Advertisement

Polycystic Ovary Syndrome

  • Minisha Sood
  • Susan B. Zweig
  • Marsha C. Tolentino
  • Marina Strizhevsky
  • Leonid Poretsky
Living reference work entry

Abstract

Polycystic ovary syndrome (PCOS) is a common endocrinopathy affecting approximately 5–10 % of reproductive-age women. PCOS is considered the most common cause of anovulatory infertility. PCOS is widely accepted as a combination of ovulatory dysfunction, androgen excess, and polycystic ovaries with the exclusion of specific disorders that may lead to similar phenotypes. Genetic variants have also been identified which result in PCOS. PCOS is associated with insulin resistance, type 2 diabetes mellitus, dyslipidemia, and visceral obesity. The treatment of PCOS is multifaceted, including the use of oral contraceptives, insulin sensitizers, antiandrogen agents, and other medications; PCOS therapy is tailored to patient-specific physiological conditions and treatment goals.

Keywords

POLYCYSTIC OVARY SYNDROME INSULIN RESISTANCE OLIGOMENORRHEA HIRSUTISM ANDROGENS 

References

  1. 1.
    Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovarian syndrome in unselected black and white women of the Southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83:3078–82.PubMedGoogle Scholar
  2. 2.
    Zawadzki JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, editor. Polycystic ovary syndrome. Boston: Blackwell Scientific; 1995. p. 337–84.Google Scholar
  3. 3.
    Rotterdam ESHRE/ASRM – Sponsored PCOS Concensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary disease. Fertil Steril. 2004;81:19–25.Google Scholar
  4. 4.
    Rotterdam ESHRE/ASRM – Sponsored PCOS Concensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary disease. Hum Reprod. 2004;19:41–7.CrossRefGoogle Scholar
  5. 5.
    Dunaif A. Hyperandrogenic anovulation (PCOS): a unique disorder of insulin action associated with an increased risk of non-insulin-dependent diabetes mellitus. Am J Med. 1995;98(Suppl):33S–9S.PubMedCrossRefGoogle Scholar
  6. 6.
    Legro RS. Polycystic ovary syndrome and cardiovascular disease: premature association? Endocr Rev. 2003;24:302–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Hardiman P, Pillay OS, Atiomo W. Polycystic ovary syndrome and endometrial carcinoma. Lancet. 2003;361:1810–2.PubMedCrossRefGoogle Scholar
  8. 8.
    Chereau A. Mémoires pour servir a l’étude des maladies des ovaries. Paris: Fortin, Masson and Cie; 1844.Google Scholar
  9. 9.
    Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935;29:181–6.CrossRefGoogle Scholar
  10. 10.
    Culiner A, Shippel S. Virilism and thecal cell hyperplasia of the ovary syndrome. J Obstet Gynaecol Br Commonw. 1949;56:439–45.CrossRefGoogle Scholar
  11. 11.
    McArthur JW, Ingersoll FW, Worcester J. The urinary excretion of interstitial-cell and follicle-stimulating hormone activity by women with diseases of the reproductive system. J Clin Endocrinol Metab. 1958;18:1202–15.PubMedCrossRefGoogle Scholar
  12. 12.
    De Vane GW, Czekala NM, Judd HL, Yen SS. Circulating gonadotropins, estrogens, and androgens in polycystic ovarian disease. Am J Obstet Gynecol. 1975;121:496–500.Google Scholar
  13. 13.
    Cooper H, Spellacy W, Prem K, Cohen W. Hereditary factors in the Stein-Leventhal syndrome. Am J Obstet Gynecol. 1968;100:371–87.PubMedCrossRefGoogle Scholar
  14. 14.
    Unluturk U, Harmanci A, Kocaefe C, Yildiz B. The genetic basis of the polycystic ovary syndrome: a literature review including discussion of PPAR-g. PPAR Res. 2007;2007:49109.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Poretsky L, Cataldo N, Rosenwaks Z, Giudice L. The insulin-related ovarian regulatory system in health and disease. Endocr Rev. 1999;20:535–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Zumoff B, Freeman R, Coupey S, Saenger P, Markowitz M, Kream J. A chronobiologic abnormality in luteinizing hormone secretion in teenage girls with the polycystic-ovary syndrome. N Engl J Med. 1983;309:1206–9.PubMedCrossRefGoogle Scholar
  17. 17.
