Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy affecting approximately 5–10 % of reproductive-age women. PCOS is considered the most common cause of anovulatory infertility. PCOS is widely accepted as a combination of ovulatory dysfunction, androgen excess, and polycystic ovaries with the exclusion of specific disorders that may lead to similar phenotypes. Genetic variants have also been identified which result in PCOS. PCOS is associated with insulin resistance, type 2 diabetes mellitus, dyslipidemia, and visceral obesity. The treatment of PCOS is multifaceted, including the use of oral contraceptives, insulin sensitizers, antiandrogen agents, and other medications; PCOS therapy is tailored to patient-specific physiological conditions and treatment goals.
Similar content being viewed by others
References
Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovarian syndrome in unselected black and white women of the Southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83:3078–82.
Zawadzki JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, editor. Polycystic ovary syndrome. Boston: Blackwell Scientific; 1995. p. 337–84.
Rotterdam ESHRE/ASRM – Sponsored PCOS Concensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary disease. Fertil Steril. 2004;81:19–25.
Rotterdam ESHRE/ASRM – Sponsored PCOS Concensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary disease. Hum Reprod. 2004;19:41–7.
Dunaif A. Hyperandrogenic anovulation (PCOS): a unique disorder of insulin action associated with an increased risk of non-insulin-dependent diabetes mellitus. Am J Med. 1995;98(Suppl):33S–9S.
Legro RS. Polycystic ovary syndrome and cardiovascular disease: premature association? Endocr Rev. 2003;24:302–12.
Hardiman P, Pillay OS, Atiomo W. Polycystic ovary syndrome and endometrial carcinoma. Lancet. 2003;361:1810–2.
Chereau A. Mémoires pour servir a l’étude des maladies des ovaries. Paris: Fortin, Masson and Cie; 1844.
Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935;29:181–6.
Culiner A, Shippel S. Virilism and thecal cell hyperplasia of the ovary syndrome. J Obstet Gynaecol Br Commonw. 1949;56:439–45.
McArthur JW, Ingersoll FW, Worcester J. The urinary excretion of interstitial-cell and follicle-stimulating hormone activity by women with diseases of the reproductive system. J Clin Endocrinol Metab. 1958;18:1202–15.
De Vane GW, Czekala NM, Judd HL, Yen SS. Circulating gonadotropins, estrogens, and androgens in polycystic ovarian disease. Am J Obstet Gynecol. 1975;121:496–500.
Cooper H, Spellacy W, Prem K, Cohen W. Hereditary factors in the Stein-Leventhal syndrome. Am J Obstet Gynecol. 1968;100:371–87.
Unluturk U, Harmanci A, Kocaefe C, Yildiz B. The genetic basis of the polycystic ovary syndrome: a literature review including discussion of PPAR-g. PPAR Res. 2007;2007:49109.
Poretsky L, Cataldo N, Rosenwaks Z, Giudice L. The insulin-related ovarian regulatory system in health and disease. Endocr Rev. 1999;20:535–82.
Zumoff B, Freeman R, Coupey S, Saenger P, Markowitz M, Kream J. A chronobiologic abnormality in luteinizing hormone secretion in teenage girls with the polycystic-ovary syndrome. N Engl J Med. 1983;309:1206–9.
McLachlan RI, Healy DL, Burger HG. The ovary. In: Felig P, Baxter JD, Broadus AE, Frohman LA, editors. Endocrinology and metabolism. 2nd ed. New York: McGraw-Hill Book; 1987. p. 951–83.
Pang S, Softness B, Sweeney WJ, New MI. Hirsutism, polycystic ovarian disease, and ovarian 17-ketosteroid reductase deficiency. N Engl J Med. 1987;316:1295–301.
Nelson VL, Qin K-N, Rosenfeld RL, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86:5925–33.
Poretsky L, Kalin M. The gonadotropic function of insulin. Endocr Rev. 1987;8:132–41.
Archard C, Thiers J. Le virilisme pilaire et son association a l’insuffisance glycolytique (diabete des femmes a barbe). Bull Acad Natl Med. 1921;86:51.
