368–1379CrossRefGoogle Scholar
  236. Visconti RP (2010) Towards organ printing_ engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10:409–420CrossRefGoogle Scholar
  237. Vittet D, Prandini MH, Berthier R, Schweitzer A, Martin-Sisteron H, Uzan G et al (1996) Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88(9):3424–3431Google Scholar
  238. Vittet D, Buchou T, Schweitzer A, Dejana E, Huber P (1997) Targeted null-mutation in the vascular endothelial-cadherin gene impairs the organization of vascular-like structures in embryoid bodies. Proc Natl Acad Sci U S A 94(12):6273–6278CrossRefGoogle Scholar
  239. Wang R, Clark R, Bautch VL (1992) Embryonic stem cell-derived cystic embryoid bodies form vascular channels: an in vitro model of blood vessel development. Development 114(2):303–316Google Scholar
  240. Watanabe S, Morisaki N, Tezuka M, Fukuda K, Ueda S, Koyama N et al (1997) Cultured retinal pericytes stimulate in vitro angiogenesis of endothelial cells through secretion of a fibroblast growth factor-like molecule. Atherosclerosis 130(1-2):101–107CrossRefGoogle Scholar
  241. Weisel JW (2005) Fibrinogen and fibrin. Adv Protein Chem 70:247–299CrossRefGoogle Scholar
  242. Weisel JW (2008) Biophysics. Enigmas of blood clot elasticity. Science (New York, NY) 320(5875):456–457CrossRefGoogle Scholar
  243. Westermark B, Siegbahn A, Heldin CH, Claesson-Welsh L (1990) B-type receptor for platelet-derived growth factor mediates a chemotactic response by means of ligand-induced activation of the receptor protein-tyrosine kinase. Proc Natl Acad Sci U S A 87(1):128–132CrossRefGoogle Scholar
  244. Wetmore BA, Wambaugh JF, Ferguson SS, Li L, Clewell HJ 3rd, Judson RS et al (2013) Relative impact of incorporating pharmacokinetics on predicting in vivo hazard and mode of action from high-throughput in vitro toxicity assays. Toxicol Sci 132(2):327–346CrossRefGoogle Scholar
  245. White SM, Pittman CR, Hingorani R, Arora R, Esipova TV, Vinogradov SA et al (2014) Implanted cell-dense prevascularized tissues develop functional vasculature that supports reoxygenation after thrombosis. Tissue Eng Part A 20(17-18):2316–2328CrossRefGoogle Scholar
  246. Wong KH, Chan JM, Kamm RD, Tien J (2012) Microfluidic models of vascular functions. Annu Rev Biomed Eng 14:205–230CrossRefGoogle Scholar
  247. Xing Q, Yates K, Vogt C, Qian Z, Frost MC, Zhao F (2014) Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep 4:4706CrossRefGoogle Scholar
  248. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96CrossRefGoogle Scholar
  249. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109(5):1801–1809CrossRefGoogle Scholar
  250. Zanotelli MR, Ardalani H, Zhang J, Hou Z, Nguyen EH, Swanson S et al (2016) Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels. Acta Biomater 35:32–41CrossRefGoogle Scholar
  251. Zhang WJ, Park C, Arentson E, Choi K (2005) Modulation of hematopoietic and endothelial cell differentiation from mouse embryonic stem cells by different culture conditions. Blood 105(1):111–114CrossRefGoogle Scholar
  252. Zhang P, Baxter J, Vinod K, Tulenko TN, Di Muzio PJ (2009) Endothelial differentiation of amniotic fluid-derived stem cells: synergism of biochemical and shear force stimuli. Stem Cells Dev 18(9):1299–1308CrossRefGoogle Scholar
  253. Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A et al (2016) Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater 15:669–678CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ulrich Blache
    • 1
  • Julien Guerrero
    • 2
  • Sinan Güven
    • 3
  • Agnes Silvia Klar
    • 4
  • Arnaud Scherberich
    • 2
    • 5
    • 6
    Email author
  1. 1.University Hospital ZurichZurichSwitzerland
  2. 2.Department of BiomedicineUniversity Hospital Basel, University of BaselBaselSwitzerland
  3. 3.Izmir Biomedicine and Genome Institute and CenterDokuz Eylul UniversityIzmirTurkey
  4. 4.University Children’s Hospital in ZurichZurichSwitzerland
  5. 5.Department of Biomedical EngineeringUniversity of BaselAllschwilSwitzerland
  6. 6.Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland

Personalised recommendations