    McLachlan RI, Healy DL, Burger HG. The ovary. In: Felig P, Baxter JD, Broadus AE, Frohman LA, editors. Endocrinology and metabolism. 2nd ed. New York: McGraw-Hill Book; 1987. p. 951–83.Google Scholar
  18. 18.
    Pang S, Softness B, Sweeney WJ, New MI. Hirsutism, polycystic ovarian disease, and ovarian 17-ketosteroid reductase deficiency. N Engl J Med. 1987;316:1295–301.PubMedCrossRefGoogle Scholar
  19. 19.
    Nelson VL, Qin K-N, Rosenfeld RL, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86:5925–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Poretsky L, Kalin M. The gonadotropic function of insulin. Endocr Rev. 1987;8:132–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Archard C, Thiers J. Le virilisme pilaire et son association a l’insuffisance glycolytique (diabete des femmes a barbe). Bull Acad Natl Med. 1921;86:51.Google Scholar
  22. 22.
    Kahn CR, Flier JS, Bar RS, et al. The syndromes of insulin resistance and acanthosis nigricans: insulin-receptor disorders in man. N Engl J Med. 1976;294:739–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Flier JS, Kahn CR, Roth J, Bar RS. Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance. Science. 1975;190:63–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Taylor SI, Moller DE. Mutations of the insulin receptor gene. In: Moller DE, editor. Insulin resistance. New York: Wiley; 1993. p. 83–121.Google Scholar
  25. 25.
    Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. 1997;18:774–800.PubMedGoogle Scholar
  26. 26.
    Salehi M, Bravo-Vera R, Sheikh A, Gouller A, Poretsky L. Pathogenesis of polycystic ovary syndrome: what is the role of obesity? Metabolism. 2004;53:358–76.PubMedCrossRefGoogle Scholar
  27. 27.
    Dunaif A, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle: a potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest. 1995;96:801–10.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Svedberg J, Bjorntorp P, Smith U, et al. Free-fatty acid inhibition of insulin binding, degradation, and action in isolated rat hepatocytes. Diabetes. 1990;39:570–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIIDM. Diabetes. 1997;46:3–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Kelley DE. Skeletal muscle triglycerides: an aspect of regional adiposity and insulin resistance. Ann N Y Acad Sci. 2002;967:135–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Hotamisligil GS, Peraldi P, Budavari A. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha and obesity-induced insulin resistance. Science. 1996;271:665–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Hrebicek A, Rypka M, Chmela Z, et al. Tumor necrosis factor alpha in various tissues and of insulin-resistant obese Koletsky rats: relations to insulin receptor characteristics. Physiol Res. 1999;48:83–6.PubMedGoogle Scholar
  33. 33.
    Holte J, Bergh T, Berne C, et al. Serum lipoprotein lipid profile in women with the polycystic ovary syndrome: relation to anthropometric, endocrine and metabolic variables. Clin Endocrinol. 1994;41:463–71.CrossRefGoogle Scholar
  34. 34.
    Ek I, Arner P, Ryden M, et al. A unique defect in the regulation of visceral fat cell lipolysis in the polycystic ovary syndrome as an early link to insulin resistance. Diabetes. 2002;51:484–92.PubMedCrossRefGoogle Scholar
  35. 35.
    Escobar-Morreale HF, Calvo RM, Sancho J, et al. TNF-alpha hyperandrogenism: a clinical, biochemical, and molecular genetic study. J Clin Endocrinol Metab. 2001;86:3761–7.PubMedGoogle Scholar
  36. 36.
    Poretsky L, Smith D, Seibel M, Pazianos A, Moses AC, Flier JS. Specific insulin binding sites in the human ovary. J Clin Endocrinol Metab. 1984;59:809–11.PubMedCrossRefGoogle Scholar
  37. 37.
    Poretsky L, Grigorescu F, Seibel M, Moses AC, Flier JS. Distribution and characterization of the insulin and IGF-I receptors in the normal human ovary. J Clin Endocrinol Metab. 1985;61:728–34.PubMedCrossRefGoogle Scholar
  38. 38.