Kahn CR, Flier JS, Bar RS, et al. The syndromes of insulin resistance and acanthosis nigricans: insulin-receptor disorders in man. N Engl J Med. 1976;294:739–45.
Flier JS, Kahn CR, Roth J, Bar RS. Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance. Science. 1975;190:63–5.
Taylor SI, Moller DE. Mutations of the insulin receptor gene. In: Moller DE, editor. Insulin resistance. New York: Wiley; 1993. p. 83–121.
Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. 1997;18:774–800.
Salehi M, Bravo-Vera R, Sheikh A, Gouller A, Poretsky L. Pathogenesis of polycystic ovary syndrome: what is the role of obesity? Metabolism. 2004;53:358–76.
Dunaif A, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle: a potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest. 1995;96:801–10.
Svedberg J, Bjorntorp P, Smith U, et al. Free-fatty acid inhibition of insulin binding, degradation, and action in isolated rat hepatocytes. Diabetes. 1990;39:570–4.
Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIIDM. Diabetes. 1997;46:3–10.
Kelley DE. Skeletal muscle triglycerides: an aspect of regional adiposity and insulin resistance. Ann N Y Acad Sci. 2002;967:135–45.
Hotamisligil GS, Peraldi P, Budavari A. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha and obesity-induced insulin resistance. Science. 1996;271:665–8.
Hrebicek A, Rypka M, Chmela Z, et al. Tumor necrosis factor alpha in various tissues and of insulin-resistant obese Koletsky rats: relations to insulin receptor characteristics. Physiol Res. 1999;48:83–6.
Holte J, Bergh T, Berne C, et al. Serum lipoprotein lipid profile in women with the polycystic ovary syndrome: relation to anthropometric, endocrine and metabolic variables. Clin Endocrinol. 1994;41:463–71.
Ek I, Arner P, Ryden M, et al. A unique defect in the regulation of visceral fat cell lipolysis in the polycystic ovary syndrome as an early link to insulin resistance. Diabetes. 2002;51:484–92.
Escobar-Morreale HF, Calvo RM, Sancho J, et al. TNF-alpha hyperandrogenism: a clinical, biochemical, and molecular genetic study. J Clin Endocrinol Metab. 2001;86:3761–7.
Poretsky L, Smith D, Seibel M, Pazianos A, Moses AC, Flier JS. Specific insulin binding sites in the human ovary. J Clin Endocrinol Metab. 1984;59:809–11.
Poretsky L, Grigorescu F, Seibel M, Moses AC, Flier JS. Distribution and characterization of the insulin and IGF-I receptors in the normal human ovary. J Clin Endocrinol Metab. 1985;61:728–34.
El-Roeiy A, Chen X, Roberts VJ, et al. Expression of the genes encoding the insulin-like growth factors (IGF-I and II), the IGF and insulin receptors, and IGF-binding proteins 1-6 and the localization of their gene products in normal and polycystic ovary syndrome ovaries. J Clin Endocrinol Metab. 1994;78:1488–96.
Barbieri RL, Makris A, Ryan KJ. Effects of insulin on steroidogenesis in cultured porcine ovarian theca. Fertil Steril. 1983;40:237–41.
Poretsky L, Clemons J, Bogovich K. Hyperinsulinemia and human chorionic gonadotropin synergistically promote the growth of ovarian follicular cysts in rats. Metabolism. 1992;41:903–10.
Poretsky L, Chandrasekher YA, Bai C, Liu HC, Rosenwaks Z, Giudice L. Insulin receptor mediates inhibitory effect of insulin, but not of insulin-like growth factor (IGF)-1, on binding protein 1 (IGFBP-1) production in human granulosa cells. J Clin Endocrinol Metab. 1996;81:493–6.
Poretsky L. On the paradox of insulin-induced hyperandrogenism in insulin-resistant states. Endocr Rev. 1991;12:3–13.
Joslin EP, Root HF, White P. The growth, development and prognosis of diabetic children. J Am Med Assoc. 1925;85:420–2.
