Skip to main content

Contrasting Effects of Ocean Acidification on Coral Reef “Animal Forests” Versus Seaweed “Kelp Forests”

  • Reference work entry
  • First Online:
Book cover Marine Animal Forests

Abstract

Ocean acidification is the sustained absorption of anthropogenically derived CO2 and is a major threat to marine ecosystems. Ocean acidification results in the decline of seawater pH (increase in protons) and carbonate ions and increased CO2. Added CO2 could benefit terrestrial forests, but changes in the concentration of any one of aspect of the carbonate system could affect various marine organisms both positively and negatively. One ecosystem under particular threat from ocean acidification is tropical coral reefs, formed predominately by scleractinian coral species that are predicted to be negatively impacted by ocean acidification. In contrast, temperate shallow rocky reefs are dominated by seaweed that forms extensive kelp/seaweed forests; these noncalcareous seaweeds are not predicted to be as negatively impacted by ocean acidification. Tropical coral reef “animal forests” and temperate “kelp forests” both provide three-dimensional habitat for tens of thousands of species, but are characterized by vastly different environmental regimes. The present chapter outlines differences in key environmental parameters (such as nutrients, water motion, and temperature) in these two habitats that could dictate the relative magnitudes of the effects of ocean acidification within them. The vulnerability of key habitat-forming organisms within these habitats and the potential mechanisms behind specific responses to ocean acidification are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albright R, Langdon C. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob Chang Biol. 2011;17:2478–87.

    Article  Google Scholar 

  • Albright R, Mason B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS One. 2013;8:e56468. doi:10.1371/journal.pone.0056468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allemand D, Tambutté É, Zoccola D, Tambutté S. Coral calcification, cells to reefs. In: Coral reefs: an ecosystem in transition. New York: Springer; 2011. p. 119–150.

    Google Scholar 

  • Allison N, Cohen I, Finch AA, Erez J, Tudhope AW, Edinburgh Ion Microprobe Facility. Corals concentrate dissolved inorganic carbon to facilitate calcification. Nat Commun. 2014;5:5741. doi:10.1038/ncomms6741.

    Article  CAS  PubMed  Google Scholar 

  • Andersson AJ. A fundamental paradigm for coral reef carbonate sediment dissolution. Front Mar Sci. 2015;2:52.

    Article  Google Scholar 

  • Andersson AJ, Gledhill DK. Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Ann Rev Mar Sci. 2013;5:1–28.

    Article  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci. 2008;105:17442–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender D, Diaz-Pulido G, Dove S. The impact of CO2 emission scenarios and nutrient enrichment on a common coral reef macroalga is modified by temporal effects. J Phycol. 2014a;50:203–15.

    Article  CAS  PubMed  Google Scholar 

  • Bender D, Diaz-Pulido G, Dove S. Warming and acidification promote cyanobacterial dominance in turf algal assemblages. Mar Ecol Prog Ser. 2014b;517:271–84.

    Article  CAS  Google Scholar 

  • Bennett S, Wernberg T, Connell SD, Hobday AJ, Johnson CR, Poloczanska ES. The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Mar Freshw Res. 2015;67:47–56.

    Article  Google Scholar 

  • Bilger RW, Atkinson MJ. Anomalous mass transfer of phosphate on coral reef flats. Limnol Oceanogr. 1992;37:261–72.

    Article  CAS  Google Scholar 

  • Borowitzka MA. Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea. Mar Biol. 1981;62:17–23.

    Article  CAS  Google Scholar 

  • Borowitzka MA. Calcification in algae: mechanism and the role of metabolism. Crit Rev Plant Sci. 1987;6:1–45.

    Article  Google Scholar 

  • Boyd PW, Cornwall CE, Davison A, Doney SC, Fourquez M, Hurd CL, Lima ID, McMinn A. Biological responses to environmental heterogeneity under future ocean conditions. Glob Chang Biol. 2016. doi:10.1111/gcb.13287.

    PubMed  Google Scholar 

  • Bradassi F, Cumani F, Bressan G, Dupont S. Early reproductive stages in the crustose coralline alga Phymatolithon lenormandii are strongly affected by mild ocean acidification. Mar Biol. 2013;8:2261–9.