    El-Roeiy A, Chen X, Roberts VJ, et al. Expression of the genes encoding the insulin-like growth factors (IGF-I and II), the IGF and insulin receptors, and IGF-binding proteins 1-6 and the localization of their gene products in normal and polycystic ovary syndrome ovaries. J Clin Endocrinol Metab. 1994;78:1488–96.PubMedGoogle Scholar
  39. 39.
    Barbieri RL, Makris A, Ryan KJ. Effects of insulin on steroidogenesis in cultured porcine ovarian theca. Fertil Steril. 1983;40:237–41.PubMedGoogle Scholar
  40. 40.
    Poretsky L, Clemons J, Bogovich K. Hyperinsulinemia and human chorionic gonadotropin synergistically promote the growth of ovarian follicular cysts in rats. Metabolism. 1992;41:903–10.PubMedCrossRefGoogle Scholar
  41. 41.
    Poretsky L, Chandrasekher YA, Bai C, Liu HC, Rosenwaks Z, Giudice L. Insulin receptor mediates inhibitory effect of insulin, but not of insulin-like growth factor (IGF)-1, on binding protein 1 (IGFBP-1) production in human granulosa cells. J Clin Endocrinol Metab. 1996;81:493–6.PubMedGoogle Scholar
  42. 42.
    Poretsky L. On the paradox of insulin-induced hyperandrogenism in insulin-resistant states. Endocr Rev. 1991;12:3–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Joslin EP, Root HF, White P. The growth, development and prognosis of diabetic children. J Am Med Assoc. 1925;85:420–2.CrossRefGoogle Scholar
  44. 44.
    Zumoff B, Miller L, Poretsky L, et al. Subnormal follicular-phase serum progesterone levels and elevated follicular-phase serum estradiol levels in young women with insulin-dependent diabetes. Steroids. 1990;55:560–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Poretsky L, Bhargava G, Kalin MF, Wolf SA. Regulation of insulin receptors in the human ovary: in vitro studies. J Clin Endocrinol Metab. 1988;67:774–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Poretsky L, Bhargava G, Saketos M, Dunaif A. Regulation of human ovarian insulin receptors in vivo. Metabolism. 1990;39:161–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Saltiel AR. Second messengers of insulin action. Diabetes Care. 1990;13:244–56.PubMedCrossRefGoogle Scholar
  48. 48.
    Nestler JE, Jakubowicz DJ, De Vargas AF, Brik C, Quintero N, Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovarian syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab. 1998;83:2001–5.PubMedGoogle Scholar
  49. 49.
    Poretsky L, Seto-Young D, Shrestha A, et al. Phosphatidyl-inositol-3 kinase-independent insulin action pathway(s) in the human ovary. J Clin Endocrinol Metab. 2001;86:3115–9.PubMedGoogle Scholar
  50. 50.
    Poretsky L, Glover B, Laumas V, Kalin M, Dunaif A. The effects of experimental hyperinsulinemia on steroid secretion, ovarian [125I] insulin binding, and ovarian [125I] insulin-like growth factor I binding in the rat. Endocrinology. 1988;122:581–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Samoto T, Maruo T, Matsuo H, Katayama K, Barnea ER, Mochizuki M. Altered expression of insulin and insulin-like growth factor-I receptors in follicular and stromal compartments of polycystic ovarian ovaries. Endocr J. 1993;40:413–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Willis D, Mason H, Gilling-Smith C, Franks S. Modulation by insulin of follicle-stimulating hormone and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J Clin Endocrinol Metab. 1996;81:302–9.PubMedGoogle Scholar
  53. 53.
    Seto-Young D, Paliou M, Schlosser J, et al. Thiazolidinedione action in the human ovary: insulin-independent and insulin-sensitizing effects on steroidogenesis and insulin-like growth factor binding protein-1 production. J Clin Endocrinol Metab. 2005;90:6099–105.PubMedCrossRefGoogle Scholar
  54. 54.
    Seto-Young D, Avtanski D, Strizhevsky M, et al. Interactions among peroxisome proliferators activated receptor-g, insulin signaling pathways, and steroidogenic acute regulatory protein in human ovarian cells. J Clin Endocrinol Metab. 2007;92:2232–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Poretsky L. Commentary: polycystic ovary syndrome-increased or preserved ovarian sensitivity to insulin? J Clin Endocrinol Metab. 2006;91:2859–60.PubMedCrossRefGoogle Scholar
  56. 56.