Zumoff B, Miller L, Poretsky L, et al. Subnormal follicular-phase serum progesterone levels and elevated follicular-phase serum estradiol levels in young women with insulin-dependent diabetes. Steroids. 1990;55:560–4.
Poretsky L, Bhargava G, Kalin MF, Wolf SA. Regulation of insulin receptors in the human ovary: in vitro studies. J Clin Endocrinol Metab. 1988;67:774–8.
Poretsky L, Bhargava G, Saketos M, Dunaif A. Regulation of human ovarian insulin receptors in vivo. Metabolism. 1990;39:161–6.
Saltiel AR. Second messengers of insulin action. Diabetes Care. 1990;13:244–56.
Nestler JE, Jakubowicz DJ, De Vargas AF, Brik C, Quintero N, Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovarian syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab. 1998;83:2001–5.
Poretsky L, Seto-Young D, Shrestha A, et al. Phosphatidyl-inositol-3 kinase-independent insulin action pathway(s) in the human ovary. J Clin Endocrinol Metab. 2001;86:3115–9.
Poretsky L, Glover B, Laumas V, Kalin M, Dunaif A. The effects of experimental hyperinsulinemia on steroid secretion, ovarian [125I] insulin binding, and ovarian [125I] insulin-like growth factor I binding in the rat. Endocrinology. 1988;122:581–5.
Samoto T, Maruo T, Matsuo H, Katayama K, Barnea ER, Mochizuki M. Altered expression of insulin and insulin-like growth factor-I receptors in follicular and stromal compartments of polycystic ovarian ovaries. Endocr J. 1993;40:413–24.
Willis D, Mason H, Gilling-Smith C, Franks S. Modulation by insulin of follicle-stimulating hormone and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J Clin Endocrinol Metab. 1996;81:302–9.
Seto-Young D, Paliou M, Schlosser J, et al. Thiazolidinedione action in the human ovary: insulin-independent and insulin-sensitizing effects on steroidogenesis and insulin-like growth factor binding protein-1 production. J Clin Endocrinol Metab. 2005;90:6099–105.
Seto-Young D, Avtanski D, Strizhevsky M, et al. Interactions among peroxisome proliferators activated receptor-g, insulin signaling pathways, and steroidogenic acute regulatory protein in human ovarian cells. J Clin Endocrinol Metab. 2007;92:2232–9.
Poretsky L. Commentary: polycystic ovary syndrome-increased or preserved ovarian sensitivity to insulin? J Clin Endocrinol Metab. 2006;91:2859–60.
Nestler JE, Jakubowicz DJ. Decreases in ovarian cytochrome P450c17 alpha activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N Engl J Med. 1996;335:617–23.
Sahin Y, Ayata D, Kelestimur F. Lack of relationship between 17-hydroxyprogesterone response to buserelin testing and hyperinsulinemia in polycystic ovary syndrome. Eur J Endocrinol. 1997;136:410–5.
Fulghesu AM, Villa P, Pavone V, et al. The impact of insulin secretion on the ovarian response to exogenous gonadotropins in polycystic ovarian syndrome. J Clin Endocrinol Metab. 1997;82:644–8.
Stuart CA, Nagamani M. Acute augmentation of plasma androstenedione and dehydroepiandrosterone by euglycemic insulin infusion: evidence for a direct effect of insulin on ovarian steroidogenesis. In: Dunaif A, Givens JR, Haseltine FP, Merriam GR, editors. Polycystic ovary syndrome. Boston: Blackwell Scientific Publications; 1992. p. 279–88.
Stuart CA, Prince MJ, Peters EJ, Meyer WJ. Hyperinsulinemia and hyperandrogenemia: in vivo androgen response to insulin infusion. Obstet Gynecol. 1987;69:921–5.
Poretsky L, Piper B. Insulin resistance, hypersecretion of LH, and a dual-defect hypothesis for the pathogenesis of polycystic ovary syndrome. Obstet Gynecol. 1994;84:613–21.
Adashi EY, Hsueh AJW, Yen SSC. Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells. Endocrinology. 1981;108:1441–9.