    Article  CAS  Google Scholar 

  • Britton D, Cornwall CE, Revill AT, Hurd CL, Johnson CR. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata. Sci Rep. 2016;6:26036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodie J, Wiiliamson CJ, Smale DA, Kamenos NA, Mieszkowska N, Santos R, Cunliffe M, Steinke M, Yesson C, Anderson KM, Asnaghi V, Brownlee C, Burdett HL, Burrows MT, Collins S, Donohue PJC, Harvey B, Foggo A, Noisette F, Nunes J, Ragazzola F, Raven J, Schmidt D, Suggett DJ, Teichberg M, Hall-Spencer J. The future of the northeast Atlantic benthic flora in a high CO2 world. Ecol Evol. 2014;4:2787–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown MB, Edwards MS, Kim KY. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae. 2014;29:203–15.

    Article  Google Scholar 

  • Cai W-J, Ma Y, Hopkinson BM, Grottoli AG, Warner ME, Ding Q, Hu X, Yuan X, Schoepf V, Xu H. Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat Commun. 2016;7:11144. doi:10.1038/nscomms11144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldeira K, Wickett ME. Anthropogenic carbon and ocean pH. Nature. 2003;425:365.

    Article  CAS  PubMed  Google Scholar 

  • Comeau S, Carpenter RC, Edmunds PJ. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc R Soc Biol Sci Ser B. 2013a;280:20122374. doi:10.1098/rspb.2012.2374.

    Article  CAS  Google Scholar 

  • Comeau S, Edmunds PJ, Spindel NB, Carpenter RC. The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr. 2013b;58:388–98.

    Article  CAS  Google Scholar 

  • Comeau S, Carpenter RC, Edmunds PJ. Effects of feeding and light intensity on the response of the coral Porites rus to ocean acidification. Mar Biol. 2013c;160:1127–34.

    Article  Google Scholar 

  • Comeau S, Carpenter RC, Nojiri Y, Putnam HM, Sakai K, Edmunds PJ. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification. Proc R Soc Biol Sci Ser B. 2014a;281:20141339. doi:10.1098/rspb.2014.1339.

    Article  CAS  Google Scholar 

  • Comeau S, Carpenter RC, Edmunds PJ. Effects of irradiance on the response of the coral Acropora pulchra and the calcifying alga Hydrolithon reinboldii to temperature elevation and ocean acidification. J Exp Mar Biol Ecol. 2014b;453:28–35.

    Article  Google Scholar 

  • Comeau S, Edmunds PJ, Lantz CA, Carpenter RC. Water flow modulates the response of coral reef communities to ocean acidification. Sci Rep. 2014c;4:6681. doi:10.1038/srep06681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comeau S, Edmunds PJ, Spindel NB, Carpenter RC. Diel pCO2 oscillations modulate the response of the coral Acropora hyacinthus to ocean acidification. Mar Ecol Prog Ser. 2014d;501:99–111.

    Article  CAS  Google Scholar 

  • Comeau S, Carpenter RC, Lantz CA, Edmunds PJ. Parameterization of the response of calcification to temperature and pCO2 in the coral Acropora pulchra and the alga Lithophyllum kotschyanum. Coral Reefs. 2016a. doi:10.1007/s00338-016-1425-0.

    Google Scholar 

  • Comeau S, Lantz CA, Edmunds PJ, Carpenter RC. Framework of barrier reefs threatened by ocean acidification. Glob Chang Biol. 2016b;22:1225–34.

    Article  PubMed  Google Scholar 

  • Connell SD, Russell BD. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc R Soc Biol Sci Ser B. 2010;277:1409–15.

    Article  Google Scholar 

  • Connell SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD. The other ocean acidification problem: CO2 as a resource amongst competitors for ecosystem dominance. Philos Trans Roy Soc B Biol Sci. 2013;368: 20120442. doi:20120410.20121098/rstb.20122012.20120442.