    Nestler JE, Jakubowicz DJ. Decreases in ovarian cytochrome P450c17 alpha activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N Engl J Med. 1996;335:617–23.PubMedCrossRefGoogle Scholar
  57. 57.
    Sahin Y, Ayata D, Kelestimur F. Lack of relationship between 17-hydroxyprogesterone response to buserelin testing and hyperinsulinemia in polycystic ovary syndrome. Eur J Endocrinol. 1997;136:410–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Fulghesu AM, Villa P, Pavone V, et al. The impact of insulin secretion on the ovarian response to exogenous gonadotropins in polycystic ovarian syndrome. J Clin Endocrinol Metab. 1997;82:644–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Stuart CA, Nagamani M. Acute augmentation of plasma androstenedione and dehydroepiandrosterone by euglycemic insulin infusion: evidence for a direct effect of insulin on ovarian steroidogenesis. In: Dunaif A, Givens JR, Haseltine FP, Merriam GR, editors. Polycystic ovary syndrome. Boston: Blackwell Scientific Publications; 1992. p. 279–88.Google Scholar
  60. 60.
    Stuart CA, Prince MJ, Peters EJ, Meyer WJ. Hyperinsulinemia and hyperandrogenemia: in vivo androgen response to insulin infusion. Obstet Gynecol. 1987;69:921–5.PubMedGoogle Scholar
  61. 61.
    Poretsky L, Piper B. Insulin resistance, hypersecretion of LH, and a dual-defect hypothesis for the pathogenesis of polycystic ovary syndrome. Obstet Gynecol. 1994;84:613–21.PubMedGoogle Scholar
  62. 62.
    Adashi EY, Hsueh AJW, Yen SSC. Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells. Endocrinology. 1981;108:1441–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Soldani R, Cagnacci A, Yen SS. Insulin, insulin-like growth factor I (IGF I) and IGF-II enhance basal and gonadotropin-releasing hormone-stimulated luteinizing hormone release from rat anterior pituitary cells in vitro. Eur J Endocrinol. 1994;131:641–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Nestler JE, Jakubowicz DJ. Lean women with polycystic ovary syndrome respond to insulin reduction with decreases in ovarian P450c17 alpha activity and serum androgens. J Clin Endocrinol Metab. 1997;82:4075–9.PubMedGoogle Scholar
  65. 65.
    Dunaif A, Graf M. Insulin administration alters gonadal steroid metabolism independent of changes in gonadotropin secretion in insulin-resistant women with polycystic ovary syndrome. J Clin Invest. 1989;83:23–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Plymate SR, Matej LA, Jones RE, Friedl KE. Inhibition of sex hormone-binding globulin production in the human hepatoma (HepG2) cell line by insulin and prolactin. J Clin Endocrinol Metab. 1988;67:460–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Peiris AN, Stagner JL, Plymate SR, Vogel RL, Heck M, Samols E. Relationship of insulin secretory pulses to sex hormone-binding globulin production in normal men. J Clin Endocrinol Metab. 1993;76:279–82.PubMedGoogle Scholar
  68. 68.
    Fendri S, Arlot S, Marcelli JM, Dubreuil A, Lalau JD. Relationship between insulin sensitivity and circulating sex hormone-binding globulin levels in hyperandrogenic obese women. Int J Obes Relat Metab Disord. 1994;18:755–9.PubMedGoogle Scholar
  69. 69.
    Nestler JE, Powers LP, Matt DW, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab. 1991;72:83–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Pao CI, Farmer PK, Begovic S, et al. Regulation of insulin-like growth factor-I (IGF I) and IGF-binding protein I gene transcription by hormones and provision of amino acids in rat hepatocytes. Mol Endocrinol. 1993;7:1561–8.PubMedGoogle Scholar
  71. 71.
    Lee PD, Giudice LC, Conover CA, Powell DR. Insulin-like growth factor binding protein-1: recent findings and new directions. Proc Soc Exp Biol Med. 1997;216:319–57.PubMedCrossRefGoogle Scholar
  72. 72.
