Skip to main content

Trophic Ecology and Habitat Provision in Cold-Water Coral Ecosystems

  • Reference work entry
  • First Online:

Abstract

Cold-water coral ecosystems differ from each other greatly in structure, faunal makeup, and ecological function. Attributes such as substrate type, 3-D complexity, biological community, and nutrient supply also change over small temporal and spatial scales. In this chapter, we present an overview of food gathering strategies employed by a range of cold-water corals. Furthermore, the importance of corals as habitat providers for associated fauna and thus biodiversity is discussed. The coral habitats support ecosystems at various spatial scales ranging from local exposed skeleton patches on gorgonian branches to the various zones on a reef. Comparison is made between many types of animal forests made up by cold-water corals, including several types of coral gardens and coastal and offshore reefs from a wide range of environmental settings. The trophic ecology of reef types is compared, and the variation in feeding behavior across particular reefs is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abele LG, Patton WK. The size of coral heads and the community biology of associated decapod crustaceans. J Biogeogr. 1976;3:35–47.

    Article  Google Scholar 

  • Baillon S, Hamel J-F, Wareham VE, Mercier A. Deep cold-water corals as nurseries for fish larvae. Front Ecol Environ. 2012;10(7):351–6. doi:10.1890/120022.

    Article  Google Scholar 

  • Beaver RA. Host specificity of temperate and tropical animals. Nature. 1979;281:139–41.

    Article  Google Scholar 

  • Biber MF, Duineveld GCA, Lavaleye MSS, Davies AJ, Bergman MJN, van den Beld IMJ. Investigating the association of fish abundance and biomass with cold-water corals in the deep Northeast Atlantic Ocean using a generalised linear modelling approach. Deep-Sea Res II. 2014;99:134–45.

    Article  Google Scholar 

  • Boudreau BP, Jørgensen BB, editors. The benthic boundary layer: transport processes and biogeochemistry. New York: Oxford University Press; 2001. XII, 404 pp. ISBN ISBN 0-19-511881-2.

    Google Scholar 

  • Buhl-Mortensen P, Buhl-Mortensen P. Diverse and vulnerable deep-water biotopes in the Hardangerfjord. Mar Biol Res. 2013;10:253–67. doi:10.1080/17451000.2013.810759.

    Article  Google Scholar 

  • Buhl-Mortensen L, Mortensen PB. Symbiosis in deep-water corals. Symbiosis. 2004a;37:33–61.

    Google Scholar 

  • Buhl-Mortensen L, Mortensen PB. Gorgonophilus canadensis n. gen., n. sp. (Copepoda: Lamippidae), a gall forming endoparasite in the octocoral Paragorgia arborea (L., 1758) from the Northwest Atlantic. Symbiosis. 2004b;37:155–68.

    Google Scholar 

  • Buhl-Mortensen L, Mortensen PB. Distribution and diversity of species associated with Deep-sea gorgonian corals off Atlantic Canada. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Berlin/Heidelberg: Springer; 2005. p. 849–79. 1244pp.

    Chapter  Google Scholar 

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levon LA, Priede IG, Buhl-Mortensen P, et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol. 2010;31:21–50.

    Article  Google Scholar 

  • Buhl-Mortensen P, Tenningen E, Tysseland ABS. Effects of water flow and drilling waste exposure on polyp behaviour in Lophelia pertusa. Mar Biol Res. 2015a;11:725–37. doi:10.1080/17451000.2014.993651.

    Article  Google Scholar 

  • Buhl-Mortensen L, Olafsdottir SH, Buhl-Mortensen P, Burgos JM, Ragnarsson SA. Distribution of nine cold-water coral species (Scleractinia and Gorgonacea) in the cold temperate North Atlantic in light of bathymetry and hydrography. Hydrobiologia. 2015b;759:39–61.