    Google Scholar 

  • Cornwall CE, Eddy TD. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem. Conserv Biol. 2015;29:207–15.

    Article  PubMed  Google Scholar 

  • Cornwall CE, Hepburn CD, McGraw CM, Currie KI, Pilditch CA, Hunter KA, Boyd PW, Hurd CL. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc R Soc Biol Sci Ser B. 2013a;280:20132201. doi:10.1098/rspb.2013.2201.

    Article  CAS  Google Scholar 

  • Cornwall CE, Hepburn CD, Pilditch CA, Hurd CL. Concentration boundary layers around complex assemblages of macroalgae: implications for the effects of ocean acidification on understory coralline algae. Limnol Oceanogr. 2013b;58:121–30.

    Article  CAS  Google Scholar 

  • Cornwall CE, Boyd PW, McGraw CM, Hepburn CD, Pilditch CA, Morris JN, Smith AM, Hurd CL. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS One. 2014;9:e97235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cornwall CE, Revill AT, Hurd CL. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynth Res. 2015;124:181–90.

    Article  CAS  PubMed  Google Scholar 

  • Crain CM, Kroeker KJ, Halpern S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett. 2008;11:1304–15.

    Article  PubMed  Google Scholar 

  • Diaz-Pulido G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O. Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. J Phycol. 2012;48:32–9.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Pulido G, Cornwall CE, Gartrell P, Hurd CL, Van Tran N. Strategies of dissolved inorganic carbon use in macroalgae across a gradient of terrestrial influence: implications for the Great Barrier Reef in the context of ocean acidification Coral Reefs. 2016. doi:10.1007/s00338-016-1481-5.

    Google Scholar 

  • Doropoulos C, Diaz-Pulido G. High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Mar Ecol Prog Ser. 2013;475:93–9.

    Article  Google Scholar 

  • Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby PJ. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol Lett. 2012;15:338–46.

    Article  PubMed  Google Scholar 

  • Edmunds PJ. Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr. 2011;56:2402–10.

    Article  CAS  Google Scholar 

  • Edmunds PJ, Comeau S, Lantz C, Andersson A, Briggs C, Cohen A, Gattuso J-P, Grady JM, Gross K, Johnson M, Muller EB, Ries JB, Tambutté S, Tambutté E, Venn A, Carpenter RC. Integrating the effects of ocean acidification across functional scales on tropical coral reefs. BioScience. 2016. doi:10.1093/biosci/biw023.

    Google Scholar 

  • Enochs IC, Manzello DP, Donham EM, Kolodziej G, Okano R, Johnston L, Young C, Iguel J, Edwards CB, Fox MD, Valentino L, Johnson S, Benavente D, Clark SJ, Carlton R, Burton T, Eynaud Y, Price NN. Shift from coral to macroalgae dominance on a volcanically acidified reef. Nat Clim Change. 2015;5:1083–8. doi:10.1038/nclimate2758.

    Article  CAS  Google Scholar 

  • Erez J, Reynaud S, Silverman J, Schneider K, Allemand D. Coral calcification under ocean acidification and global change. In: Coral reefs: an ecosystem in transition. New York: Springer; 2011. p. 151–76.

    Google Scholar 

  • Evensen NR, Edmunds PJ, Sakai K. Effects of pCO2 on spatial competition between the corals Montipora aequituberculata and Porites lutea. Mar Ecol Prog Ser. 2015;541:123–34.

    Article  CAS  Google Scholar 

  • Evensen NR, Edmunds PJ. Interactive effects of ocean acidification and neighboring corals on the growth of Pocillopora. Mar Biol. 2016;163:1–11.

    Article  CAS  Google Scholar 

  • Fabricius K, Langdon C, Uthicke S, Humphrey C, Noonan S, De'ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change. 2011;1:165–9.

    Article  CAS  Google Scholar 

  • Fabricius KE, De'ath G, Noonan S, Uthicke S. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc R Soc B. 2014;281:20132479. doi:10.1098/rspb.2013.2479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabricius KE, Kluibenschedl A, Harrington L, Noonan S, De'ath G. In situ changes of tropical crustose coralline algae along carbon dioxide gradients. Sci Rep. 2015;5:9537. doi:10.1038/srep09537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández PA, Roleda MY, Hurd CL. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth Res. 2015;124:283–304.