    Giudice LC. Insulin-like growth factors and ovarian follicular development. Endocr Rev. 1992;13:641–69.PubMedGoogle Scholar
  73. 73.
    Nagami M, Stuart CA. Specific binding sites for insulin-like growth factor I in the ovarian stroma of women with polycystic ovarian disease and stromal hyperthecosis. Am J Obstet Gynecol. 1990;163:1992–7.CrossRefGoogle Scholar
  74. 74.
    Duleba AJ, Spaczynski RZ, Olive DL, Behrman HR. Effects of insulin and insulin-like growth factors on proliferation of rat ovarian theca-interstitial cells. Biol Reprod. 1997;56:891–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Duleba AJ, Spaczynski RZ, Olive DL. Insulin and insulin-like growth factor I stimulate the proliferation of human ovarian theca-interstitial cells. Fertil Steril. 1998;69:335–40.PubMedCrossRefGoogle Scholar
  76. 76.
    Watson H, Willis D, Mason H, Modgil G, Wright C, Franks S. The effects of ovarian steroids, epidermal growth factor (EGF), insulin (I), and insulin-like growth factor-1 (IGF-I), on ovarian stromal cell growth. Program of the 79th Annual Meeting of the Endocrine Society, Minneapolis, (Abstract 389); 1997.Google Scholar
  77. 77.
    Bogovich K, Clemons J, Poretsky L. Insulin has a biphasic effects on the ability of human chorionic gonadotropin to induce ovarian cysts in the rat. Metabolism. 1999;48:995–1002.PubMedCrossRefGoogle Scholar
  78. 78.
    Damario M, Bogovich K, Liu HC, Rosenwaks Z, Poretsky L. Synergistic effects of IGF-I and human chorionic gonadotropin in the rat ovary. Metabolism. 2000;49:314–20.PubMedCrossRefGoogle Scholar
  79. 79.
    De Clue TJ, Shah SC, Marchese M, Malone JI. Insulin resistance and hyperinsulinemia induce hyperandrogenism in a young type B insulin-resistant female. J Clin Endocrinol Metab. 1991;72:1308–11.CrossRefGoogle Scholar
  80. 80.
    Dunaif A, Finegood DT. Beta-cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1996;81:942–7.PubMedGoogle Scholar
  81. 81.
    Legro R, Kunselman A, Dodson W, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab. 1999;84:165–9.PubMedGoogle Scholar
  82. 82.
    Koivunen RM, et al. Metabolic and steroidogenic alterations related to increased frequency of polycystic ovaries in women with a history of gestational diabetes. J Clin Endocrinol Metab. 2001;86:2591–9.PubMedGoogle Scholar
  83. 83.
    The Diabetes Prevention Program Research Group. The Diabetes Prevention Program: baseline characteristics of the randomized cohort. Diabetes Care. 2000;23(11):1619–29.PubMedCentralCrossRefGoogle Scholar
  84. 84.
    Fujimoto W. Background and recruitment data for the U.S. Diabetes Prevention Program. Diabetes Care. 2000;23:B11–3.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Board JA, Rosenberg SM, Smeltzer JS. Spironolactone and estrogen-progestin therapy for hirsuitism. South Med J. 1987;80:483–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Falsetti L, Gamera A, Tisi G. Efficacy of the combination ethinyl oestradiol and cyproterone acetate on endocrine, clinical and ultrasonographic profile in polycystic ovarian syndrome. Hum Reprod. 2001;16:36–42.PubMedCrossRefGoogle Scholar
  87. 87.
    Dewis P, Petsos P, Newman M, Anderson DC. The treatment of hirsuitism with a combination of desogestrel and ethinyl oestradiol. Clin Endocrinol. 1985;22:29–36.CrossRefGoogle Scholar
  88. 88.
    Bates GW, Whitworth NS. Effect of body weight reduction on plasma androgens in obese infertile women. Fertil Steril. 1982;38:406–9.PubMedGoogle Scholar
  89. 89.