Soldani R, Cagnacci A, Yen SS. Insulin, insulin-like growth factor I (IGF I) and IGF-II enhance basal and gonadotropin-releasing hormone-stimulated luteinizing hormone release from rat anterior pituitary cells in vitro. Eur J Endocrinol. 1994;131:641–5.
Nestler JE, Jakubowicz DJ. Lean women with polycystic ovary syndrome respond to insulin reduction with decreases in ovarian P450c17 alpha activity and serum androgens. J Clin Endocrinol Metab. 1997;82:4075–9.
Dunaif A, Graf M. Insulin administration alters gonadal steroid metabolism independent of changes in gonadotropin secretion in insulin-resistant women with polycystic ovary syndrome. J Clin Invest. 1989;83:23–9.
Plymate SR, Matej LA, Jones RE, Friedl KE. Inhibition of sex hormone-binding globulin production in the human hepatoma (HepG2) cell line by insulin and prolactin. J Clin Endocrinol Metab. 1988;67:460–4.
Peiris AN, Stagner JL, Plymate SR, Vogel RL, Heck M, Samols E. Relationship of insulin secretory pulses to sex hormone-binding globulin production in normal men. J Clin Endocrinol Metab. 1993;76:279–82.
Fendri S, Arlot S, Marcelli JM, Dubreuil A, Lalau JD. Relationship between insulin sensitivity and circulating sex hormone-binding globulin levels in hyperandrogenic obese women. Int J Obes Relat Metab Disord. 1994;18:755–9.
Nestler JE, Powers LP, Matt DW, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab. 1991;72:83–9.
Pao CI, Farmer PK, Begovic S, et al. Regulation of insulin-like growth factor-I (IGF I) and IGF-binding protein I gene transcription by hormones and provision of amino acids in rat hepatocytes. Mol Endocrinol. 1993;7:1561–8.
Lee PD, Giudice LC, Conover CA, Powell DR. Insulin-like growth factor binding protein-1: recent findings and new directions. Proc Soc Exp Biol Med. 1997;216:319–57.
Giudice LC. Insulin-like growth factors and ovarian follicular development. Endocr Rev. 1992;13:641–69.
Nagami M, Stuart CA. Specific binding sites for insulin-like growth factor I in the ovarian stroma of women with polycystic ovarian disease and stromal hyperthecosis. Am J Obstet Gynecol. 1990;163:1992–7.
Duleba AJ, Spaczynski RZ, Olive DL, Behrman HR. Effects of insulin and insulin-like growth factors on proliferation of rat ovarian theca-interstitial cells. Biol Reprod. 1997;56:891–7.
Duleba AJ, Spaczynski RZ, Olive DL. Insulin and insulin-like growth factor I stimulate the proliferation of human ovarian theca-interstitial cells. Fertil Steril. 1998;69:335–40.
Watson H, Willis D, Mason H, Modgil G, Wright C, Franks S. The effects of ovarian steroids, epidermal growth factor (EGF), insulin (I), and insulin-like growth factor-1 (IGF-I), on ovarian stromal cell growth. Program of the 79th Annual Meeting of the Endocrine Society, Minneapolis, (Abstract 389); 1997.
Bogovich K, Clemons J, Poretsky L. Insulin has a biphasic effects on the ability of human chorionic gonadotropin to induce ovarian cysts in the rat. Metabolism. 1999;48:995–1002.
Damario M, Bogovich K, Liu HC, Rosenwaks Z, Poretsky L. Synergistic effects of IGF-I and human chorionic gonadotropin in the rat ovary. Metabolism. 2000;49:314–20.
De Clue TJ, Shah SC, Marchese M, Malone JI. Insulin resistance and hyperinsulinemia induce hyperandrogenism in a young type B insulin-resistant female. J Clin Endocrinol Metab. 1991;72:1308–11.
Dunaif A, Finegood DT. Beta-cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1996;81:942–7.
Legro R, Kunselman A, Dodson W, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab. 1999;84:165–9.
Koivunen RM, et al. Metabolic and steroidogenic alterations related to increased frequency of polycystic ovaries in women with a history of gestational diabetes. J Clin Endocrinol Metab. 2001;86:2591–9.