    Article  CAS  Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol. 2000;203:3445–57.

    CAS  PubMed  Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol. 1991;3:355–62.

    Article  CAS  Google Scholar 

  • Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, Brown NE, Connell SD, Dupont S, Fabricius KE, Hall-Spencer JM, Klinger T, Milazzo M, Munday PL, Russell BD, Sanford E, Schreiber SJ, Thiyagarajan V, Vaughan MLH, Widdicombe S, Harley CDG. Ocean acidification through the lens of ecological theory. Ecology. 2015;96:3–15.

    Article  PubMed  Google Scholar 

  • Ghedini G, Russell BD, Connell SD. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol Let. 2015;18:182–87.

    Google Scholar 

  • Giordano M, Beardall J, Raven JA. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Ann Rev Plant Sci. 2005;56:99–131.

    Article  CAS  Google Scholar 

  • Gordillo FJ, Aguilera J, Wiencke C, Jiménez C. Ocean acidification modulates the response of two Arctic kelps to ultraviolet radiation. J Plant Physiol. 2015;173:41–50.

    Article  CAS  PubMed  Google Scholar 

  • Gutow L, Rahman MM, Bartl K, Saborowski R, Bartsch I, Wiencke C. Ocean acidification affects growth but not nutritional quality of the seaweed Fucus vesiculosus (Phaeophyceae, Fucales). J Exp Mar Biol Ecol. 2014;453:84–90.

    Article  CAS  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature. 2008;454:96–9.

    Article  CAS  PubMed  Google Scholar 

  • Harvey BP, Gwynn‐Jones D, Moore PJ. Meta‐analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol. 2013;3:1016–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hepburn CD, Hurd CL, Frew RD. Colony structure and seasonal differences in light and nitrogen modify the impact of sessile epifauna on the giant kelp Macrocystis pyrifera (L.) C Agardh. Hydrobiologia. 2006;560:373–84.

    Article  Google Scholar 

  • Hepburn CD, Holborrow JD, Wing SR, Frew RD, Hurd CL. Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Mar Ecol Prog Ser. 2007;339:99–108.

    Article  CAS  Google Scholar 

  • Hepburn CD, Pritchard DW, Cornwall CE, McLeod RJ, Beardall J, Raven JA, Hurd CL. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob Chang Biol. 2011;17:2488–97.

    Article  Google Scholar 

  • Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME. Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science. 2007;318:1737–42.

    Article  CAS  PubMed  Google Scholar 

  • Hoey AS, Howells E, Johansen JL, Hobbs J-PA, Messmer V, McCowan DM, Wilson SK, Pratchett MS. Recent advances in understanding the effects of climate change on coral reefs. Diversity. 2016;8:12. doi:10.3390/d8020012.

    Article  Google Scholar 

  • Holcomb M, McCorkle DC, Cohen AL. Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). J Exp Mar Biol Ecol. 2010;386:27–33.

    Article  Google Scholar 

  • Hopkinson BM, Dupont CL, Allen AE, Morel FMM. Efficiency of the CO2-concentrating mechanism. Proc Natl Acad Sci. 2011;108:3830–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houlbreque F, Ferrier‐Pagès C. Heterotrophy in tropical scleractinian corals. Biol Rev. 2009;84:1–17.

    Article  PubMed  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol. 2007;17:360–5.

    Article  CAS  PubMed  Google Scholar 

  • Hurd CL. Water motion, marine macroalgal physiology, and production. J Phycol. 2000;36:453–72.

    Article  CAS  Google Scholar 

  • Hurd CL, Cornwall CE, Currie KI, Hepburn CD, McGraw CM, Hunter KA, Boyd P. Metabolically-induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility? Glob Chang Biol. 2011;17:3254–62.

    Article  Google Scholar 

  • Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK, Edgar GJ, Frusher SD, Gardner C, Haddon M, Helidoniotis F. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J Exp Mar Biol Ecol. 2011;400:17–32.