    Pasquali R, Antenucci D, Casimirri F, Venturoli S, Paradisi R, Fabbri R, et al. Clinical and hormonal characteristics of obese and amenorrheic women before and after weight loss. J Clin Endocrinol Metab. 1989;68:173–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Clark AM, Thornley B, Tomlinson L, Galletley C, Norman RJ. Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod. 1998;13:1502–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Crave JC, Fimbel S, Lejeune H, Cugnardey N, DeChaud H, Pugeat M. Effects of diet and metformin administration on sex hormone-binding globuliln, androgens, and insulin in hirsute and obese women. J Clin Endocrinol Metab. 1995;80:2057–62.PubMedGoogle Scholar
  92. 92.
    Moghetti P, Castello R, Negri C, et al. Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab. 2000;85:139–46.PubMedGoogle Scholar
  93. 93.
    Nestler JE, Jakubowicz DJ, Evans WS, Pasquali R. Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. N Engl J Med. 1998;338:1876–80.PubMedCrossRefGoogle Scholar
  94. 94.
    Bloomgarden ZT, Futterwiet W, Poretsky L. The use of insulin-sensitizing agents in patients with polycystic ovary syndrome. Endocr Pract. 2001;7:279–86.PubMedCrossRefGoogle Scholar
  95. 95.
    Velazquez E, Acosta A, Mendoza SG. Menstrual cyclicity after metformin therapy in polycystic ovary syndrome. Obstet Gynecol. 1997;90:392–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Jakubowicz DJ, Seppala M, Jakubowicz S, et al. Insulin reduction with metformin increases luteal phase serum glycodelin and insulin-like growth factor-binding protein 1 concentrations and enhances uterine vascularity and blood flow in the polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86:1126–33.PubMedGoogle Scholar
  97. 97.
    Legro R, Barnhart H, Schlaff W, et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med. 2007;356:551–66.PubMedCrossRefGoogle Scholar
  98. 98.
    Palomba S, Orio F, Falbo A, Russo T, Tolino A, Zullo F. Clomiphene citrate versus metformin as first-line approach for the treatment of infertile patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92:3498–503.PubMedCrossRefGoogle Scholar
  99. 99.
    Dunaif A, Scott D, Finegood D, Quintana B, Whitcomb R. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1996;81:3299–306.PubMedGoogle Scholar
  100. 100.
    Azziz R, Ehrmann D, Legro RS, et al. Troglitazone improves ovulation and hirsutism in the polycystic ovary syndrome: a multicenter, double blind, placebo-controlled trial. J Clin Endocrinol Metab. 2001;86:1626–32.PubMedGoogle Scholar
  101. 101.
    Dereli D, Dereli T, Bayraktar F, Ozgen A, Yilmaz C. Endocrine and metabolic effects of rosiglitazone in non-obese women with polycystic ovary disease. Endocr J. 2005;52:299–308.PubMedCrossRefGoogle Scholar
  102. 102.
    Rautio K, Tapanainen JS, Ruokonen A, Morin-Papunen LC. Endocrine and metabolic effects of rosiglitazone in overweight women with PCOS: a randomized placebo-controlled study. Hum Reprod. 2006;21:1400–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Brettenthaler N, De Geyter C, Huber P, Keller U. Effect of insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89:3835–40.PubMedCrossRefGoogle Scholar
  104. 104.
    Garmes H, Tambascia M, Zantut-Wittmann D. Endocrine-metabolic effects of the treatment with pioglitazone in obese patients with polycystic ovary syndrome. Gynecol Endocrinol. 2005;21:317–23.PubMedCrossRefGoogle Scholar
  105. 105.
    Ashraf Ganie M, Khurana M, Eunice M, Gulati M, Dwivedi S, Ammini A. Comparison of the efficacy of spironolactone with metformin in the management of polycystic ovary syndrome: an open-labeled study. J Clin Endocrinol Metab. 2004;89:2756–62.PubMedCrossRefGoogle Scholar
  106. 106.
    Yilmaz M, et al. The effect of rosiglitazone and metformin on insulin resistance and serum androgen levels in obese and lean patients with PCOS. J Endocrinol Invest. 2005;29:1003–9.CrossRefGoogle Scholar
  107. 107.
    Ortega-Gonzalez C, Luna S, Hernandez L, et al. Responses of serum androgen and insulin resistance to metformin and pioglitazone in obese, insulin-resistant women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:1360–5.PubMedCrossRefGoogle Scholar
  108. 108.