The Diabetes Prevention Program Research Group. The Diabetes Prevention Program: baseline characteristics of the randomized cohort. Diabetes Care. 2000;23(11):1619–29.
Fujimoto W. Background and recruitment data for the U.S. Diabetes Prevention Program. Diabetes Care. 2000;23:B11–3.
Board JA, Rosenberg SM, Smeltzer JS. Spironolactone and estrogen-progestin therapy for hirsuitism. South Med J. 1987;80:483–6.
Falsetti L, Gamera A, Tisi G. Efficacy of the combination ethinyl oestradiol and cyproterone acetate on endocrine, clinical and ultrasonographic profile in polycystic ovarian syndrome. Hum Reprod. 2001;16:36–42.
Dewis P, Petsos P, Newman M, Anderson DC. The treatment of hirsuitism with a combination of desogestrel and ethinyl oestradiol. Clin Endocrinol. 1985;22:29–36.
Bates GW, Whitworth NS. Effect of body weight reduction on plasma androgens in obese infertile women. Fertil Steril. 1982;38:406–9.
Pasquali R, Antenucci D, Casimirri F, Venturoli S, Paradisi R, Fabbri R, et al. Clinical and hormonal characteristics of obese and amenorrheic women before and after weight loss. J Clin Endocrinol Metab. 1989;68:173–9.
Clark AM, Thornley B, Tomlinson L, Galletley C, Norman RJ. Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod. 1998;13:1502–5.
Crave JC, Fimbel S, Lejeune H, Cugnardey N, DeChaud H, Pugeat M. Effects of diet and metformin administration on sex hormone-binding globuliln, androgens, and insulin in hirsute and obese women. J Clin Endocrinol Metab. 1995;80:2057–62.
Moghetti P, Castello R, Negri C, et al. Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab. 2000;85:139–46.
Nestler JE, Jakubowicz DJ, Evans WS, Pasquali R. Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. N Engl J Med. 1998;338:1876–80.
Bloomgarden ZT, Futterwiet W, Poretsky L. The use of insulin-sensitizing agents in patients with polycystic ovary syndrome. Endocr Pract. 2001;7:279–86.
Velazquez E, Acosta A, Mendoza SG. Menstrual cyclicity after metformin therapy in polycystic ovary syndrome. Obstet Gynecol. 1997;90:392–5.
Jakubowicz DJ, Seppala M, Jakubowicz S, et al. Insulin reduction with metformin increases luteal phase serum glycodelin and insulin-like growth factor-binding protein 1 concentrations and enhances uterine vascularity and blood flow in the polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86:1126–33.
Legro R, Barnhart H, Schlaff W, et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med. 2007;356:551–66.
Palomba S, Orio F, Falbo A, Russo T, Tolino A, Zullo F. Clomiphene citrate versus metformin as first-line approach for the treatment of infertile patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92:3498–503.
Dunaif A, Scott D, Finegood D, Quintana B, Whitcomb R. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1996;81:3299–306.
Azziz R, Ehrmann D, Legro RS, et al. Troglitazone improves ovulation and hirsutism in the polycystic ovary syndrome: a multicenter, double blind, placebo-controlled trial. J Clin Endocrinol Metab. 2001;86:1626–32.
Dereli D, Dereli T, Bayraktar F, Ozgen A, Yilmaz C. Endocrine and metabolic effects of rosiglitazone in non-obese women with polycystic ovary disease. Endocr J. 2005;52:299–308.
Rautio K, Tapanainen JS, Ruokonen A, Morin-Papunen LC. Endocrine and metabolic effects of rosiglitazone in overweight women with PCOS: a randomized placebo-controlled study. Hum Reprod. 2006;21:1400–7.
Brettenthaler N, De Geyter C, Huber P, Keller U. Effect of insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89:3835–40.
Garmes H, Tambascia M, Zantut-Wittmann D. Endocrine-metabolic effects of the treatment with pioglitazone in obese patients with polycystic ovary syndrome. Gynecol Endocrinol. 2005;21:317–23.