    Article  Google Scholar 

  • Johnson MD, Price NN, Smith JE. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. PeerJ. 2014;2:e411. doi:10.7717/peerj.411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jokiel PL. Ocean acidification and control of reef coral calcification by boundary layer limitation of proton flux. Bull Mar Sci. 2011;87:639–57.

    Article  Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, MacKenzie FT. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs. 2008;27:473–83.

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LA. Environmental limits to coral reef development: where do we draw the line? Am Zool. 1999;39:146–59.

    Article  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol. 2013;19:103–32.

    Article  PubMed  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Hendriks IE, Ramajo L, Singh GG, Duarte CM, Gattuso JP. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol. 2013;19:1884–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kübler JE, Dudgeon SR. Predicting effects of ocean acidification and warming on algae lacking carbon concentrating mechanisms. PLoS One. 2015;10:e0132806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kübler JE, Johnston AM, Raven JA. The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ. 1999;22:1303–10.

    Article  Google Scholar 

  • Laurent J, Venn A, Tambutté É, Ganot P, Allemand D, Tambutté S. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis. FEBS J. 2014;281:683–95.

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Carpenter SJ. Isotopic disequilibrium in marine calcareous algae. Chem Geol. 2001;172:307–29.

    Article  CAS  Google Scholar 

  • Maberly SC, Berthelot SA, Stott AW, Gontero B. Adaptation by macrophytes to inorganic carbon down river with naturally variable concentrations of CO2. J Plant Physiol. 2014;172:120–7.

    Article  PubMed  CAS  Google Scholar 

  • Mann KH. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol Oceanogr. 1988;33:910–30.

    CAS  Google Scholar 

  • Martin S, Gattuso J-P. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol. 2009;15:2089–100.

    Article  Google Scholar 

  • Mass T, Drake JL, Haramaty L, Kim JD, Zelzion E, Bhattacharya D, Falkowski PG. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr Biol. 2013;23:1126–31.

    Article  CAS  PubMed  Google Scholar 

  • McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R, Freiwald A, Försterra G, Correa ML, Maier C, Rüggeberg A, Taviani M. Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochem Cosmochim Acta. 2012a;87:21–34.

    Article  CAS  Google Scholar 

  • McCulloch MT, Falter J, Trotter J, Montagna P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change. 2012b;2:623–7.

    Article  CAS  Google Scholar 

  • Mumby PJ, van Woesik R. Consequences of ecological, evolutionary and biogeochemical uncertainty for coral reef responses to climatic stress. Curr Biol. 2014;24:R413–23.

    Article  CAS  PubMed  Google Scholar 

  • Nelson WA. Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res. 2009;60:787–801.

    Article  CAS  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJ, Ceulemans R. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci. 2005;102:18052–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelejero C, Calvo E, Hoegh-Guldberg O. Paleo-perspectives on ocean acidification. Trends Ecol Evol. 2010;25:332–44.

    Article  PubMed  Google Scholar 

  • Pörtner H-O, Farrell AP. Physiology and climate change. Science. 2008;322:690–2.

    Article  PubMed  Google Scholar 

  • Raven JA. Implications of inorganic carbon utilization: ecology, evolution, and geochemistry. Can J Bot. 1991;69:908–24.

    Article  CAS  Google Scholar 

  • Raven JA. Inorganic carbon acquisition by marine autotrophs. Adv Bot Res. 1997;27:85–209.

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J. CO2 concentrating mechanisms and environmental change. Aquat Bot. 2014;118:24–37.

    Article  CAS  Google Scholar 

  • Raven JA, Giodarno M, Beardall J, Maberly SC. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res. 2011;109:281–96.

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Beardall J, Giordano M. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth Res. 2014;121:111–24.

    Article  CAS  PubMed  Google Scholar 

  • Ries JB. Skeletal mineralogy in a high-CO2 world. J Exp Mar Biol Ecol. 2011;403:54–64.

    Article  CAS  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology. 2009;37:1131–4.