    Article  CAS  Google Scholar 

  • Bullimore RD, Foster N, Howell KL. Coral characterised benthic assemblages of the deep N. E. Atlantic: defining “Coral Gardens” to support future habitat mapping efforts. ICES J Mar Sci. 2013. doi:10.1093/icesjms/fss195. 12pp.

    Google Scholar 

  • Cairns SD, Zibrowius H. Cnidaria Anthozoa: azooxanthellate Scleractinia from the Philippine and Indonesian regions. In: Crosnier A, Bouchet P, editors. Resultats des campagnes MUSORSTOM. volume 16, Memoires du Museum National d'Histoire Naturelle Paris, vol. 172. Paris: Editions du Muséum; 1997. p. 27–243.

    Google Scholar 

  • Christiansen S. Background document for coral gardens. Ospar commission. 2010. ISBN 978-1-907390-27-2. Publication Number: 486/2010, 39 pp.

    Google Scholar 

  • Curd A. Background document for Seapen and burrowing megafauna communities. 2010. ISBN 978-1-907390-22-7. Publication Number: 481/2010, 26 pp.

    Google Scholar 

  • Davies AJ, Duineveld GCA, Lavaleye, MSS, Bergman MJN, van Haren H, Roberts JM. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol Oceanogr. 2009;54:620–9.

    Article  Google Scholar 

  • D’Onghia G, Maiorano P, Carlucci R, Capezzuto F, Carluccio A, Tursi A, Sion L. Comparing deep-sea fish fauna between coral and non-coral “megahabitats” in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea). PLoS One. 2012. doi:10.1371/journal.pone.0044509.

    Google Scholar 

  • De Clippele LH, Buhl-Mortensen P, Buhl-Mortensen L. Fauna associated with cold water gorgonians and seapens. Cont Shelf Res. 2015;105:67–78.

    Article  Google Scholar 

  • Dodds LA, Roberts JM, Taylor AC, Marubini F. Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol. 2007;349:205–14.

    Article  CAS  Google Scholar 

  • Dons C. Norges korallrev. K Norske Viden Selsk Forh. 1944;16:37–82.

    Google Scholar 

  • Duineveld GCA, Jeffreys RM, Lavaleye MSS, Davies AJ, Bergman MJN, Watmough T, Witbaard R. Spatial and tidal variation in food supply to shallow cold-water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland). Mar Ecol Prog Ser. 2012;444:97–115.

    Article  Google Scholar 

  • Goh NKC, Ng PKL, Chou LM. Notes on the shallow water gorgonian-associated fauna on coral-reefs in Singapore. Bull Mar Sci. 1999;65:259–82.

    Google Scholar 

  • Hennige SJ, Wicks LC, Kamenos NA, Perna G, Findlay HS, Roberts JM. Hidden impacts of ocean acidification to live and dead coral framework. Proc R Soc B. 2015;282:20150990. doi:10.1098/rspb.2015.0990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry L-A, Roberts JM. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep-Sea Res I. 2007;54:654–72.

    Article  Google Scholar 

  • Howell KL. A benthic classification system to aid in the implementation of marine protected area networks in the deep/high seas of the NE Atlantic. Biol Conserv. 2010;143:1041–56.

    Article  Google Scholar 

  • Husebø Å, Nøttestad L, Fosså J, Furevik D, Jørgensen S. Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia. 2002;471(1–3):91–9.

    Article  Google Scholar 

  • Huvenne AI, Tyler PA, Masson DG, Fisher EH, Hauton C, Hühnerbach V, Le Bas TP, Wolff GA. A picture on the wall: Innovative mapping reveals cold-water coral refuge in submarine canyon. PLoS One. 2011. doi:10.1371/journal.pone.0028755.

    Google Scholar 

  • Jensen A, Frederiksen R. The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinaria) on the Faroe shelf. Sarsia. 1992;77:53–69.

    Article  Google Scholar 

  • Karr JR. Structure of avian communities in selected Panama and Illinois habitats. Ecol Monogr. 1971;41:207–29.