Ashraf Ganie M, Khurana M, Eunice M, Gulati M, Dwivedi S, Ammini A. Comparison of the efficacy of spironolactone with metformin in the management of polycystic ovary syndrome: an open-labeled study. J Clin Endocrinol Metab. 2004;89:2756–62.
Yilmaz M, et al. The effect of rosiglitazone and metformin on insulin resistance and serum androgen levels in obese and lean patients with PCOS. J Endocrinol Invest. 2005;29:1003–9.
Ortega-Gonzalez C, Luna S, Hernandez L, et al. Responses of serum androgen and insulin resistance to metformin and pioglitazone in obese, insulin-resistant women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:1360–5.
Elter K, Imir G, Durmusoglu F. Clinical, endocrine and metabolic effects of metformin added to ethinyl estradio-cyproterone acetate in non-obese women with polycystic ovary syndrome: a randomized controlled study. Hum Reprod. 2002;17:1729–37.
Cibula D, Fanta M, Vrbikova J, et al. The effect of combination therapy with metformin and combined oral contraceptives (COC) versus COC alone on insulin sensitivity, hyperandrogenaemia, SHBG and lipids in PCOS patients. Hum Reprod. 2005;20:180–4.
Lemay A, Dodin S, Turcot L, Dechene F, Forest J-C. Rosiglitazone and ethinyl estradiol/cyproterone acetate as single and combined treatment of overweight women with polycystic ovary syndrome and insulin resistance. Hum Reprod. 2006;21:121–8.
Chen ZJ, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;45:55.
Goodarzi MO, Jones MR, Li X, et al. Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. J Med Genet. 2012;49:90.
Jensterle Sever M, Kocjan T, Pfeifer M, Aleksandra Kravos N, Janez A. Short-tem combined treatment with liraglutide and metformin leads to significant weight loss in obese women with polycycstic ovary syndrome and previous poor response to metformin. Eur J Endocrinol. 2014;170:451–9.
Rasmussen C, Lindenberg S. The effect of liraglutide on weight loss in women with polycystic ovary syndrome: an observational study. Front Endocrinol. 2014;5:1–6.
Dinicola S, Chiu T, Unfer V, Carlomagno G, Bizzarri M. The rationale of the myo-inositol and D-chiro-inositol combined treatment for polycystic ovary syndrome. J Clin Pharmacol. 2014;54(10):1079–92.
Unfer V, Carlomagno G, Dante G, Facchinetti F. Effects of myoinositol in women with PCOS: a systematic review of randomized controlled trials. Gynecol Endocrinol. 2012;28(7):509–15.
Pinola P, Piltonene TT, Puurunen J, Vanky E, Sundstrom-Poromaa I, Stener-Victorin E, Ruokonen A, Puukka K, Tapanainen J, Morin-Papunen LC. Androgen profile through life in women with PCO: a Nordic multicenter collaboration study. J Clin Endocrinol Metab. 2015;100(9):3400–7.
Yildiz BO. Approach to the patient: contraception in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2015;100(3):794–802.
Sitruk-Ware R, Nath A. Characteristics and metabolic effects of estrogen and progestins contained in oral contraceptive pills. Best Pract Res Clin Endocrinol Metab. 2013;27:13–24.
Troisi RJ, Cowie CC, Harris MI. Oral contraceptive use and glucose metabolism in a national sample of women in the United States. Am J Obstet Gynecol. 2000;183:389–95.
Halperin IJ, Kumar SS, Stroup DF, Laredo SE. The association between the combined oral contraceptive pill and insulin resistance, dysglycemia and dyslipidemia in women with polycystic ovary syndrome: a systematic review and meta-analysis of observational studies. Hum Reprod. 2011;26:191–201.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this entry
Cite this entry
Sood, M., Zweig, S.B., Tolentino, M.C., Strizhevsky, M., Poretsky, L. (2015). Polycystic Ovary Syndrome. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-20797-1_33-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-20797-1_33-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Online ISBN: 978-3-319-20797-1
eBook Packages: Springer Reference MedicineReference Module Medicine