    Article  CAS  Google Scholar 

  • Roleda MY, Cornwall CE, Feng Y, McGraw CM, Smith AM, Hurd CL. Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblage. PLoS One. 2015;10:e0140394. doi:10.1371/journal.pone.0140394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell BD, Thompson JI, Falkenberg LJ, Connell SD. Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Chang Biol. 2009;15:2153–62.

    Article  Google Scholar 

  • Russell BD, Passarelli CA, Connell SD. Forecasted CO2 modified the influence of light in shaping subtidal habitat. J Phycol. 2011;47:744–52.

    Article  PubMed  Google Scholar 

  • Schoepf V, Grottoli AG, Warner ME, Cai W-J, Melman TF, Hoadley KD, Pettay DT, Hu X, Li Q, Xu H. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One. 2013;8:e75049. doi:10.1371/journal.pone.0075049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman J, Lazar B, Cao L, Caldeira K, Erez JCL. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett. 2009;36:L05606. doi:10.1029/2008gl036282.

    Article  CAS  Google Scholar 

  • Solihuddin T, O’Leary MJ, Blakeway D, Parnum I, Kordi M, Collins LB. Holocene reef evolution in a macrotidal setting: Buccaneer Archipelago, Kimberley Bioregion, Northwest Australia. Coral Reefs. 2016;35:783–94.

    Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv. 2002;29:436–59.

    Article  Google Scholar 

  • Suggett DJ, Dong LF, Lawson T, Lawrenz E, Torres L, Smith DJ. Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs. 2013;32:327–37.

    Article  Google Scholar 

  • Takahashi A, Kurihara H. Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera. Coral Reefs. 2013;32:305–14.

    Article  Google Scholar 

  • Tambutté S, Tambutté E, Zoccola D, Caminiti N, Lotto S, Moya A, Allemand D, Adkins J. Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol. 2007;151:71–83.

    Article  CAS  Google Scholar 

  • Tambutté E, Venn AA, Holcomb M, Segonds N, Techer N, Zoccola D, Allemand D, Tambutté S. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat Commun. 2015;6:7368. doi:10.1038/ncomms8368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaz-Pinto F, Olabarria C, Gestoso I, Cacabelos E, Incera M, Arenas F. Functional diversity and climate change: effects on the invasibility of macroalgal assemblages. Biol Invasions. 2013;15:1833–46.

    Article  Google Scholar 

  • Venn AA, Tambutté E, Holcomb M, Laurent J, Allemand D, Tambutté S. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc Natl Acad Sci. 2013;110:1634–9. doi:10.1073/pnas.1216153110.

    Article  CAS  PubMed  Google Scholar 

  • Veron JEN. Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs. 2008;27:459–72.

    Article  Google Scholar 

  • Vogel N, Meyer FW, Wild C, Uthicke S. Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Mar Ecol Progr Ser. 2015;521:49–61.

    Article  CAS  Google Scholar 

  • Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Biol Ecol. 2011;400:7–16.

    Article  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T, Bennett S, Rousseaux CS. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change. 2013;3:78–82.

    Article  Google Scholar 

  • Whitney SM, Shaw DC, Yellowlees D. Evidence that some dinoflagellates contain a ribulose-1,5-bisphosphate carboxylase/oxygenase related to that of the alpha-proteobacteria. Proceedings. Biol Sci/Roy Soc. 1995;259:271–5.

    Article  CAS  Google Scholar 

  • Wittmann AC, Pörtner HO. Sensitivities of extant animal taxa to ocean acidification. Nat Clim Change. 2013;3:995–1001.

    Article  CAS  Google Scholar 

  • Young CS, Gobler CJ. Ocean acidification accelerates the growth of two bloom-forming macroalgae. PLoS One. 2016;11:e0155152. doi:10.1371/journal.pone.0155152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steeve Comeau or Christopher E. Cornwall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Comeau, S., Cornwall, C.E. (2017). Contrasting Effects of Ocean Acidification on Coral Reef “Animal Forests” Versus Seaweed “Kelp Forests”. In: Rossi, S., Bramanti, L., Gori, A., Orejas , C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-21012-4_29

Download citation

Publish with us

Policies and ethics