    Article  Google Scholar 

  • Kutti T, Bergstad OA, Fossa JH, Helle K. Cold-water coral mounds and sponge-beds as habitats for demersal fish on the Norwegian shelf. Deep-Sea Res II. 2014;99:122–33.

    Article  Google Scholar 

  • Larsson AI, Järnegren J, Strömberg SM, Dahl MP, Lundälv T, Brooke S. Empbryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One. 2014. doi:10.1371/journal.pone.0102222.

    Google Scholar 

  • Le Guilloux E, Olu K, Bourillet JF, Savoye B, Iglesias SP, Sibuet M. First observations of deep-sea coral reefs along the Angola margin. Deep-Sea Res II. 2009;56:2394–403.

    Article  Google Scholar 

  • Martin D, Britayev TA. Symbiotic polychaetes: review of known species. Oceanogr Mar Biol Annu Rev. 1998;36:217–340.

    Google Scholar 

  • Mienis F, Duineveld GCA, Davies AJ, Lavaleye MMS, Ross SW, Seim H, Bane J, van Haren H, Bergman MJN, de Hass H, Brooke S, van Weering TCE. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic. Biogeosciences. 2014;11:2543–60.

    Article  Google Scholar 

  • Miura T, Shirayama Y. Lumbrineris flabellicola (Fage, 1936) a lumbrinerid polychaete associated with a Japanese ahermatypic coral. Benthos Res. 1992;43:23–7.

    Article  Google Scholar 

  • Mortensen T. Handbook of the echinoderms of the British Isles. Edinburgh: Humphrey Milford Oxford University Press; 1927. 471p.

    Book  Google Scholar 

  • Mortensen PB. Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia. 2001;54(2):83–104.

    Article  Google Scholar 

  • Mortensen PB, Buhl-Mortensen L. Morphology and growth of the deep-water gorgonians Primnoa resedaeformis and Paragorgia arborea. Mar Biol. 2005;147:775–88.

    Article  Google Scholar 

  • Mortensen PB, Buhl-Mortensen L, Gordon Jr DC, Fader GBJ, McKeown DL, Fenton DG. Effects of fisheries on deep-water gorgonian corals in the Northeast Channel, Nova Scotia (Canada). Am Fish Soc Symp. 2005;41:369–82.

    Google Scholar 

  • Mortensen PB, Fosså JH. Species diversity and spatial distribution of invertebrates on Lophelia reefs in Norway. In: Proceedings of the 10th international coral reef symposium, Okinawa, 2006. p. 1849–68.

    Google Scholar 

  • Mortensen PB, Buhl-Mortensen L, Gebruk AV, Krylova EM. Occurrence of deep-water corals on the Mid-Atlantic Ridge based on MAR-ECO data. Deep-Sea Res II. 2008;55:142–52.

    Article  Google Scholar 

  • Mosher CV, Watling L. Partners for life: a brittle star and its octocoral host. Mar Ecol Prog Ser. 2009;397:81–8.

    Article  Google Scholar 

  • Mueller CE, Lundälv T, Middelburg JJ, van Oevelen D. The symbiosis between Lophelia pertusa and Eunice norvegica stimulates coral calcification and worm assimilation. PLoS One. 2013;8:e58660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller CE, Larsson AI, Veuger B, Middelburg JJ, van Oevelen D. Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences. 2014;11:123–33. doi:10.5194/bg-11-123-2014.

    Article  Google Scholar 

  • Orejas C, Gori A, Lo lacono C, Puig P, Gile P, Maria J, Dale MRT. Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Prog Ser. 2009;397:37–51.

    Article  Google Scholar 

  • OSPAR Commission. OSPAR list of threatened and/or declining species and habitats. 2008a. Reference number 2008–6.

    Google Scholar 

  • OSPAR Commission. Descriptions of habitats on the OSPAR list of threatened and/or declining species and habitats. 2008b. Reference number 2008–7.