    Elter K, Imir G, Durmusoglu F. Clinical, endocrine and metabolic effects of metformin added to ethinyl estradio-cyproterone acetate in non-obese women with polycystic ovary syndrome: a randomized controlled study. Hum Reprod. 2002;17:1729–37.PubMedCrossRefGoogle Scholar
  109. 109.
    Cibula D, Fanta M, Vrbikova J, et al. The effect of combination therapy with metformin and combined oral contraceptives (COC) versus COC alone on insulin sensitivity, hyperandrogenaemia, SHBG and lipids in PCOS patients. Hum Reprod. 2005;20:180–4.PubMedCrossRefGoogle Scholar
  110. 110.
    Lemay A, Dodin S, Turcot L, Dechene F, Forest J-C. Rosiglitazone and ethinyl estradiol/cyproterone acetate as single and combined treatment of overweight women with polycystic ovary syndrome and insulin resistance. Hum Reprod. 2006;21:121–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen ZJ, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;45:55.CrossRefGoogle Scholar
  112. 112.
    Goodarzi MO, Jones MR, Li X, et al. Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. J Med Genet. 2012;49:90.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Jensterle Sever M, Kocjan T, Pfeifer M, Aleksandra Kravos N, Janez A. Short-tem combined treatment with liraglutide and metformin leads to significant weight loss in obese women with polycycstic ovary syndrome and previous poor response to metformin. Eur J Endocrinol. 2014;170:451–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Rasmussen C, Lindenberg S. The effect of liraglutide on weight loss in women with polycystic ovary syndrome: an observational study. Front Endocrinol. 2014;5:1–6.CrossRefGoogle Scholar
  115. 115.
    Dinicola S, Chiu T, Unfer V, Carlomagno G, Bizzarri M. The rationale of the myo-inositol and D-chiro-inositol combined treatment for polycystic ovary syndrome. J Clin Pharmacol. 2014;54(10):1079–92.PubMedCrossRefGoogle Scholar
  116. 116.
    Unfer V, Carlomagno G, Dante G, Facchinetti F. Effects of myoinositol in women with PCOS: a systematic review of randomized controlled trials. Gynecol Endocrinol. 2012;28(7):509–15.PubMedCrossRefGoogle Scholar
  117. 117.
    Pinola P, Piltonene TT, Puurunen J, Vanky E, Sundstrom-Poromaa I, Stener-Victorin E, Ruokonen A, Puukka K, Tapanainen J, Morin-Papunen LC. Androgen profile through life in women with PCO: a Nordic multicenter collaboration study. J Clin Endocrinol Metab. 2015;100(9):3400–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Yildiz BO. Approach to the patient: contraception in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2015;100(3):794–802.PubMedCrossRefGoogle Scholar
  119. 119.
    Sitruk-Ware R, Nath A. Characteristics and metabolic effects of estrogen and progestins contained in oral contraceptive pills. Best Pract Res Clin Endocrinol Metab. 2013;27:13–24.PubMedCrossRefGoogle Scholar
  120. 120.
    Troisi RJ, Cowie CC, Harris MI. Oral contraceptive use and glucose metabolism in a national sample of women in the United States. Am J Obstet Gynecol. 2000;183:389–95.PubMedCrossRefGoogle Scholar
  121. 121.
    Halperin IJ, Kumar SS, Stroup DF, Laredo SE. The association between the combined oral contraceptive pill and insulin resistance, dysglycemia and dyslipidemia in women with polycystic ovary syndrome: a systematic review and meta-analysis of observational studies. Hum Reprod. 2011;26:191–201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Minisha Sood
    • 1
  • Susan B. Zweig
    • 2
  • Marsha C. Tolentino
    • 3
  • Marina Strizhevsky
    • 4
  • Leonid Poretsky
    • 1
  1. 1.Division of EndocrinologyLenox Hill Hospital, Northwell HealthNew YorkUSA
  2. 2.Division of EndocrinologyNYU Langone Medical CenterNew YorkUSA
  3. 3.Perpetual Succour Hospital and Cebu Doctors’ University HospitalCebuPhilippines
  4. 4.Barnabas Health Medical GroupCliftonUSA

Personalised recommendations