    Google Scholar 

  • Patton WK. Studies on the animal symbionts of the gorgonian coral, Leptogorgia virgulata (Lamarck). Bull Mar Sci. 1972;22:419–31.

    Google Scholar 

  • Perlin A, Moum JN, Klymak J. Response of the bottom boundary layer over a sloping shelf to variations in alongshore wind. J Geophys Res. 2005;110:C10S09. doi:10.1029/2004JC002500.

    Google Scholar 

  • Purser A, Larsson AI, Thomsen L, van Oevelen D. The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture reates. J Exp Mar Ecol Biol. 2010;395:55–62.

    Article  Google Scholar 

  • Purser A, Ontrup J, Schoening T, Thomsen L, Tong R, Unnithan V, Nattkemper TW. Microhabitat and shrimp abundance within a cold-water coral ecosystem. Biogeosciences. 2013;10(9):5779–91.

    Article  Google Scholar 

  • Rhode K. Latitudinal differences in host-specificity of marine Monogenea and Digenera. Mar Biol. 1978;47:125–34.

    Article  Google Scholar 

  • Rüggeberg A, Dullo C, Dorschel B, Hebbeln D. Environmental changes and growth history of a cold-water carbonate mound (Propeller Mound, Porcupine Seabight). J Earth Sys. 2007;96:57–72.

    Google Scholar 

  • Sherwood OA, Edinger EN. Ages and growth rates of some deep-sea gorgonian and antipatharian corals of Newfoundland and Labrador. J Fish Aquat Sci. 2009;66:142–52.

    Article  Google Scholar 

  • Souza A, Friedrich C. Near-bottom boundary layers. In: Baumert H, Simpson JH, Sunderman J, editors. Marine turbulence: theories, observations and models. Cambridge: Cambridge University Press; 2005. p. 283–96.

    Google Scholar 

  • Tsounis G, Orejas C, Reynaud S, Gili JM, Allemand D, Ferrier-Pages C. Prey-capture rates in four Mediterranean cold water corals. Mar Ecol Prog Ser. 2010;398:149–55.

    Article  CAS  Google Scholar 

  • Utinomi H. On the so-called “Umi-Utiwa” a peculiar fla-bellate gorgonacean, with notes on a syllidean polychaete commensal. Publ Seto Mar Biol Lab. 1956;5:243–50.

    Article  Google Scholar 

  • Wainwright SA, Dillon JR. On the orientation of sea fans (genus Gorgonia). Biol Bull. 1969;136:130–9.

    Article  Google Scholar 

  • Wainwright SA, Koehl MAR. The nature of flow and the reaction of benthic cnidaria to it. In: Mackie GO, editor. Coelenterate ecology and behavior. New York: Plenum Publishing Corp; 1976. p. 5–21.

    Chapter  Google Scholar 

  • Wijgerde T, Diantari R, Lewaru MW, Verreth JAJ, Osinga R. Extracoelenteric zooplankton feeding is a key mechanism of nutrient acquisition for the scleractinian coral Galaxea fascicularis. J Exp Biol. 2011;214:3351–7.

    Article  CAS  PubMed  Google Scholar 

  • Wijgerde T, Spijkers P, Karruppannan E, Verreth JAJ, Osinga R. Water flow affects zooplankton feeding by the scleractinian coral Galaxea fascicularis on a polyp and colony level. J Mar Biol. 2012. doi:10.1155/2012/854849.

    Google Scholar 

  • Zibrowius H, Southward EC, Day JH. New observations on a little-known species of Lumbrineris (Polychaeta) living on various cnidarians, with notes on its recent and fossil scleractinian hosts. J Mar Biol Assoc U K. 1975;55:83–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål Buhl-Mortensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Buhl-Mortensen, P., Buhl-Mortensen, L., Purser, A. (2017). Trophic Ecology and Habitat Provision in Cold-Water Coral Ecosystems. In: Rossi, S., Bramanti, L., Gori, A., Orejas , C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-21012-4_20

Download citation

Publish with us

Policies and ethics